一元二次方程的解法大全

合集下载

九年级数学 一元二次方程解法大全

九年级数学 一元二次方程解法大全

一元二次方程有哪些解法?解法怎么用?1.配方法(可解全部一元二次方程)如:解方程:x^2+2x-3=0把常数项移项得:x^2+2x=3等式两边同时加1(构成完全平方式)得:x^2+2x+1=4因式分解得:(x+1)^2=4解得:x1=-3,x2=1用配方法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方两边加上最相当2.公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b^2-4ac0时x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”.如:解方程:x^2+2x+1=0利用完全平方公式因式分解得:(x+1﹚^2=0解得:x1=x2=-14.直接开平方法(可解部分一元二次方程)5.代数法(可解全部一元二次方程)ax^2+bx+c=0同时除以a,可变为x^2+bx/a+c/a=0设:x=y-b/2方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为(y^2+b^2/4-by)除以(by-b^2/2)+c=0再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]怎样求解一元二次方程(四种)怎样求一元二次方程aX²+bX+c=0(a≠0)的在实数域上的解(即实根)?我提供四种方法一、公式法二、配方法三、直接开平方法四、因式分解法下面我一一讲解!•一元二次方程aX²+bX+c=0(a≠0)1.1先判断△=b²-4ac,若△<0原方程无实根;2. 2 若△=0,原方程有两个相同的解为:X=-b/(2a);3. 3 若△>0,原方程的解为:X=((-b)±√(△))/(2a)。

一元二次方程方程解法

一元二次方程方程解法

一元二次方程方程解法一元二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c 为已知实数且a≠0。

解一元二次方程的方法有很多种,例如因式分解、配方法、求根公式等。

本文将以解一元二次方程为主题,详细介绍其中的几种解法。

一、因式分解法对于一元二次方程ax^2 + bx + c = 0,如果能够将其因式分解成两个一次因式的乘积,则可以通过使得两个因式分别等于0来求得方程的解。

具体步骤如下:1. 将方程ax^2 + bx + c = 0进行因式分解,得到(ax + m)(nx + n) = 0;2. 使得(ax + m) = 0和(nx + n) = 0分别成立,得到两个一次方程的解;3. 求得的解即为原方程的解。

二、配方法对于一元二次方程ax^2 + bx + c = 0,如果无法直接因式分解,可以使用配方法将其转化为一个完全平方的形式。

具体步骤如下:1. 将方程ax^2 + bx + c = 0左右两边同时乘以一个适当的常数k,使得方程左边的二次项系数变为一个完全平方;2. 将方程左边的三项进行配方,得到一个完全平方;3. 化简方程,得到一个关于x的一次方程;4. 解一次方程,求得的解即为原方程的解。

三、求根公式对于一元二次方程ax^2 + bx + c = 0,可以使用求根公式来直接求解。

求根公式是指根据方程的系数a、b、c,通过公式x = (-b ± √(b^2 - 4ac)) / 2a来计算方程的解。

具体步骤如下:1. 根据方程的系数a、b、c,计算出判别式D = b^2 - 4ac;2. 判断判别式D的值,若D > 0,则方程有两个不相等的实数根,若D = 0,则方程有两个相等的实数根,若D < 0,则方程无实数根;3. 根据求根公式,计算出方程的解。

四、完全平方式对于一元二次方程ax^2 + bx + c = 0,如果无法直接因式分解,也无法使用配方法,可以通过完全平方式来求解。

一元二次方程的几种解法

一元二次方程的几种解法

第一节解一元二次方程的几种方法
1.直接开平方法:利用平方根的定义,直接开平方求一元二次方程的根的方法叫做直接开平方法。

例题1. 解方程(x+3)2=81
解:两边开平方,得x+3=8
即x+3=8或x+3=-8
所以x=5或x=-11
2.因式分解法:因式分解法就是利用因式分解的手段求出方程解的方法。

例题2. 解方程x2+4x+3=0
解:原方程变形为(x+1)(x+3)=0
即x+1=0或x+3=0
所以x=-1或x=-3
3配方法:对于一个一元二次方程,首先利用恒等变形,通过配方把它花为一边含有未知数的完全平方形式,另一边是非负数,再用开平方法解方程的方法就是配方法。

例题3 解方程x2-6=4x
解:移项得x2+4x=6
配方得x2+4x+22=6+22
即(x+2)2=10
x+2=10
±
所以x=-12或x=8
4公式法:由一元二次方程的一般形式ax2+bx+c=0(a≠0),应用配方
法可推出一元二次方程的求根公式为X=
a ac
b b
2
4 2-
±
-例题4 解方程x2+5x+6=0
b2-4ac=52-4×6=1
x=(﹣5±1)/2
即x=﹣3或x=﹣2。

一元二次方程的解法总结

一元二次方程的解法总结
( x a)( x a) 0
x a 0或x a 0
x1 a
形如
2
x2 a
的式子运用完全平方公式得:
x2 2ax a 2 0
( x a) 0 x1 x2 a 或 x1 x2 a
例题讲解
例1 解下列方程
16(2 x) 9 0 (1) 解:原方程变形为: 9 2 (2 x) 16
解:提公因式得:
(3x 2)( x 6) 0
(3x 5)( x 2) 0
3x 5 0或x 2 0
3x 2 0或x 6 0
2 x1 3

5 x1 3
x2 6
x2 2
平方差公式与完全平方公式
形如
x2 a2 0 运用平方差公式得:
2
(2) x( x 2) 1 0 解:原方程变形为:
直接开平方得:
x2 2 x 1 0
( x 1)2 0
3 2 x 4 11 5 x2 x1 4 4
x1 x2 1
2 十字相乘法
步骤:
1 二次项系数为1的情况:
将一元二次方程常数项进行分解成两个数(式)p , q的乘 积的形式,且p + q = 一次项系数。
例题讲解
例1. 用配方法解下列方程
x2+6x-7=0
解:
x 6x 7 2 x 6x 9 7 9 2 x 3 16 x 3 4 x1 1 x2 7
2
例题讲解
例2. 用配方法解下列方程
2x2+8x-5=0
5 解: x 4x 2 5 2 x 4x 4 4 2

一元二次方程的几种解法

一元二次方程的几种解法

写成()2 的形式,得
x2 4x 4 5.
x 22 5.
x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
ቤተ መጻሕፍቲ ባይዱ
x 22 5.
x2 4x 1 0.
(3)3x2 5x 2. 3x2 5x 2 0.
答:a=3, b=-5, c= 2.
(4)2x 13x 2 3. 6x2 4x 3x 2 3,
6x2 x 5 0.
答:a=6, b=1, c= -5.
例2、 已知:关于x的方程
写成()2 的形式,得
x 22 5.
开平方,得
x 2 5.
x1 2 5, x2 2 5.
解这两个方程,得
怎样配方:常数项是一次项 系数一半的平方.
a2±2ab+b2=(a±b)2.
解:
3x2 12x 3 0.
二次项系数化1:两边同时
除以二次项系数,得
x2 2 y 3 0 (不是一元方程)
2xx 3 2x2 1 (不是二次方程)
一元二次方 程的一般形式
完全的一元二次方程
ax2+bx+c=0
ax2+bx+c=0
(a≠0)
不完全的
(a≠0, b≠0, c≠0)
ax2+bx=0 (a≠0,b≠0)
一元二次方程 ax2+c=0 (a≠0,c≠0)
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.

一元二次方程的解法及应用

一元二次方程的解法及应用

一元二次方程的解法及应用一元二次方程是数学中常见的二次多项式方程,其一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。

解一元二次方程的方法通常有因式分解法、配方法和求根公式法等。

本文将依次介绍这几种解法,并探讨一元二次方程在实际生活中的应用。

一、因式分解法对于一元二次方程ax²+bx+c=0,当其可以因式分解成两个一次因式的乘积时,可以直接利用因式分解法求解。

具体步骤如下:1. 将方程转化为标准形式,即将方程两边移项合并同类项,使等式右边为0;2. 对方程进行因式分解,将二次项拆分为两个一次项的乘积;3. 令得到的每个一次项等于0,解出方程;4. 检查解是否满足原方程,若满足则为方程的解,若不满足则舍去。

例如,对于方程3x²+7x+2=0,可以进行因式分解得到(3x+1)(x+2)=0,解得x=-1/3和x=-2。

二、配方法配方法是通过变形将一元二次方程转化为一个完全平方的形式,进而求解方程。

其主要步骤如下:1. 将方程转化为标准形式;2. 将方程的一次项系数b通过添加或减去一个适当的常数c/2a使其成为一个完全平方;3. 将方程的左边转化为一个完全平方,即将一次项的系数与1/2a相乘后平方;4. 将方程的两边开平方,解出方程。

例如,对于方程x²+4x-3=0,可以通过配方法将其变形为(x+2)²-7=0,进而解得x=-2+√7和x=-2-√7。

三、求根公式法求根公式法也称为根号公式法,适用于任何一元二次方程的解法。

一元二次方程ax²+bx+c=0的解可通过求根公式x=(-b±√(b²-4ac))/2a得到。

具体步骤如下:1. 将方程的系数代入求根公式,并计算出方程的两个解;2. 验证解是否满足原方程,若满足则为方程的解,若不满足则舍去。

例如,对于方程2x²-5x+2=0,代入求根公式得到x=1和x=2/2。

一元二次方程的几种解法

一元二次方程的几种解法

系数一半的平方,得
2 4 4 2
写成()2 的形式,得
x
7 2
49
24 .
4 16 16
开平方,得
x 7 25 .
4
16
2
x1 , x2 3.
1
解这两个方程,得
44
44
x1 , x2 .
75
75
解法2:配方法
配方法的基本步骤:
1、将二次项系数化为1:两边同时除以二次项系数; 2、移项:将常数项移到等号一边; 3、配方:左右两边同时加上一次项系数一半的平方; 4、等号左边写成( )2 的形式; 5、开平方:化成一元一次方程; 6、解一元一次方程; 7、写出方程的解.
2
2x 22 5.
解:系数化1,得 x 22 5 ,
2
开平方,得
x2
5.
2
x 2 10 或 x 2 10 .
2
2
解这两个一元一次方程,得
2
2
x1 2 10 , x2 2 10 .
解法1:直接开平(a≠0, ac<0) 或 a(x+p)2+q=0 (a≠0, aq<0)
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
解:
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
解: 3x2 7,
x2 7 , 3
x 7, 3
x 21 , 3 21

(完整版)一元二次方程的解法大全

(完整版)一元二次方程的解法大全

一元二次方程的解法大全【直接开平方法解一元二次方程】=0(a≠0),把方程ax2+c例:用直接开平方法解方程:1.9x2-25=0;;2.(3x+2)2-4=04.(2x+3)2=3(4x+3).解:1.9x2-25=0259x2=2.(3x+2)2-4=0(3x+2)2=43x+2=±22±23x=-4.(2x+3)2=3(4x+3)4x2+12x+9=12x+94x2=0∴x1=x=0.【配方法解一元二次方程】将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除+以二次项系数,使二次项系数为1,如x21.x2-4x-3=0; 2.6x2+x=35;3.4x2+4x+1=7; 4.2x2-3x-3=0.解:1.x2-4x-3=0x2-4x=3x2-4x+4=3+47(x-2)2=3.4x2+4x+1=7一元二次方程ax2+bx+c=0(a广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c 的值代入两根公式中直接解出,所以把这种方法=0(a≠0)的求根公式。

例:用公式法解一元二次方程:2.2x2+7x-4=0;.4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x)2.2x2+7x-4=0∵a=2,b=7,c=-4.81b2-4ac=72-4×2×(-4)=49+32=4.x2-a(3x-2a+b)-b2=0(a-2b≥0)x2-3ax+2a2-ab-b2=0∵a=1,b=-3a,c=2a2-ab-b2b2-4ac=(-3a)2-4×1×(2a2+ab-b2)=9a2-8a2-4ab+4b2=a2-4ab+4b2=(a-2b)22b≥0)时,得当(a-【不完全的一元二次方程的解法】在不完全的一元二次方程中,一次项与常数至少缺一项。

即b与c至少一个等于零,这类项方程从形式与解法上比一般一元二次方程要简单,因此要研究这类方程最简捷的解法,从规律上看有两种方法:一是因式分解,二是直接开平方法:例:解下列一元二次方法:.3.(m2+1)x2=0;其中m2+1>0,x2=0.∴ x1=x2=0.4.16x2-25=06x2=25。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的解法大全【直接开平方法解一元二次方程】
把方程ax2+c=0(a≠0),
这解一元二次方程的方法叫做直接开平方法。

例:用直接开平方法解方程:
1.9x2-25=0;
2.(3x+2)2-4=0;
4.(2x+3)2=3(4x+3).
解:1.9x2-25=0
9x2=25
2.(3x+2)2-4=0
(3x+2)2=4
3x+2=±2
3x=-2±2
∴x1=x2=3.
4.(2x+3)2=3(4x+3)
4x2+12x+9=12x+9
4x2=0
∴x1=x=0.
【配方法解一元二次方程】
将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除以二次项系数,使二次项系数为1,如
x2+
例:用配方法解下列方程:
1.x2-4x-3=0;2.6x2+x=35;
3.4x2+4x+1=7;4.2x2-3x-3=0.
解:1.x2-4x-3=0
x2-4x=3
x2-4x+4=3+4
(x-2)2=7
2.6x2+x=35
3.4x2+4x+1=7
4.2x2-3x-3=0
【公式法解一元二次方程】
一元二次方程ax2+bx+c=0(a
广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c的值代入两根公式中直接解出,所以把这种方法
=0(a≠0)的求根公式。

例:用公式法解一元二次方程:
2.2x2+7x-4=0;
4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x).
2.2x2+7x-4=0
∵a=2,b=7,c=-4.
b2-4ac=72-4×2×(-4)=49+32=81
4.x2-a(3x-2a+b)-b2=0(a-2b≥0)
x2-3ax+2a2-ab-b2=0
∵a=1,b=-3a,c=2a2-ab-b2
b2-4ac=(-3a)2-4×1×(2a2+ab-b2)
=9a2-8a2-4ab+4b2
=a2-4ab+4b2
=(a-2b)2
当(a-2b≥0)时,得
【不完全的一元二次方程的解法】
在不完全的一元二次方程中,一次项与常数至少缺一项。

即b与c至少一个等于零,这类项方程从形式与解法上比一般一元二次方程要简单,因此要研究这类方程最简捷的解法,从规律上看有两种方法:一是因式分解,二是直接开平方法:
例:解下列一元二次方法:
3.(m2+1)x2=0;4.16x2-25=0.
3.(m2+1)x2=0;其中m2+1>0,x2=0.
∴x1=x2=0.4.16x2-25=0
6x2=25。

相关文档
最新文档