河北省初中中考数学试卷 含答案
河北省2023年中考数学试卷(附参考答案)

河北省2023年中考数学试卷一、选择题1.代数式的意义可以是()A.与x的和B.与x的差C.与x的积D.与x的商2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西的方向,则淇淇家位于西柏坡的()A.南偏西方向B.南偏东方向C.北偏西方向D.北偏东方向3.化简的结果是()A.B.C.D.4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A.B.C.D.5.四边形的边长如图所示,对角线的长度随四边形形状的改变而变化.当为等腰三角形时,对角线的长为()A.2B.3C.4D.56.若k为任意整数,则的值总能()A.被2整除B.被3整除C.被5整除D.被7整除7.若,则()A.2B.4C.D.8.综合实践课上,嘉嘉画出,利用尺规作图找一点C,使得四边形为平行四边形.图1~图3是其作图过程.(1)作的垂直平分线交于点O;(2)连接,在的延长线上截取;(3)连接,,则四边形即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等9.如图,点是八等分点.若,四边形的周长分别为a,b,则下列正确的是()A.B.C.D.a,b大小无法比较10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于.下列正确的是()A.B.C.是一个12位数D.是一个13位数11.如图,在中,,点M是斜边的中点,以为边作正方形,若,则()A.B.C.12D.1612.如图1,一个2×2平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个13.在和中,.已知,则()A.B.C.或D.或14.如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为和.若移动时间为x,两个机器人之间距离为y,则y与x关系的图象大致是()A.B.C.D.15.如图,直线,菱形和等边在,之间,点A,F分别在,上,点B,D,E,G在同一直线上:若,,则()A.B.C.D.16.已知二次函数和(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.C.4D.二、填空题17.如图,已知点,反比例函数图像的一支与线段有交点,写出一个符合条件的k的数值:.18.根据下表中的数据,写出a 的值为.b 的值为.x 结果代数式2n7b a119.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)度.(2)中间正六边形的中心到直线l的距离为(结果保留根号).三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区脱靶一次计分(分)31在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为.(1)请用含a的式子分别表示;当时,求的值;(2)比较与的大小,并说明理由.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点处将沙包(看成点)抛出,并运动路线为抛物线的一部分,淇淇恰在点处接住,然后跳起将沙包回传,其运动路线为抛物线的一部分.(1)写出的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方的高度上,且到点A水平距离不超过的范围内可以接到沙包,求符合条件的n的整数值.24.装有水的水槽放置在水平台面上,其横截面是以为直径的半圆,,如图1和图2所示,为水面截线,为台面截线,.计算:在图1中,已知,作于点.(1)求的长.(2)操作后水面高度下降了多少?(3)连接OQ并延长交GH于点F,求线段与的长度,并比较大小.25.在平面直角坐标系中,设计了点的两种移动方式:从点移动到点称为一次甲方式:从点移动到点称为一次乙方式.例、点P从原点O出发连续移动2次;若都按甲方式,最终移动到点;若都按乙方式,最终移动到点;若按1次甲方式和1次乙方式,最终移动到点.(1)设直线经过上例中的点,求的解析式;并直接写出将向上平移9个单位长度得到的直线的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点.其中,按甲方式移动了m次.①用含m的式子分别表示;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为,在图中直接画出的图象;(3)在(1)和(2)中的直线上分别有一个动点,横坐标依次为,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.26.如图1和图2,平面上,四边形中,,点在边上,且.将线段绕点顺时针旋转到的平分线所在直线交折线于点,设点在该折线上运动的路径长为,连接.(1)若点在上,求证:;(2)如图2.连接.①求的度数,并直接写出当时,的值;②若点到的距离为,求的值;(3)当时,请直接写出点到直线的距离.(用含的式子表示)1.C2.D3.A4.B5.B6.B7.A8.C9.A10.D11.B12.B13.C14.D15.C16.A17.4(答案不唯一,满足均可)18.;19.(1)(2)20.(1)解:由题意得(分),答:珍珍第一局的得分为6分;(2)解:由题意得,解得:.21.(1)解:依题意得,三种矩形卡片的面积分别为:,∴,,∴,∴当时,;(2)解:,理由如下:∵,∴∵,∴,∴.22.(1)解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分;∴客户所评分数的中位数为:(分)由统计图可知,客户所评分数的平均数为:(分)∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.(2)解:设监督人员抽取的问卷所评分数为x分,则有:解得:∵调意度从低到高为1分,2分,3分,4分,5分,共5档,∴监督人员抽取的问卷所评分数为5分,∵,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由分变成4分.23.(1)解:∵抛物线,∴的最高点坐标为,∵点在抛物线上,∴,解得:,∴抛物线的解析式为,令,则;(2)解:∵到点A水平距离不超过的范围内可以接到沙包,∴点A的坐标范围为,当经过时,,解得;当经过时,,解得;∴∴符合条件的n的整数值为4和5.24.(1)解:连接,∵为圆心,于点,,∴,∵,∴,∴在中,.操作:将图1中的水面沿向右作无滑动的滚动,使水流出一部分,当时停止滚动,如图2.其中,半圆的中点为,与半圆的切点为,连接交于点.探究:在图2中(2)解:∵与半圆的切点为,∴∵∴于点,∵,,∴,∴操作后水面高度下降高度为:.(3)解:∵于点,∴,∵半圆的中点为,∴,∴,∴,∴,,∵,∴.25.(1)解:设的解析式为,把、代入,得,解得:,∴的解析式为;将向上平移9个单位长度得到的直线的解析式为;(2)解:①∵点P按照甲方式移动了m次,点P从原点O出发连续移动10次,∴点P按照乙方式移动了次,∴点P按照甲方式移动m次后得到的点的坐标为;∴点按照乙方式移动次后得到的点的横坐标为,纵坐标为,∴;②由于,∴直线的解析式为;函数图象如图所示:(3)解:26.(1)证明:∵将线段绕点顺时针旋转到,∴∵的平分线所在直线交折线于点,∴又∵∴∴;(2)解:①∵,,∴∵,∴,∴∴;如图所示,当时,∵平分∴∴∴∴∵,∴∴,∴∵,∴∴,即∴解得∴.②如图所示,当点在上时,,∵,∴,,∴,∴∴;如图所示,当在上时,则,过点作交的延长线于点,延长交的延长线于点,∵,∴,∴∴即∴,,∴∵∴,∴,∴∴解得:∴,综上所述,的值为或;(3)解:点到直线的距离为。
河北中考数学试题及答案doc

河北中考数学试题及答案doc一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3/4答案:B2. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角是多少度?A. 60°B. 90°C. 120°D. 150°答案:A3. 将下列哪个数列按从小到大的顺序排列?A. 3, 2, 1B. 1, 2, 3C. 3, 1, 2D. 2, 3, 1答案:B4. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 等边三角形B. 矩形C. 圆D. 所有选项答案:D6. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 以上都不是答案:C7. 以下哪个表达式的结果是一个正数?A. -2 + 3B. 2 - 5C. -3 × 2D. 1 ÷ (-1)答案:A8. 一个圆的半径是5厘米,那么这个圆的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:B9. 一个数的立方是-8,这个数是多少?A. 2B. -2C. 8D. -8答案:B10. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:B二、填空题(每题3分,共30分)11. 一个数的相反数是-4,这个数是________。
答案:412. 如果一个数的绝对值是7,那么这个数可能是________或________。
答案:7或-713. 一个等腰三角形的底角是45°,那么顶角是________度。
答案:9014. 一个数的平方根是2,那么这个数是________。
答案:415. 一个圆的直径是10厘米,那么这个圆的半径是________厘米。
答案:516. 一个数的立方根是-2,那么这个数是________。
河北中考数学试题及答案

河北中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 圆的周长公式是C=2πrB. 圆的周长公式是C=πdC. 圆的面积公式是A=πr^2D. 圆的面积公式是A=πd^2答案:A2. 已知x+y=5,x-y=3,求x和y的值。
A. x=4,y=1B. x=3,y=2C. x=1,y=4D. x=2,y=3答案:A3. 计算下列哪个表达式的值等于10?A. 3x + 7B. 2x - 5C. 5x - 3D. 4x + 6答案:C4. 下列哪个二次方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 2x + 1 = 0D. x^2 - 5x + 6 = 0答案:A5. 一个等腰三角形的底边长为6,高为4,求其周长。
A. 12B. 16C. 18D. 20答案:C6. 一个数的平方根是3,这个数是多少?A. 6B. 9C. 12D. 15答案:B7. 一个正数的倒数是1/4,这个正数是多少?A. 4B. 1/4C. 1/2D. 2答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 计算下列哪个表达式的值等于-2?A. 3x - 5B. 2x + 3C. 4x - 6D. 5x + 7答案:A10. 一个直角三角形的两条直角边长分别为3和4,求斜边长。
A. 5B. 6C. 7D. 8答案:A二、填空题(每题3分,共15分)11. 一个数的立方是8,这个数是______。
答案:212. 一个数的相反数是-7,这个数是______。
答案:713. 一个数的绝对值是10,这个数可能是______或______。
答案:10或-1014. 一个等差数列的首项是2,公差是3,第5项是______。
答案:1715. 一个等比数列的首项是3,公比是2,第3项是______。
答案:24三、解答题(每题10分,共40分)16. 已知一个二次函数y=ax^2+bx+c,其中a=1,b=-6,c=5,求该函数的顶点坐标。
2023年河北省中考数学真题(解析版)

2023年河北省初中毕业生升学文化课考试数学试卷一、选择题−的意义可以是()1. 代数式7xA. 7−与x的和B. 7−与x的差C. 7−与x的积D. 7−与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.−的意义可以是7−与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2. 淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()A. 南偏西70°方向B. 南偏东20°方向C. 北偏西20°方向D. 北偏东70°方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70°的方向,∴淇淇家位于西柏坡的北偏东70°方向.故选D.【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3. 化简233y x x 的结果是( ) A. 6xyB. 5xyC. 25x yD. 26x y【答案】A【解析】 【分析】根据分式的乘方和除法的运算法则进行计算即可. 【详解】解:2363362y y x x xy x x = ⋅ = , 故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4. 1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )A. B. C. D.【答案】B【解析】【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:�一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张, ∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5. 四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为( )A. 2B. 3C. 4D. 5【答案】B【解析】 【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解.【详解】解:在ACD 中,2AD CD ==,∴2222AC −<<+,即04AC <<,当4AC BC ==时,ABC 为等腰三角形,但不合题意,舍去;若3AC AB ==时,ABC 为等腰三角形,故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题. 6. 若k 为任意整数,则22(23)4k k +−的值总能( )A. 被2整除B. 被3整除C. 被5整除D. 被7整除【答案】B【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +− (232)(232)k k k k =+++−3(43)k +,3(43)k +能被3整除,∴22(23)4k k +−的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b −=−+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7.若ab=( ) A. 2B. 4C.D. 【答案】A【解析】【分析】把a b【详解】解:∵a b,2,故选:A . 【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8. 综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程. (1)作BD 的垂直平分线交BD 于点O; (2)连接AO ,在AO 的延长线上截取OC AO =; (3)连接DC ,BC ,则四边形ABCD 即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是( )A. 两组对边分别平行B. 两组对边分别相等C. 对角线互相平分D. 一组对边平行且相等【答案】C【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断.【详解】解:根据图1,得出BD 的中点O ,图2,得出OC AO =,可知使得对角线互相平分,从而得出四边形ABCD 为平行四边形,判定四边形ABCD 为平行四边形的条件是:对角线互相平分,故选:C .【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理. 9. 如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是( )A. a b <B. a b =C. a b >D. a ,b 大小无法比较【答案】A【解析】 【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +−=−,根据123PP P 的三边关系即可得解.【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即 1223345566778148PP P P P P P P P P P P P P P P ======= ∴12233467PP P P P P P P ===, 464556781178P P P P P P P P P P PP =+=+= ∴4617P P PP =又∵137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,∴()()34466737131737b a P P P P P P P P PP PP P P ++−++=+−()()12172337131737PP PP P P P P PP PP P P =+++−++122313PP P P PP =−+在123PP P 中有122313PP P P PP >+∴1223130b a PP P P PP −=+>−故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10. 光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ×.下列正确的是( )A. 12119.4610109.4610×−=×B. 12129.46100.46910×−=×C. 129.4610×是一个12位数D. 129.4610×是一个13位数 【答案】D【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答.【详解】解:A. 12119.4610109.4610×÷=×,故该选项错误,不符合题意;B. 12129.46100.46910×−≠×,故该选项错误,不符合题意;C. 129.4610×是一个13位数,故该选项错误,不符合题意;D. 129.4610×是一个13位数,正确,符合题意.故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11. 如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S = ( )A. B. C. 12 D. 16【答案】B【解析】 【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解.【详解】解:∵16AMEF S =正方形,∴4AM =,∵Rt ABC △中,点M 是斜边BC 的中点,∴28BC AM ==,∴AC,∴11422ABC S AB AC =××=××= 故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12. 如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】 【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个,故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13. 在ABC 和A B C ′′′ 中,3064B B AB A B AC A C ′′′′′∠=∠=°====,,.已知C n ∠=°,则C ′∠=( ) A. 30°B. n °C. n °或180n °−°D. 30°或150°【答案】C【解析】 【分析】过A 作AD BC ⊥于点D ,过A ′作A D B C ′′′′⊥于点D ¢,求得3AD A D ′′==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A ′作A D B C ′′′′⊥于点D ¢,∵306B B AB A B ′′′∠=∠=°==,,∴3AD A D ′′==, 当B C 、在点D 的两侧,B C ′′、在点D ¢的两侧时,如图,∵3AD A D ′′==,4AC A C ′′==, ∴()Rt Rt HL ACD A C D ′′′≌△△,∴C C n ′∠=∠=°;当B C 、在点D 的两侧,B C ′′、在点D ¢的同侧时,如图,∵3AD A D ′′==,4AC A C ′′==,∴()Rt Rt HL ACD A C D ′′′≌△△,∴'''A C D C n ∠=∠=°,即'''180'''180A C B A C D n ∠=°−∠=°−°;综上,C ′∠的值为n °或180n °−°.故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14. 如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( )A. B.C. D.【答案】D【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离的越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发, 设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++,�两个人机器人速度相同,���同时到达点A ,C ,�两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C , 故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键. 15. 如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=°,146ADE ∠=°,则β∠=( )A. 42°B. 43°C. 44°D. 45°【答案】C【解析】 【分析】如图,由平角的定义求得18034ADB ADE ????,由外角定理求得,16AHD ADB α???,根据平行性质,得16GIFAHD ???,进而求得44EGF GIF β???.【详解】如图,∵146ADE ∠=°∴18034ADBADE ???? ∵ADB AHD α???∴503416AHDADB α??????∵12l l ∥∴16GIFAHD ?? ∵EGFGIF β?? ∴601644EGFGIF β????? 故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16. 已知二次函数22y x m x =−+和22y x m =−(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( )A. 2B. 2mC. 4D. 22m【答案】A【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可.【详解】解:令0y =,则220x m x −+=和220x m −=, 解得0x =或2x m =或x m =−或x m =,不妨设0m >,∵()0m ,和()0m −,关于原点对称,又这四个交点中每相邻两点间距离都相等,∴()20m ,与原点关于点()0m ,对称, ∴22m m =,∴2m =或0m =(舍去),的∵抛物线22y x m =−的对称轴为0x =,抛物线22y x m x =−+的对称轴为222m x ==, ∴这两个函数图象对称轴之间的距离为2,故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17. 如图,已知点(3,3),(3,1)A B ,反比例函数(0)k yk x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k ≤≤均可)【解析】 【分析】先分别求得反比例函数(0)k y k x=≠图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可. 【详解】解:当反比例函数(0)k y k x=≠图像过(3,3)A 时,339k =×=; 当反比例函数(0)k y k x=≠图像过(3,1)B 时,313k =×=; ∴k 的取值范围为39k ≤≤∴k 可以取4.故答案为4(答案不唯一,满足39k ≤≤均可). 【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键.18. 根据下表中的数据,写出a 的值为_______.b 的值为_______. x结果 2 n【答案】 �.52 �. 2− 【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可. 【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ×+=, 当x n =时,211x x +=,即211n n+=, 解得1n =−,经检验,1n =−是分式方程的解,∴()3112b =×−+=−,故答案为:52;2− 【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19. 将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度. (2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】 �. 30 �. 【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC ∠=°,906030A α∠=∠=°−°=°,故答案为:30;(2)取中间正六边形的中心为O ,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,,90BAC FGH ABC GFH ∠=∠∠=∠=° ,()Rt Rt SAS ABC GFH ≌,BC FH ∴=,在Rt PDE △中,1,DE PE ==由图1知2AG BF PE ===由正六边形的结构特征知:12OM =×,()112BC BF CH =− ,3tan BC AB BAC ∴=∠,21BD AB ∴=−−, 又1212DE =×= , BE BD DE ∴=+=, ON OM BE ∴=+=故答案为:【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20. 某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下: 投中位置A 区B 区 脱靶 一次计分(分) 3 1 2−在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分;(2)6k =.【解析】【分析】(1)根据题意列式计算即可求解;(2)根据题意列一元一次方程即可求解.【小问1详解】解:由题意得()4321426×+×+×−=(分),答:珍珍第一局的得分为6分;【小问2详解】解:由题意得()()3311032613k k +×+−−×−=+,解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21. 现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S += (2)12S S >,理由见解析【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.【小问1详解】解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++, ∴当2a =时,212282323S S ++×+; 【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+ ∴()()()222123251211S S a a a a a a −++−+−+− ∵1a >, ∴()21210S S a −=−>,∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22. 某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可;(2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解.【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分; ∴客户所评分数的中位数为:34 3.52+=(分) 由统计图可知,客户所评分数的平均数为:1123364555 3.520×+×+×+×+×=(分) ∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x ×+>+ 解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档,∴监督人员抽取的问卷所评分数为5分,∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加权平均数的方法和根据不等量关系列不等式是解题的关键.23. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =−+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =−+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =−,1c =; (2)符合条件的n 的整数值为4和5.【解析】 【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171 ,,,求得n 的取值范围,即可求解. 【小问1详解】解:∵抛物线21:(3)2C y a x =−+,∴1C 的最高点坐标为()32,, ∵点(6,1)A 在抛物线21:(3)2C y a x =−+上,∴21(63)2a =−+,解得:19a =−, ∴抛物线1C 的解析式为21(3)29y x =−−+,令0x =,则21(03)219c =−−+=; 【小问2详解】解:∵到点A 水平距离不超过1m 的范围内可以接到沙包, ∴点A 的坐标范围为()()5171 ,,, 当经过()51,时,211551188n =−×+×++, 解得175n =; 当经过()71,时,211771188n =−×+×++, 解得417n =;∴174157n ≤≤ ∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24. 装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=°时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与 EQ的长度,并比较大小.【答案】(1)7cm ;(2)11cm 2;(3)EF =, 25π=cm 6EQ , EF EQ >. 【解析】【分析】(1)连接OM ,利用垂径定理计算即可;(2)由切线的性质证明OE GH ⊥进而得到OE MN ⊥,利用锐角三角函数求OD ,再与(1)中OC 相减即可;(3)由半圆的中点为Q 得到90QOB ∠=°,得到30QOE ∠=°分别求出线段EF 与 EQ 的长度,再相减比较即可.【详解】解:(1)连接OM ,∵O 为圆心,OC MN ⊥于点C ,48cm MN =, ∴124cm 2MC MN ==,∵50cm AB =, ∴125cm 2OM AB ==,∴在Rt OMC 中,7cm OC .(2)∵GH 与半圆的切点为E ,∴OE GH ⊥∵MN GH ∥∴OE MN ⊥于点D ,∵30ANM ∠=°,25cm ON =, ∴125cm 22OD ON ==,∴操作后水面高度下降高度为:25117cm 22−=.(3)∵OE MN ⊥于点D ,30ANM ∠=°∴60DOB ∠=°,∵半圆的中点为Q ,∴ AQ QB =,∴90QOB ∠=°,∴30QOE ∠=°,∴tan EF QOE OE =∠⋅, 30π2525π==cm 1806EQ ××,25π06=>, ∴ EF EQ>. 【点睛】本题考查了垂径定理、圆切线的性质、求弧长和解直角三角形的知识,解答过程中根据相关性质构造直角三角形是解题关键.25. 在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象; (3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点的始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.【答案】(1)1l 的解析式为6y x =−+;2l 的解析式为15y x =−+; (2)①10,20x m y m =+=−;②3l 的解析式为30y x =−+,图象见解析; (3)538a c b +=【解析】【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m −次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【小问1详解】设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得 4224k b k b += +=,解得:16k b =− = , ∴1l 的解析式为6y x =−+; 将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =−+; 【小问2详解】①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了()10m −次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m −次后得到的点的横坐标为21010m m m +−=+,纵坐标为()21020m m m +−=−,∴10,20x m y m =+=−; ②由于102030x y m m +=++−=,∴直线3l 的解析式为30y x =−+; 函数图象如图所示:【小问3详解】∵点,,A B C 的横坐标依次为,,a b c ,且分别在直线123,,l l l 上,∴()()(),6,,15,,30A a a B b b C c c −+−+−+,设直线AB 的解析式为y mx n =+, 把A 、B 两点坐标代入,得615ma n a mb n b +=−+ +=−+ ,解得:9196m b a a n b a =−+ − =− −, ∴直线AB 的解析式为9916a y x b a b a=−++− −− , ∵A ,B ,C 三点始终在一条直线上, ∴991630a c c b a b a−++−=−+ −− , 整理得:538a c b +=;即a ,b ,c 之间的关系式为:538a c b +=.【点睛】本题是一次函数和平移综合题,主要考查了平移的性质和一次函数的相关知识,正确理解题意、熟练掌握平移的性质和待定系数法求一次函数的解析式是解题关键.26. 如图1和图2,平面上,四边形ABCD中,8,12,6,90AB BC CD DA A ====∠=°,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n °<≤到,MA A MA ′′∠的平分线MP所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P ′.(1)若点P 在AB 上,求证:A P AP ′=;(2)如图2.连接BD .�求CBD ∠的度数,并直接写出当180n =时,x 的值;�若点P 到BD 的距离为2,求tan A MP ′∠的值;(3)当08x <≤时,请直接..写出点A ′到直线AB 距离.(用含x 的式子表示). 【答案】(1)见解析 (2)�90CBD ∠=°,13x =;�76�236(3)22816x x + 【解析】【分析】(1)根据旋转的性质和角平分线的概念得到A M AM ′=,A MP AMP ′∠=∠,然后证明出()SAS A MP AMP ′V V ≌,即可得到A P AP ′=;(2)�首先根据勾股定理得到10BD ==,然后利用勾股定理的逆定理即可求出90CBD ∠=°;首先画出图形,然后证明出DNM DBA V V ∽,利用相似三角形的性质求出103DN =,83MN =,然后证明出PBN DMN V V ∽,利用相似三角形的性质得到5PB =,进而求解即可; ②当P 点在AB 上时,2PQ =,A MP AMP ′∠=∠,分别求得,BP AP ,根据正切的定义即可求解;②当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,证明PQB BAD ∽,得出4855PQ PB ==,3655BQ PB ==,进而求得AQ ,证明HPQ HMA ∽,即可求解;(3)如图所示,过点A ′作A E AB ′⊥交AB 于点E ,过点M 作MF A E ′⊥于点F ,则四边形AMFE 是矩形,证明A PE MA F ′′ ∽,根据相似三角形的性质即可求解.小问1详解】的【�将线段MA 绕点M 顺时针旋转()0180n n °<≤到MA ′,�A M AM ′=�A MA ′∠的平分线MP 所在直线交折线AB BC −于点P ,�A MP AMP ′∠=∠又�PM PM =�()SAS A MP AMP ′V V ≌�A P AP ′=;【小问2详解】��8AB =,6DA =,90A ∠=° �10BD == �=BC12CD =�(222210144BC BD +=+=,2212144CD ==�222BC BD CD +=�90CBD ∠=°;如图所示,当180n =时,�PM 平分A MA ′∠�90PMA ∠=°�PM AB ∥�DNM DBA V V ∽ �DN DMMNDB DA BA ==�2DM =,6DA = �21068DN MN==�103DN =,83MN = �203BN BD DN =−=�90PBN NMD ∠=∠=°,PNB DNM ∠=∠ �PBN DMN V V ∽ �PB BN DM MN =,即203823PB = �解得5PB =�8513x AB PB =+=+=.�如图所示,当P 点在AB 上时,2PQ =,A MP AMP ′∠=∠∵8,6,90AB DA A ==∠=°,∴10BD =,63sin 105AD DBA BD ∠===, ∴2103sin 35BQ BP DBA ===∠, �1014833AP AB BP =−=−= ∴1473tan tan 46AP A MP AMP AM ′∠=∠===; 如图所示,当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,∵90PQB CBD DAB ∠=∠=∠=°,�90QPB PBQ DBA ∠=°−∠=∠,�PQB BAD ∽ ∴PQ QB PBBA AD BD == 即8610PQ QBPB== ∴4855PQ PB ==,3655BQ PB ==, ∴465AQ AB BQ =+=∵,PQ AB DA AB ⊥⊥∴PQ AD ∥,∴HPQ HMA ∽, ∴HQ PQHA AM = ∴854645HQHQ =+ 解得:9215HQ = ∴922315tan tan tan 865HQA MP AMP QPH PQ ′∠=∠=∠===,综上所述,tan A MP ′∠的值为76�236�【小问3详解】解:�当08x <≤时,∴P 在AB 上,如图所示,过点A ′作A E AB ′⊥交AB 于点E ,过点M 作MF A E ′⊥于点F ,则四边形AMFE 是矩形,�AE FM =,4EF AM ==,�A MP AMP ′ ≌,�90PA M A ′∠=∠=°,�90PA E FA M ′′∠+∠=°,又90A MF FA M ′′∠+∠=°,∴PA E A MF ′′∠=∠,又∵90A EP MFA ′′∠=∠=°,∴A PE MA F ′′ ∽, ∴A P PE A E MA A F FM′′==′′ ∵A P AP x ′==,4MA MA ′==,设FMAE y ==,A E h ′= 即44x x y h h y−==− ∴4h y x=,()()44x y x h −− ∴()444h x x h x−=−整理得22816x h x =+ 即点A ′到直线AB 的距离为22816x x +. 【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,求正切值,熟练掌握以上知识且分类讨论是解题的关键.。
精品解析:2024年河北省中考数学试题(原卷版)

2024年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()A. B. C.D.2.下列运算正确的是()A.734a a a -= B.222326a a a ⋅= C.33(2)8a a -=- D.44a a a÷=3.如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是()A.AD BC⊥ B.AC PQ⊥ C.ABO CDO△≌△ D.AC BD∥4.下列数中,能使不等式516x -<成立的x 的值为()A.1B.2C.3D.45.观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的()A.角平分线B.高线C.中位线D.中线6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是()A. B. C. D.7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是()A .若5x =,则100y = B.若125y =,则4x =C.若x 减小,则y 也减小D.若x 减小一半,则y 增大一倍8.若a ,b 是正整数,且满足8282222222a ba a ab b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A.38a b +=B.38a b= C.83a b += D.38a b=+9.淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ()A.1B.C.1 D.11+10.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,ABC 中,AB AC =,AE 平分ABC 的外角CAN ∠,点M 是AC 的中点,连接BM 并延长交AE 于点D ,连接CD .求证:四边形ABCD 是平行四边形.证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠,∴①______.又∵45∠=∠,MA MC =,∴MAD MCB △≌△(②______).∴MD MB =.∴四边形ABCD 是平行四边形.若以上解答过程正确,①,②应分别为()A.13∠=∠,AASB.13∠=∠,ASAC.23∠∠=,AAS D.23∠∠=,ASA11.直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M ,N ,如图所示,则a β+=()A.115︒B.120︒C.135︒D.144︒12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点AB.点BC.点CD.点D 13.已知A 为整式,若计算22A yxy y x xy -++的结果为x y xy-,则A =()A.xB.yC.x y+ D.x y-14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S 、该折扇张开的角度为n ︒时,扇面面积为n S ,若nm SS =,则m 与n 关系的图象大致是()A. B. C. D.15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A.“20”左边的数是16B.“20”右边的“□”表示5C.运算结果小于6000D.运算结果可以表示为41001025a +16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”()2,1P 按上述规则连续平移3次后,到达点()32,2P ,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为()A.()6,1或()7,1 B.()15,7-或()8,0 C.()6,0或()8,0 D.()5,1或()7,1二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为______.18.已知a ,b ,n 均为正整数.(1)若1n n <<+,则n =______;(2)若1,1n n n n -<<<+,则满足条件的a 的个数总比b 的个数少______个.19.如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为______;(2)143B C D △的面积为______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.如图,有甲、乙两条数轴.甲数轴上的三点A ,B ,C 所对应的数依次为4-,2,32,乙数轴上的三点D ,E ,F 所对应的数依次为0,x ,12.(1)计算A ,B ,C 三点所对应的数的和,并求ABAC的值;(2)当点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,求x 的值.21.甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.a b +2a b +a b-a b +22a b+2a2a b+a b-2a(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离 2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值;(2)求CP 的长及sin APC ∠的值.23.情境图1是由正方形纸片去掉一个以中心O 为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF ,GH 裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF 的长;(2)直接写出图3中所有与线段BE 相等的线段,并计算BE 的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC 边上找一点P (可以借助刻度尺或圆规),画出裁剪线(线段PQ )的位置,并直接写出BP 的长.24.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0x p ≤<时,80xy p=;当150p x ≤≤时,()2080150x p y p-=+-.(其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)95100105110115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.已知O 的半径为3,弦MN =,ABC 中,90,3,ABC AB BC ∠=︒==.在平面上,先将ABC 和O 按图1位置摆放(点B 与点N 重合,点A 在O 上,点C 在O 内),随后移动ABC ,使点B 在弦MN 上移动,点A 始终在O 上随之移动,设BN x =.(1)当点B 与点N 重合时,求劣弧 AN 的长;(2)当OA MN ∥时,如图2,求点B 到OA 的距离,并求此时x 的值;(3)设点O 到BC 的距离为d .①当点A 在劣弧 MN上,且过点A AC 垂直时,求d 的值;②直接写出d 的最小值.26.如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .。
河北中考数学试卷(含答案解析)

河北省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。
专题:计算题。
分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。
专题:计算题。
分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。
专题:计算题。
分析:A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.解答:解:A中整式相减,系数相减再乘以未知数,故本选项错误;B,不同次数的幂的加法,无法相加,故本选项错误;C,整式的幂等于各项的幂,故本选项错误;D,整式的除法,相同底数幂底数不变,指数相减.故本答案正确.故选D.点评:本题考查了整式的除法,A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.本题很容易判断.5、(•河北)一次函数y=6x+1的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限考点:一次函数的性质。
2023年河北省中考数学试卷真题(含答案)原版高清

2023年河北省中考数学试卷真题(含答案)原版高清本文档为2023年河北省中考数学试卷真题,包含完整答案和高清原版试卷图片。
试卷共分两部分,A、B卷各50分,满分100分。
A卷一、选择题1. 某校一年级学生的身高平均数为130cm,二年级学生的身高平均数也是130cm,那么该校整个小学部分所有学生的身高平均数是:( )A. 120cmB. 125cmC. 130cmD. 135cm2. 已知下面的图形中,正方形边长为3cm,弧形所在圆的半径为1cm,则弧形的长度为( )A. πcmB. 2πcmC. 3πcmD. 4πcm...二、填空题1. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,则$a_{n+1}$为__________2. 正六棱柱的一条母线长12cm,底面边长6cm,它的体积为__________ cm³...B卷一、选择题1. 某电影院有三种不同票价,其中一等座票价为$18$元,二等座为$12$元,三等座为$6$元;已知某一场电影的一等座票卖了200张,二等座票卖了280张,三等座票卖了360张,则这场电影的总票房收入为( )A. $8640$元B. $$元C. $$元D. $$元2. 若$\log_3{k}-\log_{27}{k}=\log_{24}{2}$,则$k=$ __________...二、填空题1. 已知函数$f(x)=\log_2{\frac{1}{x}}$,则$f(0.5^2 \times 2^{-\frac{1}{3}})=$ __________2. 如图,$\triangle ABC$中,$BC=4$,$\angle ABC=60°$,$\angle BAC=45°$,则$AC=$ __________...以上为2023年河北省中考数学试卷真题。
望广大考生认真复习,顺利参加考试。
2023年河北省中考数学试卷及答案解析

2023年河北省中考数学试卷一、选择题(本大题共16个小题,共38分,1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)代数式﹣7x的意义可以是()A.﹣7与x的和B.﹣7与x的差C.﹣7与x的积D.﹣7与x的商2.(3分)淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向3.(3分)化简的结果是()A.xy6B.xy5C.x2y5D.x2y64.(3分)有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是()A.(黑桃)B.(红心)C.(梅花)D.(方块)5.(3分)四边形ABCD的边长如图所示,对角线AC的长度随四边形形状的改变而变化.当△ABC为等腰三角形时,对角线AC的长为()A.2B.3C.4D.56.(3分)若k为任意整数,则(2k+3)2﹣4k2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除7.(2分)若,,则=()A.2B.4C.D.8.(2分)综合实践课上,嘉嘉画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.(1)作BD的垂直平分线交BD于点O;(2)连接AO,在AO的延长线上截取OC=AO;(3)连接DC,BC,则四边形ABCD即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等9.(2分)如图,点P1~P8是⊙O的八等分点.若△P1P3P7,四边形P3P4P6P7的周长分别为a,b,则下列正确的是()A.a<b B.a=bC.a>b D.a,b大小无法比较10.(2分)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012km,下列正确的是()A.9.46×1012﹣10=9.46×1011B.9.46×1012﹣0.46=9×1012C.9.46×1012是一个12位数D.9.46×1012是一个13位数11.(2分)如图,在Rt△ABC中,AB=4,点M是斜边BC的中点,以AM为边作正方形AMEF.若S正方形AMEF=16,则S△ABC=()A.4B.8C.12D.1612.(2分)如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至少还需再放这样的正方体()A.1个B.2个C.3个D.4个13.(2分)在△ABC和△A'B'C′中,∠B=∠B'=30°,AB=A'B'=6,AC=A'C′=4,已知∠C=n°,则∠C′=()A.30°B.n°C.n°或180°﹣n°D.30°或150°14.(2分)如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A→M.若移动时间为x,两个机器人之间距离为y.则y与x关系的图象大致是()A.B.C.D.15.(2分)如图,直线l1∥l2,菱形ABCD和等边△EFG在l1,l2之间,点A,F分别在l1,l2上,点B,D、E、G在同一直线上.若∠α=50°,∠ADE=146°,则∠β=()A.42°B.43°C.44°D.45°16.(2分)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.(2分)如图,已知点A(3,3),B(3,1),反比例函数图象的一支与线段AB有交点,写出一个符合条件的k的整数值:.18.(4分)根据表中的数据,写出a的值为,b的值为.2n3x+17ba119.(4分)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=度;(2)中间正六边形的中心到直线l的距离为(结果保留根号).三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(9分)某惯性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:投中位置A区B区脱靶一次计分(分)31﹣2在某一局中,珍珍投中A区4次,B区2次.脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.21.(9分)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如表2和表3,其面积分别为S1,S2.表2表3(1)请用含a的式子分别表示S1,S2,当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.22.(9分)某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,满意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23.(10分)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点A(6,1)处将沙包(看成点)抛出,其运动路线为抛物线C1:y=a(x﹣3)2+2的一部分,淇淇恰在点B(0,c)处接住,然后跳起将沙包回传,其运动路线为抛物线C2:的一部分.(1)写出C1的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,求符合条件的n的整数值.24.(10分)装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水槽沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动.如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN 于点D.探究:在图2中.(2)操作后水面高度下降了多少?(3)连接OQ并延长交GH于点F,求线段EF与的长度,并比较大小.25.(12分)在平面直角坐标系中,设计了点的两种移动方式:从点(x,y)移动到点(x+2,y+1)称为一次甲方式;从点(x,y)移动到点(x+1,y+2)称为一次乙方式.例点P从原点O出发连续移动2次:若都按甲方式,最终移动到点M(4,2);若都按乙方式,最终移动到点N(2,4);若按1次甲方式和1次乙方式,最终移动到点E(3,3).(1)设直线l1经过上例中的点M、N,求l1的解析式,并直接写出将l1向上平移9个单位长度得到的直线l2的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点Q (x,y).其中,按甲方式移动了m次.①用含m的式子分别表示x,y;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为l3,在图中直接画出l3的图象;(3)在(1)和(2)中的直线l1,l2,l3上分别有一个动点A,B,C,横坐标依次为a,b,c,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.26.(13分)如图1和图2,平面上,四边形ABCD中,AB=8,,CD=12,DA =6.∠A=90°,点M在AD边上,且DM=2.将线段MA绕点M顺时针旋转n°(0<n≤180)到MA',∠A′MA的平分线MP所在直线交折线AB﹣BC于点P,设点P在该折线上运动的路径长为x(x>0),连接A′P.(1)若点P在AB上,求证:A'P=AP;(2)如图2,连接BD.①求∠CBD的度数,并直接写出当n=180时,x的值;②若点P到BD的距离为2,求tan∠A′MP的值;(3)当0<x≤8时,请直接写出点A′到直线AB的距离(用含x的式子表示).2023年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16个小题,共38分,1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】直接利用代数式的意义分析得出答案.【解答】解:代数式﹣7x的意义可以是﹣7与x的积.故选:C.【点评】此题主要考查了代数式,掌握代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子是解题关键.2.【分析】根据题意可得:∠ABC=70°,AB∥CD,然后利用平行线的性质可得∠ABC=∠DCB=70°,从而根据方向角的定义,即可解答.【解答】解:如图:由题意得:∠ABC=70°,AB∥CD,∴∠ABC=∠DCB=70°,∴淇淇家位于西柏坡的北偏东70°方向,故选:D.【点评】本题考查了方向角的定义,熟练掌握方向角的定义是解题的关键.3.【分析】先根据分式的乘方法则计算,再根据分式的乘法法则计算.【解答】解:x3()2=x3•=xy6,故选:A.【点评】本题考查的是分式的乘除法,掌握分式的乘法法则、乘方法则是解题的关键.4.【分析】根据概率公式分别求出各花色的概率判断即可.【解答】解:∵抽到黑桃的概率为,抽到红心的概率为,抽到梅花的概率为,抽到方块的概率为,∴抽到的花色可能性最大的是红心,故选:B.【点评】本题考查了可能性的大小,熟练掌握概率公式是解题的关键.5.【分析】分两种情况,由三角形的三边关系定理:三角形两边的和大于第三边,即可解决问题.【解答】解:∵△ABC为等腰三角形,∴AB=AC或AC=BC,当AC=BC=4时,AD+CD=AC=4,此时不满足三角形三边关系定理,当AC=AB=3时.满足三角形三边关系定理,∴AC=3.故选:B.【点评】本题考查等腰三角形的性质,三角形的三边关系定理,关键是掌握三角形的三边关系定理.6.【分析】先根据完全平方公式进行计算,再合并同类项,分解因式后再逐个判断即可.【解答】解:(2k+3)2﹣4k2=4k2+12k+9﹣4k2=12k+9=3(4k+3),∵k为任意整数,∴(2k+3)2﹣4k2的值总能被3整除,故选:B.【点评】本题考查了因式分解的应用,能求出(2k+3)2﹣4k2=3(4k+3)是解此题的关键.7.【分析】把a、b的值代入原式,根据二次根式的性质化简即可.【解答】解:∵a=,b=,∴===2,故选:A.【点评】本题考查的是二次根式的化简求值,掌握二次根式的性质是解题的关键.8.【分析】根据:“对角线互相平分的四边形是平行四边形”证明.【解答】解:由作图得:DO=BO,AO=CO,∴四边形ABCD为平行四边形,故选:C.【点评】本题考查了复杂作图,掌握平行四边形的判定定理是解题的关键.9.【分析】利用三角形的三边关系,正多边形的性质证明即可.【解答】解:连接P4P5,P5P6.∵点P1~P8是⊙O的八等分点,∴P3P4=P4P5=P5P6=P6P7,P1P7=P1P3=P4P6,∴b﹣a=P3P4+P7P6﹣P1P3,∵P5P4+P5P6>P4P6,∴P3P4+P7P6>P1P3,∴b﹣a>0,∴a<b,故选:A.【点评】本题考查正多边形于圆,三角形的三边关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9.46×1012km=9460000000000km是一个13位数.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【分析】先根据正方形AMEF的面积求出AM的长,然后根据直角三角形斜边上的中线等于斜边的一半求出BC的长,最后根据勾股定理求出AC的长,然后即可求出直角三角形ABC的面积.【解答】解:∵四边形AMEF是正方形,=16,又∵S正方形AMEF∴AM2=16,∴AM=4,在Rt△ABC中,点M是斜边BC的中点,∴,即BC=2AM=8,在Rt△ABC中,AB=4,∴,∴,故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,正方形的面积计算公式,直角三角形面积的计算公式,勾股定理,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.12.【分析】根据题意主视图和左视图即可得到结论.【解答】解:平台上至少还需再放这样的正方体2个,故选:B.【点评】本题考查了由三视图判断几何体,正确地得出小正方体的个数是解题的关键.13.【分析】分两种情况讨论,当BC=B′C′时,则△ABC≌△A′B′C′,得出∠C′=∠C=n°,当BC≠B′C′时,如图,利用等腰三角形的性质求得∠A′C″C′=∠C′=n°,从而求得∠A′C″B′=180°﹣n°.【解答】解:当BC=B′C′时,△ABC≌△A′B′C′(SSS),∴∠C′=∠C=n°,当BC≠B′C′时,如图,∵A′C′=A′C″,∴∠A′C″C′=∠C′=n°,∴∠A′C″B′=180°﹣n°,∴∠C′=n°或180°﹣n°,【点评】本题考查了等腰三角形的性质,三角形全等的性质,熟练掌握等腰三角形两底角相等是解题的关键.14.【分析】设圆的半径为R,根据机器人移动时最开始的距离为AM+CN+R,之后同时到达点A,C两个机器人之间的距离y越来越小,当两个机器人分别沿A→D→C和C→B →A移动时,此时两个机器人之间的距离是半径R,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,据此得出结论即可.【解答】解:由题意可得:机器人(看成点)分别从M,N两点同时出发,设圆的半径为R,∴两个机器人最初的距离是AM+CN+R,∵两个人机器人速度相同,∴同时到达点A,C,∴两个机器人之间的距离y越来越小,故排除A、C;当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是半径R,保持不变,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,故排除B;故选:D.【点评】本题考查动点函数图象,找到运动时的特殊点用排除法是关键.15.【分析】由平角的定义求得∠ADB=180°﹣∠ADE=34°,由外角定理求得∠AHD=∠α﹣∠ADB=16°,根据平行线的性质得∠GIF=∠AHD=16°,进而求得∠β=∠EGF﹣∠GIF=44°.【解答】解:如图,延长BG,∵∠ADE=146°,∴∠ADB=180°﹣∠ADE=34°,∵∠α=∠ADB+∠AHD,∴∠AHD=∠α﹣∠ADB=50°﹣34°,=16°,∴∠GIF=∠AHD=16°,∵∠EGF=∠β+∠GIF,∵△EFG是等边三角形,∴∠EGF=60°,∴∠β=∠EGF﹣∠GIF=60°﹣16°=44°,故选:C.【点评】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角度之间的数量关系是解题关键.16.【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴x=0,抛物线y=﹣x2+m2x的对称轴x=,∴这两个函数图象对称轴之间的距离==2.故选:A.【点评】本题考查二次函数图象有系数的关系,抛物线与x轴的交点等知识,解题的关键是理解题意,学会构建方程解决问题.二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.【分析】把点A(3,3),B(3,1)代入y=即可得到k的值,从而得结论.【解答】解:由图可知:k>0,∵反比例函数y=(k>0)的图象与线段AB有交点,且点A(3,3),B(3,1),∴把B(3,1)代入y=得,k=3,把A(3,3)代入y=得,k=3×3=9,∴满足条件的k值的范围是3≤k≤9的整数,故k=4(答案不唯一),故答案为:k=4(答案不唯一).【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,正确的理解题意是解题的关键.18.【分析】将x=2代入中计算即可求得a的值;将x=n代入可得关于n的分式方程,解得n的值后代入3x+1中计算即可求得b的值.【解答】解:当x=2时,==,即a=;当x=n时,=1,解得:n=﹣1,经检验,n=﹣1是分式方程的解,那么当x=﹣1时,3x+1=﹣3+1=﹣2,即b=﹣2,故答案为:;﹣2.【点评】本题考查代数式求值及解分式方程,特别注意解分式方程时必须进行检验.19.【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.【点评】本题考查了正多边形与圆,正六边形的性质,解直角三角形,全等三角形的判定和性质,正确地作出辅助线是解题的关键.三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.【分析】(1)根据题意列出算式可求解;(2)由题意列出方程可求解.【解答】解:(1)由题意可得:4×3+2×1+4×(﹣2)=6(分),答:珍珍第一局的得分为6分;(2)由题意可得:3k+3×1+(10﹣k﹣3)×(﹣2)=6+13,解得:k=6.【点评】本题考查了一元一次方程的应用,找到正确的数量关系是解题的关键.21.【分析】(1)根据图形,利用长方形的面积公式计算即可;(2)利用作差法比较即可.【解答】解:(1)由图可知S1=(a+2)(a+1)=a2+3a+2,S2=(5a+1)×1=5a+1,当a=2时,S1+S2=4+6+2+10+1=23;(2)S1>S2,理由:∵S1﹣S2=a2+3a+2﹣5a﹣1=a2﹣2a+1=(a﹣1)2,又∵a>1,∴(a﹣1)2>0,∴S1>S2.【点评】本题考查了多项式乘多项式,关键是能列出整式或算式表示几何图形的面积.22.【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可.(2)根据重新计算后,发现客户所评分数的平均数大于3.55分列出不等式,从而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可.【解答】解:(1)由条形图可知,第10个数据是3分,第11个数据是4分,∴中位数为3.5分,由统计图可得平均数为=3.5分,∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.(2)监督人员抽取的问卷所评分数为x分,则有,解得x>4.55,∵满意度从低到高为1分,2分,3分,4分,5分,共5档.∴监督人员抽取的问卷所评分数为5分,∵4<5,∴加入这个数据,客户所评分数按从小到大排列后,第11个数据不变还是4分,即加入这个数据后,中位数是4分,∴与(1)相比,中位数是发生了变化,由3.5分变成4分.【点评】本题考查条形统计图,中位数和平均数,一元一次不等式的应用,掌握求中位数和平均数的方法是解题关键.23.【分析】(1)将点A坐标代入解析式可求a,即可求解;(2)根据点A的取值范围代入解析式可求解.【解答】解:(1)∵抛物线C1:y=a(x﹣3)2+2,∴C1的最高点坐标为(3,2),∵点A(6,1)在抛物线C1:y=a(x﹣3)2+2上,∴1=a(6﹣3)2+2,∴a=﹣,∴抛物线C1:y=﹣(x﹣3)2+2,当x=0时,c=1;(2)∵嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,∴此时,点A的坐标范围是(5,1)~(7,1),当经过(5,1)时,1=﹣×25+×5+1+1,解得:n=,当经过(7,1)时,1=﹣×49+×7+1+1,解得:n=,∴≤n≤,∵n为整数,∴符合条件的n的整数值为4和5.【点评】本题考查了二次函数的应用,读懂题意,掌握二次函数图象上点的坐标特征是解题的关键.24.【分析】(1)连接OM,利用垂径定理得出MC=MN=24cm,由勾股定理计算即可得出答案;(2)由切线的性质证明OE⊥GH,进而得到OE⊥MN,利用锐角三角函数的定义求出OD,再与(1)中OC相减即可得出答案;(3)由半圆的中点为Q得到∠OOB=90°,得到∠QOE=30°,分别求出线段EF与的长度,再相减比较即可.【解答】解:(1)连接OM,∵O为圆心,OC⊥MN于点C,MN=48cm,∴MC=MN=24cm,∵AB=50cm,∴OM=AB=25cm,在Rt△OMC中,OC===7(cm);(2)∵GH与半圆的切点为E,∴OE⊥GH,∵MN∥GH,∴OE⊥MN于点D,∵∠ANM=30°,ON=25cm,∴,∴操作后水面高度下降高度为:;(3)∵OE⊥MN于点D,∠ANM=30°,∴∠DOB=60°,∵半圆的中点为Q,∴,∴∠QOB=90°,∴∠QOE=30°,∴EF=tan∠QOE•OE=(cm),的长为(cm),∵=>0,∴EF>.【点评】本题是圆的综合题,考查了垂径定理,直角三角形的性质,圆的切线的性质,弧长公式和解直角三角形的知识,熟练掌握圆的有关性质定理是解题的关键.25.【分析】(1)由待定系数法可求直线l1的解析式;由平移的性质可求直线l2的解析式;(2)①由题意可得:点P按照甲方式移动m次后得到的点的坐标为(2m,m),再得出点(2m,m),按照乙方式移动(10﹣m)次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线l3的解析式,进而可画出函数图象;(3)由题意可得点A,点B,点C的坐标,由待定系数法可求直线AB的解析式,即可求解.【解答】解:(1)设l1的解析式为y=kx+b,由题意可得:,解得:,∴l1的解析式为y=﹣x+6,将l1向上平移9个单位长度得到的直线l2的解析式为y=﹣x+15;(2)∵点P按照甲方式移动了m次,点P从原点O出发连续移动10次,∴点P按照乙方式移动了(10﹣m)次,∴点P按照甲方式移动m次后得到的点的坐标为(2m,m),∴点(2m,m)按照乙方式移动(10﹣m)次后得到的点的横坐标为2m+10﹣m=m+10,纵坐标为m+2(10﹣m)=20﹣m,∴x=m+10,y=20﹣m;②∵x+y=m+10+20﹣m=30,∴直线l3的解析式为y=﹣x+30;函数图象如图所示:(3)∵点A,B,C,横坐标依次为a,b,c,∴点A(a,﹣a+6),点B(b,﹣b+15),点C(c,﹣c+30),设直线AB的解析式为y=mx+n,由题意可得:,解得:,∴直线AB的解析式为y=(﹣1+)x+6﹣,∵点A,点B,点C三点始终在一条直线上,∴c(﹣1+)+6﹣=﹣c+30,∴5a+3c=8b,∴a,b,c之间的关系式为5a+3c=8b.【点评】本题是一次函数综合题,考查了待定系数法,平移的性质,掌握平移的性质和一次函数的性质是解题的关键.26.【分析】(1)根据旋转的性质和角平分线的概念得到A′M=AM,∠A′MP=∠AMP,然后证明出△A′MP≌△AMP(SAS),即可得到A′P=AP;(2)①首先根据勾股定理得到,然后利用勾股定理的逆定理即可求出∠CBD=90°;画出图形,然后证明出△DNM∽△DBA,利用相似三角形的性质求出,然后证明出△PBN∽△DMN,利用相似三角形的性质得到PB=5,进而求解即可;②当P点在AB上时,PQ=2,∠A′MP=∠AMP,分别求得BP,AP,根据正切的定义即可求解;当P在BC上时,则PB=2,过点P作PQ⊥ABAB的延长线于点Q,延长MP交AB的延长线于点H,证明△PQB∽BAD,得,进而求得AQ,证明△HPQ∽△HMA,即可求解;(3)如图所示,过点A作AE⊥AB交AB于点E,过点M作MF⊥A′E于点F,则四边形AMFE是矩形,证明△A′PE∽△MA′F,根据相似三角形的性质即可求解.【解答】(1)证明:∵将线段MA绕点M顺时针旋转n°(0<n≤180)得到MA′,∴A′M=AM,∵∠A′MA的平分线MP所在的直线交折线AB﹣BC于点P,∴∠A′MP=∠AMP,∵PM=PM,∴△A′MP≌△AMP(SAS),∴A′P=AP;(2)解:①∵AB=8,DA=6,∠A=90°,∴BD==10,又∵,CD=12,∴BD2+BC2=100+44=144,CD2=144,∴BD2+BC2=CD2,∴∠CBD=90°;如图2所示,当n=180时,∵PM平分∠A′MA.∠PMA=90°,∴PM∥AB,∴△DNM∽△DBA,∴,∵DM=2,DA=6,∴,∴,∴,∵∠PBN=∠MD=90°,∠PNB=∠DNM,∴△PBN∽△DMN,∴,即,∴PB=5,∴x=AB+PB=8+5=13.②如图所示,当P点在AB上时,PQ=2,∠A′MP=∠AMP,∴AB=8,DA=6,∠A=90°,∴,∴,∴,∴,∴,如图所示,当P在BC上时,则PB=2,过点P作PQ⊥AB交AB的延长线于点Q,延长MP交AB的延长线于点H,∵∠PQB=∠CBD=∠DAB=90°,∴∠QPB=90°﹣∠PBQ=∠DBA,∴△PQB∽△BAD,∴,即,∴,,∴,∵PQ⊥AB,DA⊥AB,∴PQ∥AD,∴△HPQ∽△HMA,∴,解得:,∴tan∠AMP=tan∠AMP=tan∠QPH===,综上所述,tan∠A′MP的值为或;(3)解:∵当0<x≤8时,∴P在AB上,如图所示,过点A′作A′E⊥AB于点E,过点M作MF⊥A′E于点F,则四边形AMFE 是矩形,∴AE=FM,EF=AM=4,∵△A′MP≌△AMP,∴∠PA′M=∠A=90°,∴∠PA′E+∠FA′M=90°,又∠A'MF+∠FA′M=90°,∴∠PA′E=∠A′MF,又∵∠A'E=∠MFA=90°,∴△A′PE∽△MA'F,∴==,∵A′P=AP=x,MA′=MA=4,设FM=AE=y,A′E=h,即∴,4(x﹣y)=x(h﹣4),∴,整理得,即点A′到直线AB的距离为.【点评】本题属于三角形综合题,考查了全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,求正切值,染练掌握以上知识且分类讨论是解题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年河北省初中毕业升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分:卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷总分120分,考试时间120分钟.卷Ⅰ(选择题,共42分)一、选择题(本大题共16个小题,1-6小题每小题2分;7-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2是2的( )A.倒数B.相反数C.绝对值D.平方根2.如图1,△ABC中,D、E分别是边AB、AC的中点,若DE=2,则BC=( )3.计算:852-152= ( )4.如图2,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是( ) °°°°,b是两个连续整数,若a<7<b,则a,b分别是( ),3 ,2 ,4 ,86.如图3,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为( )A BC Dlxyo图3O图2100°ab70°ABD EC图17.化简:=---1 12xxxx( )D.1-xx8.如图4,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠( )9.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米,当x=3时,y=18,那么当成本为72元时,边长为( )厘米厘米厘米厘米10.图5-1是边长为1的六个小正方形组成的图形,它可以围成图5-2的正方形,则图5-1中小正方形顶点A,B在围成的正方体...上的距离是( )C.2D.311.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图6的拆线统计图,则符合这一结果的实验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是412.如图7,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是( )频率100 200图6300 400 500·····图5-2图5-1··AB图412AB C图713.在研究相似问题时,甲、乙同学的观点如下:对于两人的观点,下列说法正确的是( )A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对14.定义新运算:()()⎪⎪⎩⎪⎪⎨⎧<->=⊕.0.0bbabbaba例如:5454=⊕,()5454=-⊕,则函数()02≠⊕=xxy图象大致是( )15.如图9,边长为a的正六边形内有两个三角形(数据如图),则=空白阴影SS( )16.五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据.若这五个数据的中位数是6,唯一..众数是7,则他们投中次数的总和可能是( )图8-1111 甲:将边长为3,4,5的三角形按图8-1的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.图8-21111 乙:将邻边为3和5的矩形按图8-2的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不.相似.图9a a60°60°卷Ⅱ(非选择题,共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上) 17.计算:=⨯21818.若实数m ,n 满足()0201422=-+-n m ,则m -1+n 0= 19.如图10,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形. 则=扇形S cm 220.如图11,点O ,A 在数轴上表示的数分别是0,,将线段OA 分成100等份,其分点由左向右依次为M 1,M 2,…,M 99;再将线段OM 1分成100等份,其分点由左向右依次为N 1,N 2,…,N 99;继续将线段ON 1分成100等份,其分点由左向右依次为P 1,P 2,…,P 99.则点P 37所表示的数用科学记数法表示为 .A(B) A228图10· · · B三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)嘉淇同学用配方法推导一元二次方程()002≠=++a c bx ax 的求根公式时,对于042>-ac b 的情况,她是这样做的:(1)嘉淇的解法从第 步开始出现错误:事实上,当042>-ac b 时,方程()002≠=++a c bx ax 的求根公式是 .(2)用配方法解方程:02422=--x x. a2ac 4b b x, ) 0ac 4b (a4ac4b a 2b x , a 4ac 4b ) a 2b x ( , ) a 2b (a c ) a 2b (x a b x ,ac x a b x 变形为0c bxax ,方程0a 由于22222222222-+-=>--=+-=++-=++-=+=++≠ : …………………………………………第一步…………………第二步………………………………第三步………………第四步………………………………五步第如图12-1,A ,B ,C 是三个垃圾存放点,点B ,C 分别位于点A 的正北和正东方向,AC=100米.四人分别测得∠C 的度数如下表:他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图12-2,12-3:(1)求表中∠C 度数的平均数x ;(2)求A 处的垃圾量,并将图12-2补充完整;(3)用(1)中的x 作为∠C 的度数,要将A 处的垃圾沿道路AB 都运到B 处,已知运送1千克垃圾每米的费用为元,求运垃圾所需的费用.(注:sin37°=,cos37°=,tan37°=23.(本小题满分11分)如图13,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°得到△ADE ,连接BD ,CE 交于点F. (1)求证:△ABD ≌△ACE (2)求∠ACE 的度数;(3)求证:四边形ABFE 是菱形.ABCEF 40°100° 图13图12-2图12-1图12-3C A B 50%%各点垃圾量扇形统计图如图14,2×2网格(每个小正方形的边长为1)中有A ,B ,C ,D ,E ,F ,G ,H ,O 九个格点.抛物线l 的解析式为y=(-1)n x 2+bx+c(n 为整数).(1)n 为奇数,且l 经过点H(0,1)和C(2,1),求b ,c 的值,并直接写出哪个格点是该抛物线的顶点;(2)n 为偶数,且l 经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l 经过这九个格点中的三个,直接..写出所有满足这样条件的抛物线条数.25.(本小题满分11分)图15-1和15-2中,优弧AB ⌒ 所在⊙O 的半径为2,AB=32,点P 为优弧AB ⌒ 上一点(点P 不与A ,B 重合),将图形沿BP 折叠,得到点A 的对称点A ′(1)点O 到弦AB 的距离是 ;当BP 经过点O 时,∠ABA ′= °;(2)当BA ′与⊙O 相切时,如图15-2,求折痕BP 的长.(3)若线段..BA ′与优弧AB ⌒ 只有一个公共点B ,设∠ABP=α,确定α的取值范围.G2 F H By EDxC1 A 12 O · · · ·· ····某景区内的环形路是边长为800米的正方形ABCD ,如图16-1和16-2,现有1号、2号两游览车分别从出口A 和景点C 同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶时间为t 分.(1)当0≤t ≤8时,分别写出1号车、2号车在左半环线离出口A 的路程y 1,y 2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t 的值;(2)t 为何值时,1号车第三次恰好经过景点C ?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图16-2,游客甲在BC 上的一点K(不与点B ,C 重合)处候车,准备乘车到出口A ,设CK=x 米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车; 情况二:若他刚好错过1号车,便搭乘即将到来的2号车. 比较哪种情况用时较多?(含候车时间)决策:已知游客乙在DA 上从D 向出口A 走去,步行的速度是50米/分,当行进到DA 上一点P(不与点D ,A 重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A 用时少,请你简要说明理由;(2)设PA=s(0<s<800)米,若他想尽快到达出口A ,根据s 的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?D图16-21图16-1。