河北中考数学试题-(word版含答案和评分标准)

合集下载

河北省中考数学试卷含答案解析(word版)

河北省中考数学试卷含答案解析(word版)

精品文档2021年河北省中考数学试卷一、〔本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1.计算:﹣〔﹣ 1〕=〔〕.±1B.﹣2C.﹣1D.12.计算正确的选项是〔〕= 02+x3x2〕3252﹣1.〔﹣.〔ab=ab2aa=2a?3.以下图形中,既是轴对称图形又是中心对称图形的是〔〕A. B. C.D.4.以下运算结果为x﹣1的是〔〕A.1﹣B. ? C.÷D.5.假设k≠0,b<0,那么y=kx+b的图象可能是〔〕A. B. C.D.6.关于?ABCD的表达,正确的选项是〔〕A.假设AB⊥BC,那么?ABCD是菱形 B.假设AC⊥BD,那么?ABCD是正方形C.假设AC=BD,那么?ABCD是矩形D.假设AB=AD,那么?ABCD是正方形7.关于的表达,错误的选项是〔〕A.是有理数B.面积为12的正方形边长是C. =2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是〔〕精品文档精品文档A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是〔〕A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,钝角△ABC,依以下步骤尺规作图,并保存作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.以下表达正确的选项是〔〕A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC?AH D.AB=AD11.点A,B在数轴上的位置如下图,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0精品文档精品文档其中正确的选项是〔〕A.甲乙B.丙丁C.甲丙D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小 5.依上述情形,所列关系式成立的是〔〕A. = ﹣5B.= +5 C. =8x﹣5 D. =8x+513.如图,将?ABCD沿对角线AC折叠,使点B落在B′处,假设∠1=∠2=44°,那么∠B为〔〕A.66°B.104°C.114°D.124°14.a,b,c为常数,且〔a﹣c〕2>a2+c2,那么关于x的方程ax2+bx+c=0根的情况是〔〕A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为 015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是〔〕A. B.C..16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.假设点M,N分别在OA,OB上,且△PMN 为等边三角形,那么满足上述条件的△PMN有〔〕精品文档精品文档A.1个B.2个C.3个D.3个以上二、填空〔本大有3小,共10分.17-18小各3分;19小有2个空,每空2分.把答案写在中横上〕17.8的立方根是______.18.假设mn=m+3,2mn+3m 5mn+10=______.19.如,∠AOB=7°,一条光从点A出后射向OB.假设光与OB垂直,光沿原路返回到点A,此∠A=90°7°=83°.当∠A<83°,光射到 OB上的点A1后,OB反射到段AO上的点A2,易知∠1=∠2.假设1A2⊥AO,光又会沿A2→A1→A原路返回到点A,此∠A=______°.⋯假设光从点出后,假设干次反射能沿原路返回到点,角∠的最小=______°.三、解答〔本大有7个小,共68分.解答写出必要的文字明、明程或演算步〕20.你参考黑板中老的解,用运算律便算:1〕999×〔15〕2999118999×〔〕99918〔〕+×21.如,点B,F,C,E在直l上〔F,C之不能直接量〕,点A,D在l异,得AB=DE,AC=DF,BF=EC.精品文档精品文档1〕求:△ABC≌△DEF;2〕指出中所有平行的段,并明理由.22.n形的内角和θ=〔n 2〕×180°.1〕甲同学,θ能取360°;而乙同学,θ也能取630°.甲、乙的法?假设,求出数n.假设不,明理由;2形〔nx〕形,内角和增加了360°,用列方程的方法确定.〔〕假设+23.如1,一枚地均匀的正四面体骰子,它有四个面并分有数字1,2,3,4.如2,正方形ABCD点各有一个圈.跳圈游的:游者每一次骰子,骰子着地一面上的数字是几,就沿正方形的方向跳几个.如:假设从圈A起跳,第一次得3,就跳 3个,落到圈D;假设第二次得 2,就从D开始跳2个,落到圈B;⋯游者从圈A起跳.〔1〕嘉嘉随机一次骰子,求落回到圈A的概率P1;〔2〕淇淇随机两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A 的可能性一?24.某商店通低价格的方式促n个不同的玩具,整后的价y〔元〕与整前的价x〔元〕足一次函数关系,如表:第1个第2个第3个第4个⋯第n个整前的价x〔元〕x1x2=6x3=72x4⋯xn整后的价y〔元〕y1y2=4y3=59y4⋯yn精品文档精品文档这个n玩具调整后的单价都大于2元.1〕求y与x的函数关系式,并确定x的取值范围;2〕某个玩具调整前单价是108元,顾客购置这个玩具省了多少钱?3〕这n个玩具调整前、后的平均单价分别为,,猜测与的关系式,并写出推导过程.5.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为_____ _;探究:当半圆M与AB相切时,求的长.〔注:结果保存π,cos35°=,cos55°=〕6.如图,抛物线=txt40〕与轴从左到右的交点为,过﹣〔﹣〕〔﹣+〕〔常数>线段OA的中点M作MP⊥x轴,交双曲线y=〔k>0,x>0〕于点P,且OA?MP=12,1〕求k值;2〕当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;〔3〕把L在直线MP左侧局部的图象〔含与直线MP的交点〕记为G,用t表示图象 G最高点的坐(标;4〕设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.精品文档精品文档2021年河北省中考数学试卷参考答案与试题解析一、〔本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

2023年河北中考数学真题及答案

2023年河北中考数学真题及答案

2023年河北中考数学真题及答案一、选择题1.代数式7x -的意义可以是()A.7-与x 的和B.7-与x 的差C.7-与x 的积D.7-与x的商2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A.南偏西70︒方向B.南偏东20︒方向C.北偏西20︒方向D.北偏东70︒方向3.化简233y x x ⎛⎫ ⎪⎝⎭的结果是()A.6xyB.5xy C.25x y D.26x y 4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.5.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为()A .2B.3C.4D.56.若k 为任意整数,则22(23)4k k +-的值总能()A.被2整除 B.被3整除C.被5整除D.被7整除7.若a b ===()A.2B.4C.D.8.综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程.(1)作BD 的垂直平分线交BD 于点O ;(2)连接AO ,在AO 的延长线上截取OC AO =;(3)连接DC ,BC ,则四边形即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等9.如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是()A.a b <B.a b =C.a b >D.a ,b 大小无法比较10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是()A.12119.4610109.4610⨯-=⨯B.12129.46100.46910⨯-=⨯C.129.4610⨯是一个12位数D.129.4610⨯是一个13位数11.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S = ()A.43B.83C.12D.1612.如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个13.在ABC 和A B C ''' 中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A.30︒B.n ︒C.n ︒或180n ︒-︒D.30︒或150︒14.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是()A. B.C. D.15.如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=()A.42︒B.43︒C.44︒D.45︒16.已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.2m C.4D.22m 二、填空题17.如图,已知点(3,3),(3,1)A B ,反比例函数(0)ky k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k的数值:_________.18.根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7b21x x+a119.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中∠=______度.(1)α(2)中间正六边形的中心到直线l的距离为______(结果保留根号).三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A区B区脱靶-一次计分(分)312在第一局中,珍珍投中A区4次,B区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.a>.某同学分别21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1),S S.用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188nC y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.24.装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与 EQ的长度,并比较大小.25.在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.26.如图1和图2,平面上,四边形ABCD 中,8,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).参考答案一、选择题【1题答案】【答案】C【2题答案】【答案】D【3题答案】【答案】A【4题答案】【答案】B【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】A【10题答案】【答案】D【11题答案】【答案】B【12题答案】【答案】B【13题答案】【答案】C【14题答案】【答案】D【15题答案】【答案】C【16题答案】【答案】A二、填空题【17题答案】【答案】4(答案不唯一,满足39k <<均可)【18题答案】【答案】①.52②.2-【19题答案】【答案】①.30②.三、解答题【20题答案】【答案】(1)珍珍第一局的得分为6分;(2)6k =.【21题答案】【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a -=++-+=-+=-∵1a >,∴()21210S S a -=->,∴12S S >.【22题答案】【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【23题答案】【答案】(1)1C 的最高点坐标为()32,,19a =-,1c =;(2)符合条件的n 的整数值为4和5.【24题答案】【答案】(1)7cm ;(2)11cm 2;(3)253cm 3EF =, 25π=cm 6EQ , EF EQ >.【25题答案】【答案】(1)1l 的解析式为6y x =-+;2l 的解析式为15y x =-+;(2)①10,20x m y m =+=-;②3l 的解析式为30y x =-+,函数图象如图所示:(3)538a c b+=【26题答案】【答案】(1)∵将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA ',∴A M AM'=∵A MA '∠的平分线MP 所在直线交折线AB BC -于点P ,∴A MP AMP'∠=∠又∵PM PM=∴()SAS A MP AMP 'V V ≌∴A P AP '=;(2)①90CBD ∠=︒,13x =;②76或236(3)22816x x +。

河北省2021年中考数学试卷 (Word版,含答案与解析)

河北省2021年中考数学试卷 (Word版,含答案与解析)

河北省2021年中考数学试卷一、单选题1.(2021·河北)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A. aB. bC. cD. d【答案】A【考点】直线的性质:两点确定一条直线【解析】【解答】解:设线段m与挡板的交点为A,a、b、c、d与挡板的交点分别为B,C,D,E,连结AB、AC、AD、AE,根据直线的特征经过两点有且只有一条直线,利用直尺可确定线段a与m在同一直线上,故答案为:A.【分析】将A点,与B,C,D,E点分别作直线。

线段m在其中直线就可以解题。

解题关键:理解两点确定一条直线。

2.(2021·河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A. A代表B. B代表C. C代表D. B代表【答案】A【考点】几何体的展开图【解析】【解答】解:由正方体展开图可知,A的对面点数是1;B的对面点数是2;C的对面点数是4;∵骰子相对两面的点数之和为7,∴A代表,故答案为:A.【分析】正方体的展开图共有11种,其中“一四一”型共有6种,“二三一”型共有3种,“二二二”,“三三”型各1种。

Figure 1同色的为相对两面三个正方形成一直线形成“目”字形,则两端的正方形必定为对面。

如果四正方形形成Z形,则两端的正方形必定为对面。

解题关键:如何找正方形展图中相对的两面。

3.(2021·河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()图2A. 甲、乙、丙都是B. 只有甲、乙才是C. 只有甲、丙才是D. 只有乙、丙才是【答案】A【考点】平行四边形的性质,三角形全等的判定(ASA)【解析】【解答】连接AC,BD交于点O甲方案:∵四边形ABCD是平行四边形∴AO=CO,BO=DO∵BN=NO,OM=MD∴ON=OM∴四边形ANCM为平行四边形.乙方案:∵四边形ABCD是平行四边形∴AB=CD,AB//CD,AO=CO,BO=DO∴∠ABN=∠CDM又∵AN⊥BD,CM⊥BD∴∠ANB=∠CMD∴△ABN≌△CDM(AAS)∴BN=DM∵BO=DO∴ON=OM∴四边形ANCM为平行四边形.丙方案:∵四边形ABCD是平行四边形∴AB=CD,AB//CD,AO=CO,BO=DO,∠BAD=∠BCD∴∠ABN=∠CDM又∵AN,CM分别平分∠BAD,∠BCD∴12∠BAD=12∠BCD,即∠BAN=∠DCN∴△ABN≌△CDM(ASA)∴BN=DM∵BO=DO∴ON=OM∴四边形ANCM为平行四边形.所以甲、乙、丙三种方案都可以.故答案为:A.【分析】平行四边形对边平行且相等,对角分别相等,对角形相互平分。

2023年河北省中考数学真题(解析版)

2023年河北省中考数学真题(解析版)

2023年河北省初中毕业生升学文化课考试数学试卷一、选择题-的意义可以是()1.代数式7xA.7-与x的和B.7-与x的差C.7-与x的积D.7-与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.-的意义可以是7-与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A.南偏西70︒方向B.南偏东20︒方向C.北偏西20︒方向D.北偏东70︒方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70︒的方向,∴淇淇家位于西柏坡的北偏东70︒方向.故选D.【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3.化简233y x x ⎛⎫ ⎪⎝⎭的结果是()A.6xy B.5xy C.25x y D.26x y 【答案】A【解析】【分析】根据分式的乘方和除法的运算法则进行计算即可.【详解】解:2363362y y x x xy x x =⎛⎝⋅⎫= ⎪⎭,故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.【答案】B【解析】【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为()A.2B.3C.4D.5【答案】B【解析】【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解.【详解】解:在ACD 中,2AD CD ==,∴2222AC -<<+,即04AC <<,当4AC BC ==时,ABC 为等腰三角形,但不合题意,舍去;若3AC AB ==时,ABC 为等腰三角形,故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题.6.若k 为任意整数,则22(23)4k k +-的值总能()A.被2整除B.被3整除C.被5整除D.被7整除【答案】B【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7.若a b ===()A.2B.4C.D.【答案】A【解析】【分析】把a b ==【详解】解:∵a b ==2==,故选:A .【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8.综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等【答案】C【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断.【详解】解:根据图1,得出BD 的中点O ,图2,得出OC AO =,可知使得对角线互相平分,从而得出四边形ABCD 为平行四边形,判定四边形ABCD 为平行四边形的条件是:对角线互相平分,故选:C .【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理.9.如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是()A.a b< B.a b = C.a b > D.a ,b 大小无法比较【答案】A【解析】【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形37P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +-=-,根据123PP P 的三边关系即可得解.【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即 1223345566778148PP P P P P P P P P P P P P P P =======∴12233467PP P P P P P P ===, 464556781178P P P P P P P P P P PP =+=+=∴4617P P PP =又∵137PP P 的周长为131737a PPPP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,∴()()34466737131737b a P P P P P P P P PP PP P P ++-++=+-()()12172337131737PP PP P P P P PP PP P P =+++-++122313PP P P PP =-+在123PP P 中有122313PPP P PP >+∴1223130b a PP P P PP -=+>-故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是()A.12119.4610109.4610⨯-=⨯B.12129.46100.46910⨯-=⨯C.129.4610⨯是一个12位数D.129.4610⨯是一个13位数【答案】D【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答.【详解】解:A.12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意;B.12129.46100.46910⨯-≠⨯,故该选项错误,不符合题意;C.129.4610⨯是一个13位数,故该选项错误,不符合题意;D.129.4610⨯是一个13位数,正确,符合题意.故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S = ()A. B. C.12 D.16【答案】B【解析】【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解.【详解】解:∵16AMEF S =正方形,∴4AM ==,∵Rt ABC △中,点M 是斜边BC 的中点,∴28BC AM ==,∴AC ===,∴11422ABC S AB AC =⨯⨯=⨯⨯= ,故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12.如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个,故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13.在ABC 和A B C ''' 中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A.30︒B.n ︒C.n ︒或180n ︒-︒D.30︒或150︒【答案】C【解析】【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,∵306B B AB A B '''∠=∠=︒==,,∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒-∠=︒-︒;综上,C '∠的值为n ︒或180n ︒-︒.故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是()A. B.C. D.【答案】D【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发,设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++,∵两个人机器人速度相同,∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C ,故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.15.如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=()A.42︒B.43︒C.44︒D.45︒【答案】C【解析】【分析】如图,由平角的定义求得18034ADB ADE Ð=°-Ð=°,由外角定理求得,16AHD ADB αÐ=Ð-Ð=°,根据平行性质,得16GIF AHD Ð=Ð=°,进而求得44EGF GIF βÐ=Ð-Ð=°.【详解】如图,∵146ADE ∠=︒∴18034ADB ADE Ð=°-Ð=°∵ADB AHDαÐ=Ð+Ð∴503416AHD ADB αÐ=Ð-Ð=°-°=°∵12l l ∥∴16GIF AHD Ð=Ð=°∵EGF GIFβÐ=Ð+Ð∴601644EGF GIF βÐ=Ð-Ð=°-°=°故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16.已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.2mC.4D.22m 【答案】A【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可.【详解】解:令0y =,则220x m x -+=和220x m -=,解得0x =或2x m =或x m =-或m ,不妨设0m >,∵()0m ,和()0m -,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),∵抛物线22y x m =-的对称轴为0x =,抛物线22y x m x =-+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2,故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17.如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k <<均可)【解析】【分析】先分别求得反比例函数(0)k y k x =≠图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可.【详解】解:当反比例函数(0)k y k x=≠图像过(3,3)A 时,339k =⨯=;当反比例函数(0)k y k x =≠图像过(3,1)B 时,313k =⨯=;∴k 的取值范围为39k <<∴k 可以取4.故答案为4(答案不唯一,满足39k <<均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键.18.根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7b21x x +a 1【答案】①.52②.2-【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可.【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ⨯+==,当x n =时,211x x +=,即211n n +=,解得1n =-,经检验,1n =-是分式方程的解,∴()3112b =⨯-+=-,故答案为:52;2-【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】①.30②.【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC ∠=︒,906030A α∠=∠=︒-︒=︒,故答案为:30;(2)取中间正六边形的中心为O,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,,90BAC FGH ABC GFH ∠=∠∠=∠=︒ ,()Rt Rt SAS ABC GFH ≌,BC FH ∴=,在Rt PDE △中,1,DE PE ==,由图1知2AG BF PE ===,由正六边形的结构特征知:12OM =⨯=()112BC BF CH =-=,3tan 3BC AB BAC ∴==-∠,21BD AB ∴=-=,又1212DE =⨯= ,BE BD DE ∴=+=,ON OM BE ∴=+=故答案为:【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区脱靶一次计分(分)312-在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分;(2)6k =.【解析】【分析】(1)根据题意列式计算即可求解;(2)根据题意列一元一次方程即可求解.【小问1详解】解:由题意得()4321426⨯+⨯+⨯-=(分),答:珍珍第一局的得分为6分;【小问2详解】解:由题意得()()3311032613k k +⨯+--⨯-=+,解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由见解析【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.【小问1详解】解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++,∴当2a =时,212282323S S +=+⨯+=;【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a -=++-+=-+=-∵1a >,∴()21210S S a -=->,∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可;(2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解.【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分;∴客户所评分数的中位数为:34 3.52+=(分)由统计图可知,客户所评分数的平均数为:1123364555 3.520⨯+⨯+⨯+⨯+⨯=(分)∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x ⨯+>+解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档,∴监督人员抽取的问卷所评分数为5分,∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =-,1c =;(2)符合条件的n 的整数值为4和5.【解析】【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171 ,,,求得n 的取值范围,即可求解.【小问1详解】解:∵抛物线21:(3)2C y a x =-+,∴1C 的最高点坐标为()32,,∵点(6,1)A 在抛物线21:(3)2C y a x =-+上,∴21(63)2a =-+,解得:19a =-,∴抛物线1C 的解析式为21(3)29y x =--+,令0x =,则21(03)219c =--+=;【小问2详解】解:∵到点A 水平距离不超过1m ∴点A 的坐标范围为()()5171 ,,,当经过()51,时,211551188n =-⨯+⨯++,解得175n =;当经过()71,时,211771188n =-⨯+⨯++,解得417n =;∴174157n ≤≤∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24.装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与 EQ的长度,并比较大小.【答案】(1)7cm ;(2)11cm 2;(3)253cm 3EF =, 25π=cm 6EQ , EF EQ >.【解析】【分析】(1)连接OM ,利用垂径定理计算即可;(2)由切线的性质证明OE GH ⊥进而得到OE MN ⊥,利用锐角三角函数求OD ,再与(1)中OC 相减即可;(3)由半圆的中点为Q 得到90QOB ∠=︒,得到30QOE ∠=︒分别求出线段EF 与 EQ的长度,再相减比较即可.【详解】解:(1)连接OM ,∵O 为圆心,OC MN ⊥于点C ,48cm MN =,∴124cm 2MC MN ==,∵50cm AB =,∴125cm 2OM AB ==,∴在Rt OMC 中,7cm OC ===.(2)∵GH 与半圆的切点为E ,∴OE GH⊥∵MN GH∥∴OE MN ⊥于点D ,∵30ANM ∠=︒,25cm ON =,∴125cm 22OD ON ==,∴操作后水面高度下降高度为:25117cm 22-=.(3)∵OE MN ⊥于点D ,30ANM ∠=︒∴60DOB ∠=︒,∵半圆的中点为Q ,∴ AQ QB=,∴90QOB ∠=︒,∴30QOE ∠=︒,∴tan cm 3EF QOE OE =∠⋅=, 30π2525π==cm 1806EQ ⨯⨯,∵()25π25325π50325π03666-==>,∴ EF EQ>.【点睛】本题考查了垂径定理、圆的切线的性质、求弧长和解直角三角形的知识,解答过程中根据相关性质构造直角三角形是解题关键.25.在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.【答案】(1)1l 的解析式为6y x =-+;2l 的解析式为15y x =-+;(2)①10,20x m y m =+=-;②3l 的解析式为30y x =-+,图象见解析;(3)538a c b+=【解析】【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【小问1详解】设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得4224k b k b +=⎧⎨+=⎩,解得:16k b =-⎧⎨=⎩,∴1l 的解析式为6y x =-+;将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =-+;【小问2详解】①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了(10m -次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标为21010m m m +-=+,纵坐标为()21020m m m +-=-,∴10,20x m y m =+=-;②由于102030x y m m +=++-=,∴直线3l 的解析式为30y x =-+;函数图象如图所示:【小问3详解】∵点,,A B C 的横坐标依次为,,a b c ,且分别在直线123,,l l l 上,∴()()(),6,,15,,30A a a B b b C c c -+-+-+,设直线AB 的解析式为y mx n =+,把A 、B 两点坐标代入,得615ma n a mb n b +=-+⎧⎨+=-+⎩,解得:9196m b a a n b a ⎧=-+⎪⎪-⎨⎪=-⎪-⎩,∴直线AB 的解析式为9916a y x b a b a⎛=-++- -⎝⎭,∵A ,B ,C 三点始终在一条直线上,∴991630a c c b a b a⎛⎫-++-=-+ ⎪--⎝⎭,整理得:538a c b +=;即a ,b ,c 之间的关系式为:538a c b +=.【点睛】本题是一次函数和平移综合题,主要考查了平移的性质和一次函数的相关知识,正确理解题意、熟练掌握平移的性质和待定系数法求一次函数的解析式是解题关键.26.如图1和图2,平面上,四边形ABCD中,8,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).【答案】(1)见解析(2)①90CBD ∠=︒,13x =;②76或236(3)22816x x +【解析】【分析】(1)根据旋转的性质和角平分线的概念得到A M AM '=,A MP AMP '∠=∠,然后证明出()SAS A MP AMP 'V V ≌,即可得到A P AP '=;(2)①首先根据勾股定理得到10BD ==,然后利用勾股定理的逆定理即可求出90CBD ∠=︒;首先画出图形,然后证明出DNM DBA V V ,利用相似三角形的性质求出103DN =,83MN =,然后证明出PBN DMN V V ∽,利用相似三角形的性质得到5PB =,进而求解即可;②当P 点在AB 上时,2PQ =,A MP AMP '∠=∠,分别求得,BP AP ,根据正切的定义即可求解;②当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,证明PQB BAD ∽,得出4855PQ PB ==,3655BQ PB ==,进而求得AQ ,证明HPQ HMA ∽,即可求解;(3)如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,证明A PE MA F '' ∽,根据相似三角形的性质即可求解.【小问1详解】∵将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA ',∴A M AM'=∵A MA '∠的平分线MP 所在直线交折线AB BC -于点P ,∴A MP AMP'∠=∠又∵PM PM=∴()SAS A MP AMP 'V V ≌∴A P AP '=;【小问2详解】①∵8AB =,6DA =,90A ∠=︒∴10BD ==∵=BC ,12CD =∴(222210144BC BD +=+=,2212144CD ==∴222BC BD CD +=∴90CBD ∠=︒;如图所示,当180n =时,∵PM 平分A MA'∠∴90PMA ∠=︒∴PM AB∥∴DNM DBAV V ∽∴DN DM MN DB DA BA==∵2DM =,6DA =∴21068DN MN ==∴103DN =,83MN =∴203BN BD DN =-=∵90PBN NMD ∠=∠=︒,PNB DNM∠=∠∴PBN DMNV V ∽∴PB BN DM MN =,即203823PB =∴解得5PB =∴8513x AB PB =+=+=.②如图所示,当P 点在AB 上时,2PQ =,A MP AMP '∠=∠∵8,6,90AB DA A ==∠=︒,∴22226810BD AB AD =+=+=,63sin 105AD DBA BD ∠===,∴2103sin 35BQ BP DBA ===∠,∴1014833AP AB BP =-=-=∴1473tan tan 46AP A MP AMP AM '∠=∠===;如图所示,当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,∵90PQB CBD DAB ∠=∠=∠=︒,∴90QPB PBQ DBA ∠=︒-∠=∠,∴PQB BAD∽∴PQ QB PB BA AD BD==即8610PQ QB PB ==∴4855PQ PB ==,3655BQ PB ==,∴465AQ AB BQ =+=∵,PQ AB DA AB⊥⊥∴PQ AD ∥,∴HPQ HMA ∽,∴HQ PQ HA AM=∴854645HQ HQ =+解得:9215HQ =∴922315tan tan tan 865HQ A MP AMP QPH PQ '∠=∠=∠===,综上所述,tan A MP '∠的值为76或236;【小问3详解】解:∵当08x <≤时,∴P 在AB 上,如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,∴AE FM =,4EF AM ==,∵A MP AMP ' ≌,∴90PA M A '∠=∠=︒,∴90PA E FA M ''∠+∠=︒,又90A MF FA M ''∠+∠=︒,∴PA E A MF ''∠=∠,又∵90A EP MFA ''∠=∠=︒,∴A PE MA F '' ∽,∴A P PE A E MA A F FM''==''∵A P AP x '==,4MA MA '==,设FM AE y ==,A E h'=即44x x y h h y-==-∴4h y x=,()()44x y x h -=-∴()444h x x h x ⎛⎫-=- ⎪⎝⎭整理得22816x h x =+即点A '到直线AB 的距离为22816x x +.【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,求正切值,熟练掌握以上知识且分类讨论是解题的关键.。

2024年河北省中考数学试卷(Word版含解析)

2024年河北省中考数学试卷(Word版含解析)

2024年河北省中考数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()A.B.C.D.2.下列运算正确的是()A.a7﹣a3=a4B.3a2•2a2=6a2C.(﹣2a)3=﹣8a3D.a4÷a4=a3.如图,AD与BC交于点O,△ABO和△CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A.AD⊥BC B.AC⊥PQ C.△ABO≌△CDO D.AC∥BD4.下列数中,能使不等式5x﹣1<6成立的x的值为()A.1B.2C.3D.45.观察图中尺规作图的痕迹,可得线段BD一定是△ABC的()A.角平分线B.高线C.中位线D.中线6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是()A.B.C.D.7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍8.若a,b是正整数,且满足=,则a与b的关系正确的是()A.a+3=8b B.3a=8b C.a+3=b8D.3a=8+b9.淇淇在计算正数a的平方时,误算成a与2的积,求得的答案比正确答案小1,则a=()A.1B.﹣1C.+1D.1或+110.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,△ABC中,AB=AC,AE平分△ABC的外角∠CAN,点M是AC的中点,连接BM并延长交AE于点D,连接CD.求证:四边形ABCD是平行四边形.证明:∵AB=AC,∴∠ABC=∠3.∵∠CAN=∠ABC+∠3,∠CAN=∠1+∠2,∠1=∠2,∴①______.又∵∠4=∠5,MA=MC,∴△MAD≌△MCB(②______).∴MD=MB.∴四边形ABCD是平行四边形.若以上解答过程正确,①,②应分别为()A.∠1=∠3,AAS B.∠1=∠3,ASA C.∠2=∠3,AAS D.∠2=∠3,ASA11.直线l与正六边形ABCDEF的边AB,EF分别相交于点M,N,如图所示,则α+β=()A.115°B.120°C.135°D.144°12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点A B.点B C.点C D.点D13.已知A为整式,若计算﹣的结果为,则A=()A.x B.y C.x+y D.x﹣y14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120°时,扇面面积为S,该折扇张开的角度为n°时,扇面面积为S n,若m=,则m与n关系的图象大致是()A.B.C.D.15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A.“20”左边的数是16B.“20”右边的“■”表示5C.运算结果小于6000D.运算结果可以表示为4100a+102516.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”P(2,1)按上述规则连续平移3次后,到达点P3(2,2),其平移过程如下:.若“和点”Q按上述规则连续平移16次后,到达点Q16(﹣1,9),则点Q的坐标为()A.(6,1)或(7,1)B.(15,﹣7)或(8,0)C.(6,0)或(8,0)D.(5,1)或(7,1)二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为.18.已知a,b,n均为正整数.(1)若n<<n+1,则n=;(2)若n﹣1<<n,n<<n+1,则满足条件的a的个数总比b的个数少个.19.如图,△ABC的面积为2,AD为BC边上的中线,点A,C1,C2,C3是线段CC4的五等分点,点A,D1,D2是线段DD3的四等分点,点A是线段BB1的中点.(1)△AC1D1的面积为;(2)△B1C4D3的面积为.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为﹣4,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.(1)计算A,B,C三点所对应的数的和,并求的值;(2)当点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,求x的值.21.甲、乙、丙三张卡片正面分别写有a+b,2a+b,a﹣b,除正面的代数式不同外,其余均相同.(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当a=1,b=﹣2时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.a+b2a+b a﹣b第一次和第二次a+b2a+2b2a2a+ba﹣b2a22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P恰好看到一颗星星,此时淇淇距窗户的水平距离BQ=4m,仰角为α;淇淇向前走了3m后到达点D,透过点P恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ的距离AB=CD=1.6m,点P到BQ 的距离PQ=2.6m,AC的延长线交PQ于点E.(注:图中所有点均在同一平面)(1)求β的大小及tanα的值;(2)求CP的长及sin∠APC的值.23.情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF,GH裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.24.某公司为提高员工的专业能力,定期对员工进行技能测试.考虑多种因素影响,需将测试的原始成绩x(分)换算为报告成绩y(分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0≤x<p时,y=;当p≤x≤150时,y=+80.(其中p是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p及p以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若p=100,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p的值;(3)下表是该公司100名员工某次测试的原始成绩统计表:95100105110115120125130135140145150原始成绩(分)人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.已知⊙O的半径为3,弦MN=2.△ABC中,∠ABC=90°,AB=3,BC=3.在平面上,先将△ABC和⊙O按图1位置摆放(点B与点N重合,点A在⊙O上,点C在⊙O内),随后移动△ABC,使点B在弦MN上移动,点A始终在⊙O上随之移动.设BN=x.(1)当点B与点N重合时,求劣弧的长;(2)当OA∥MN时,如图2,求点B到OA的距离,并求此时x的值;(3)设点O到BC的距离为d.①当点A在劣弧上,且过点A的切线与AC垂直时,求d的值;②直接写出d的最小值.26.如图,抛物线C1:y=ax2﹣2x过点(4,0),顶点为Q.抛物线C2:y=﹣(x﹣t)2+t2﹣2(其中t为常数,且t>2),顶点为P.(1)直接写出a的值和点Q的坐标.(2)嘉嘉说:无论t为何值,将C1的顶点Q向左平移2个单位长度后一定落在C2上.淇淇说:无论t为何值,C2总经过一个定点.请选择其中一人的说法进行说理.(3)当t=4时,①求直线PQ的解析式;②作直线l∥PQ,当l与C2的交点到x轴的距离恰为6时,求l与x轴交点的横坐标.(4)设C1与C2的交点A,B的横坐标分别为x A,x B,且x A<x B,点M在C1上,横坐标为m(2≤m≤x B).点N在C2上,横坐标为n(x A≤n≤t),若点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,直接用含t和m的式子表示n.。

数学中考试题及答案河北

数学中考试题及答案河北

数学中考试题及答案河北第一题:计算已知 a = 3, b = 5, c = 2,请计算以下表达式的值:a +b ×c - (b - a) ÷ c解析与计算:首先计算括号内的 b - a,根据已知数据有 5 - 3 = 2。

然后计算括号外的乘除法运算,即 b × c 和 c 的商。

根据已知数据有 5 × 2 = 10 和 2 ÷2 = 1。

最后计算整个表达式的值,即 3 + 10 - 1 = 12。

答案:12第二题:方程求解已知方程 2x - 3 = 7,求解 x 的值。

解析与计算:首先将方程中的常数项移到右边,得到 2x = 7 + 3,即 2x = 10。

接下来将方程式两边除以 2,得到 x = 10 ÷ 2,即 x = 5。

答案:x = 5第三题:几何图形如图所示,矩形 ABCD 中,AB = 4cm,BC = 6cm。

E、F、G、H 分别为 AB、BC、CD、DA 上的等分点,连接 AF 与 EG,交于点 P。

请计算 AP:PF 的比值。

解析与计算:根据题意,由于 AF 和 EG 是平行线,所以可以利用相似三角形来计算 AP:PF 的比值。

首先观察三角形 AFE 和 BCG,可以发现它们是相似的,因为对应边长之比相等。

根据比例关系,有AE:BC = AF:CG。

而已知 BC = 6cm,所以 AF:CG = 4:6 = 2:3。

另外,根据直线分割原理,AF:PF = AE:EG。

已知 AE = AB = 4cm,EG = CD = 4cm,所以 AF:PF = 4:4 = 1:1。

答案:AP:PF = 1:1第四题:数据分析某班级的学生参加一次数学小测验,得分如下:80, 85, 90, 92, 70, 75, 84, 88, 78, 83请计算这组数据的平均分和中位数。

解析与计算:首先计算平均分,将所有分数相加得到 80 + 85 + 90 + 92 + 70 + 75+ 84 + 88 + 78 + 83 = 805,然后将总分除以学生人数,即 805 ÷ 10 = 80.5。

河北省中考数学试卷及答案(完美word版)

河北省中考数学试卷及答案(完美word版)

初中毕业生升学文化课考试多套题附参考答案数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分:卷Ⅰ为选择题,卷Ⅱ为非选择题。

本试卷总分120分,考试时间120分钟。

卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

答在试卷上无效一、选择题(本大题共16个小题,1-6小题,每小题2分:7-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2是2的A.倒数 B.相反数C.绝对值D.平方根2.如图1, △ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=A.2B.3C.4D.53.计算:852-152=A.70B.700C.4900D.70004.如图2,平面上直线a,b分别过线段OK两端点(数据如图).则a,b相交所成的锐角是A.20°B.30°C.70°D.80°图1a图25.a,b 是两个连续整数,若a<7<b,则a,b 分别是A.2, 3B.3, 2C.3, 4D.6, 86.如图3,直线L 经过第二、三、四象限,L 的解析式是y=(m-2)x+n ,m 的取值范围在数轴上表示为7.化简:=---112x xx xA.0B.1C.xD.1-x x8.如图4,将长为2、宽为1的矩形纸片分割成n 个 三角形后,拼成面积为2的正方形,则n ≠A .2 B.3 C.4 D.59.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x 厘米,当x=3时,y=18,那么当成本为72元时,边长为 A.6厘米 B.12厘米 C.24厘米 D.36厘米L图3ABCD2图410.图5-1是边长为1的六个小正方形组成的图形,它可以围成图5-2的正方形,则图5-1中小正方形顶点A,B在围成的正方体...上的距离是A.0B.1C.2D.311.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图6的折线统计图,则符合这一结果的实验最有可能的是A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1 个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是412.如图7,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PB=BC,则符合要求的作图痕迹是图5-2图5-1图6C图7CB CB CCACD13.在研究相似问题时,甲、乙同学的观点如下:对于两人的观点为,下列说法正确的是 A .两人都对 B.两人都不对 C .甲对,乙不对 D.甲不对,乙对14.定义新运算:= 例如:=54 ,54,则函数 ≠0)的图象大致是15.如图9,边长为a 的正六边形内有两个三角形,(数据如图), 则空白阴影S S =A.3B.4C.5D.616.五名学生投蓝球,规定每人投20次,统计他们每人投中的次数,得到五个数据,若这 五个数据的中位数是6,唯一众数是7,则他们投中次数的总各可能是 A .20 B.28 C.30 D.31)0(>b ba)0(<-b ba A B C D图92014年河北省初中毕业生升学文化课考试数学试卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚。

(完整版)2019年河北省中考数学试卷及答案

(完整版)2019年河北省中考数学试卷及答案
A.甲的思路错,他的 n 值对 B.乙的思路和他的 n 值都对 C.甲和丙的 n 值都对 D.甲、乙的思路都错,而丙的思路对 二、填空题(本大题有 3 个小题,共 11 分,17 小题 3 分:18~19 小题各有 2 个空,每空 2 分,把答案写在题中横线上) 17.(3 分)若 7﹣2×7﹣1×70=7p,则 p 的值为 . 18.(4 分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.
24.(10 分)长为 300m 的春游队伍,以 v(m/s)的速度向东行进,如图 1 和图 2,当队 伍排尾行进到位置 O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲 的往返速度均为 2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置 O 开始行进的时间为 t(s),排头与 O 的距离为 S 头(m).
8
(完整版)2019 年河北省中考数学试卷及答案(word 版可编辑修改)
又拿 先拿
23.(9 分)如图,△ABC 和△ADE 中,AB=AD=6,BC=DE,∠B=∠D=30°,边 AD 与边 BC 交于点 P(不与点 B,C 重合),点 B,E 在 AD 异侧,I 为△APC 的内心. (1)求证:∠BAD=∠CAE; (2)设 AP=x,请用含 x 的式子表示 PD,并求 PD 的最大值; (3)当 AB⊥AC 时,∠AIC 的取值范围为 m°<∠AIC<n°,分别直接写出 m,n 的值.
A.点 M
B.点 N
C.点 P
D.点 Q
13.(2 分)如图,若 x 为正整数,则表示
﹣ 的值的点落在( )
A.段①
B.段②
C.段③
D.段④
14.(2 分)图 2 是图 1 中长方体的三视图,若用 S 表示面积,S 主=x2+2x,S 左=x2+x, 则 S 俯=( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年河北省初中毕业升学文化课考试数 学 试 卷编辑人:河北邯郸 刘华方一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、-2是2的( )(相反数概念)A 、倒数B 、相反数C 、绝对值D 、平方根 2、如图1,△ABC 中,D 、E 分别是边AB 、AC 的中点.若DE =2,则BC =( )(三角形中位线性质)A 、2B 、3C 、4D 、53、计算:2285-15=( )(因式分解,平方差公式)A 、70B 、700C 、4900D 、7000 4、如图2,平面上直线a ,b 分别过线段OK 两端点(数据如图),则a ,b 相交所成的锐角是( )(三角形外角)A 、20°B 、30°C 、70°D 、80° 5、a ,b 是两个连续整数,若7a b <<,则a ,b 分别是( )(无理数估算)A 、2,3B 、3,2C 、3,4D 、6,86、如图3,直线l 经过第二、三、四象限,l 的解析式是()2y m x n =-+,则m 的取值范围在数轴上表示为( )(一次函数图象和性质,一元一次不等式及其解集数周表示)7、化简:=---112x xx x ( )(同分母分式通分) A 、0 B 、1 C 、x D 、1-x x 8、(好题)如图4,将长为2、宽为1的矩形纸片分割成n 个三角形后,拼成面积为2的正方形,则≠n ( )(图形的剪拼,操作题)A 、2B 、3C 、4D 、59、某种正方形合金板材的成本y (元)与它的面积成正比,设边长为x 厘米,当3=x 时,18=y ,那么当成本为72元时,边长为( )(正比例关系,求代数式的值)A 、6厘米B 、12厘米C 、24厘米D 、36厘米 10、(好题)图5-1是边长为1的六个小正方形组成的图形,它可以围成图5-2的正方体,则图5-1中小正方形顶点A 、B 在围成的正方体...上的距离是( )(正方体展开与折叠) A 、0 B 、1 C 、2 D 、311、(好题)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图6的折线统计图,则符合这一结果的实验最有可能是()(统计与概率)A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D、掷一个质地均匀的正六面体骰子,向上的面点数是412、如图7,已知△ABC(AC<BC),用尺规在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()13、(好题)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图8-1的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.(相似三角形、相似多边形判定)乙:将邻边为3和5的矩形按图8-2的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不.相似.A、两人都对B、两人都不对C、甲对,乙不对D、甲不对,乙对14、定义新运算:()()⎪⎪⎩⎪⎪⎨⎧<->=⊕bbabbaba,例如:5454=⊕,()5454=-⊕,则函数()02≠⊕=xxy的图象大致是()15、如图9,边长为a 的正六边形内有两个三角形(数据如图),则空白阴影S S ( ) A 、3 B 、4 C 、5 D 、616、五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据.若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和可能是( ) A 、20 B 、28 C 、30 D 、31二、填空题(本大题共4个小题,每小题3分,共12分. 把答案写在题中横线上)17、计算:18=2⨯. 18、若实数m ,n 满足()2220140m n -+-=,则1m n -+= . 19、如图10,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形.则=S 扇形 2cm .20、如图11,点O 、A 在数轴上表示的数分别是0,0.1.将线段OA 分成100等份,其分点由左向右依次为1M ,2M ,...,99M ;再将线段1OM 分成100等份,其分点由左向右依次为1N ,2N ,...,99N ;继续将线段1ON 分成100等份,其分点由左向右依次为1P ,2P ,...,99P . 则点37P 所表示的数用科学记数法表示为 .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21、(本小题满分10分)嘉淇同学用配方法推导一元二次方程()200ax bx c a ++=≠的求根公式时,对于240b ac ->的情况,她是这样做的:由于0a ≠,方程20ax bx c ++=变形为:2b cx x a a+=-----------------------------------------------第一步 22222b b c b x x a a a a ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭----------------------第二步222424b b ac x a a -⎛⎫+= ⎪⎝⎭------------------------------------第三步)24024b x b ac a a+=->-------------------第四步2b x a-=--------------------------------------第五步 (1)嘉淇的解法从第 步开始出现错误;事实上,当240b ac ->时,方程()200ax bx c a ++=≠的求根公式是 ;(2)用配方法解方程:22240x x --=.如图12-1,A 、B 、C 是三个垃圾存放点,点B 、C 分别位于点A 的正北和正东方向,AC =100甲 乙 丙 丁 ∠C (单位:度)34363840他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图12-2,12-3:(1)求表中∠C 度数的平均数X ;(2)求A 处的垃圾量,并将图12-2补充完整;(3)用(1)中的X 作为∠C 的度数,要将A 处的垃圾沿道路AB 都运到B 处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin370.6︒=,cos370.8︒=,tan370.75︒=)如图13,△ABC 中,AB =AC ,∠BAC =40°,将△ABC 绕点A 按逆时针方向旋转100°得到△ADE ,连接BD ,CE 交于点F . (1)求证:△ABD ≌△ACE ; (2)求∠ACE 的度数;(3)求证:四边形ABFE 是菱形.24、(本小题满分11分)如图14,22⨯网格(每个小正方形的边长为1)中有A 、B 、C 、D 、E 、F 、G 、H 、O 九个格点. 抛物线l 的解析式为()21ny x bx c =-++(n 为正整数).(1)n 为奇数,且l 经过点H (0,1)和C (2,1),求b ,c 的值,并直接..写出哪个格点是该抛物线的顶点;(2)n 为偶数,且l 经过点A (1,0)和B (2,0),通过计算说明点F (0,2)和H (0,1)是否在抛物线上;(3)若l 经过这九个格点中的三个,直接..写出所有满足这样条件的抛物线条数.图15-1和15-2中,优弧»AB 所在O e 的半径为2,AB =23. 点P 为优弧»AB 上一点(点P 不与A 、B 重合),将图形沿BP 折叠,得到点A 的对称点'A .(1)点O 到弦AB 的距离是 ,当BP 经过点O 时,'ABA ∠= °;(2)当'BA 与O e 相切时,如图15-2,求折痕BP 的长;(3)若线段'BA 与优弧»AB 只有一个公共点B ,设ABP α∠=,确定α的取值范围.26、(本小题满分13分)某景区内的环形路是边长为800米的正方形ABCD ,如图16-1和16-2. 现有1号、2号两游览车分别从出口A 和景点C 同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究 设行驶时间为t 分.(1)当08t ≤≤时,分别写出1号车、2号车在左半环先离出口A 的路程1y ,2y (米)与t (分)的函数关系式,并求出当两车相距的路程是400米时t 的值;(2)t 为何值时,1号车第三次恰好经过景点C ?并直接写出这一段时间内它与2号车相遇过的次数.发现 如图16-2,游客甲在BC 上的一点K (不与点B 、C 重合)处候车,准备乘车到出口A . 设CK =x 米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策 已知游客乙在DA 上从D 向出口A 走去,步行的速度是50米/分. 当行进到DA 上一点P (不与点D ,A 重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A 用时少,请你简要说明理由;(2)设()0800PA s s =<<米. 若他想尽快到达出口A ,根据s 的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?参考答案编辑人:河北邯郸 刘华方二、选择题1、B2、C3、D4、B5、A6、C7、C8、A9、A 10、B 11、D 12、D 13、A14、D 15、C 16、B三、填空题17、2 18、3219、4 20、-63.710⨯ 四、解答题21、解:(1)四(2分) 2b x a-=(2分); (2)()2125x -=(4分),16x =,24x =-(2分).22、解:(1)34363840374X +++==(度)(2分); (2)由扇形图知,A 处的垃圾量占12.5%,∴A 处的垃圾量为32012.5%8050%⨯=(千克)(3分),图略(1分);(3)在Rt △ABC 中,tan 1000.7575AB AC C =⋅=⨯=(米)(2分),∴运费是30元(2分).23、解:(1)证明:△ABD ≌△ACE (4分);(2)40ACE ∠=︒(3分);(3)证明:四边形ABFE 为平行四边形(2分),AB =AE (1分),四边形ABFE 是菱形(1分).24、解:(1)21b c =⎧⎨=⎩(4分),格点E 是抛物线的顶点(1分); (2)232y x x =-+(2分),点F 在该抛物线上,而点H 不在这条抛物线上(2分);(3)所有满足条件的抛物线共有8条(2分).25、解:(1)1(2分),60(2分);(2)30OBP ∠=︒(2分),BP =(1分);(3)030α︒<<︒(2分)或60120α︒≤<︒(2分)26、解:探究(1)1200y t =,22001600y t =-+(2分),3t =(1分),5t =(1分);(2)40t =(1分),这一段时间内它与2号车相遇过2次(1分)发现 情况一用时为:800416200200x x ⨯-=-(1分) 情况二用时为:800416200200x x ⨯+=+(1分) ∵()1616160200200x x x -<<+> ∴情况二用时较多(1分)决策 (1)由题意知,此时1号车正行驶在CD 边上,乘1号车到达点A 的路程小于2个边长,而乘2号车的路程却大于3个边长,所以乘1号车用时比2号车少(两车速相同)(1分)(2)若步行比乘1号车用时少,则800250200s s ⨯-<,解得320s <,∴当0320s <<时,选择步行(1分),同理可得当320800s <<时,选择乘1号车(1分),当320s =时,选择步行或乘1号车(1分).。

相关文档
最新文档