主成分分析法在我国居民生活质量状况_多元统计分析报告
多元统计数据分析报告(3篇)

第1篇一、引言随着大数据时代的到来,数据量急剧增加,传统的统计分析方法已无法满足复杂数据关系的挖掘需求。
多元统计分析作为一种处理多个变量之间关系的方法,在社会科学、自然科学、工程技术等领域得到了广泛应用。
本报告旨在通过对某研究项目的多元统计分析,揭示变量之间的关系,为决策提供科学依据。
二、研究背景与目的本研究以某企业员工绩效评估数据为研究对象,旨在通过多元统计分析方法,探究员工绩效与个人特质、工作环境等因素之间的关系,为企业人力资源管理部门提供决策支持。
三、数据与方法1. 数据来源本研究数据来源于某企业员工绩效评估系统,包括员工的基本信息、个人特质、工作环境、绩效评分等。
2. 研究方法本研究采用以下多元统计分析方法:(1)描述性统计分析:对员工绩效、个人特质、工作环境等变量进行描述性统计分析,了解数据的分布情况。
(2)相关分析:分析变量之间的线性关系,找出相关系数较大的变量对。
(3)因子分析:将多个变量归纳为少数几个因子,揭示变量之间的内在关系。
(4)聚类分析:将员工根据绩效、个人特质、工作环境等因素进行分类,分析不同类别员工的特点。
(5)回归分析:建立员工绩效与个人特质、工作环境等因素之间的回归模型,分析各因素对绩效的影响程度。
四、数据分析结果1. 描述性统计分析通过对员工绩效、个人特质、工作环境等变量的描述性统计分析,得出以下结论:(1)员工绩效评分呈正态分布,平均绩效评分为75分。
(2)个人特质得分集中在中等水平,其中创新能力得分最高,稳定性得分最低。
(3)工作环境得分普遍较高,其中工作压力得分最低。
2. 相关分析通过对员工绩效、个人特质、工作环境等变量进行相关分析,得出以下结论:(1)绩效与创新能力、稳定性、工作环境等因素呈正相关。
(2)创新能力与稳定性呈负相关。
3. 因子分析通过对员工绩效、个人特质、工作环境等变量进行因子分析,得出以下结论:(1)提取了3个因子,分别对应创新能力、稳定性、工作环境。
多元统计实验报告

多元统计实验报告一、实验目的多元统计分析是统计学的一个重要分支,它能够处理多个变量之间的复杂关系。
本次实验的主要目的是通过实际操作和数据分析,深入理解多元统计分析的基本原理和方法,并掌握其在实际问题中的应用。
二、实验数据本次实验使用了一组来自某市场调研公司的数据集,包含了消费者的年龄、性别、收入、消费习惯等多个变量,共计_____个样本。
三、实验方法1、主成分分析(PCA)主成分分析是一种降维方法,它通过将多个相关变量转换为一组较少的不相关变量(即主成分),来简化数据结构并提取主要信息。
2、因子分析因子分析用于发现潜在的公共因子,这些因子能够解释多个观测变量之间的相关性。
3、聚类分析聚类分析将数据对象分组,使得同一组内的对象具有较高的相似性,而不同组之间的对象具有较大的差异性。
四、实验过程1、数据预处理首先,对原始数据进行了清洗和预处理,包括处理缺失值、异常值和数据标准化等操作,以确保数据的质量和可用性。
2、主成分分析使用统计软件进行主成分分析,计算出特征值、贡献率和累计贡献率。
根据特征值大于 1 的原则,确定了保留的主成分个数。
通过主成分载荷矩阵,解释了主成分的实际意义。
3、因子分析运用因子分析方法,提取公共因子,并通过旋转因子载荷矩阵,使得因子的解释更加清晰和具有实际意义。
计算因子得分,用于进一步的分析和应用。
4、聚类分析采用 KMeans 聚类算法,根据选定的变量对样本进行聚类。
通过不断调整聚类中心和重新分配样本,最终得到了较为合理的聚类结果。
五、实验结果与分析1、主成分分析结果提取了_____个主成分,它们累计解释了_____%的方差。
第一个主成分主要反映了_____,第二个主成分主要与_____相关,以此类推。
这为我们理解数据的主要结构提供了重要的线索。
2、因子分析结果成功提取了_____个公共因子,它们能够较好地解释原始变量之间的相关性。
每个因子所代表的潜在因素也得到了清晰的解释,有助于深入了解消费者的行为特征和市场结构。
《多元统计实验》主成分分析实验报告二

《多元统计实验》主成分分析实验报告三、实验结果分析6.5人均粮食产量x5,经济作物占农作物播种面积x6,耕地占土地面积比x7,果园与林地面积之比x8,灌溉田占1耕地面积比例x9等五个指标有较强的相关性, 人口密度x1,人均耕地面积x2,森林覆盖率x3,农民人均收入x4相关性也很强,再作主成分分析,求样本相关矩阵的特征值和主成分载荷。
λ11/2=2.158962,λ21/2=1.4455076,λ31/2 =1.0212708,λ41/2 =0.71233588,λ51/2 =0.5614001,λ61/2 =0.43887788,λ71/2 =0.33821497,λ81/2 =0.212900230,λ91/2=0.177406876。
确定主成分分析,前两个主成分的累积方差贡献率为75.01%,前三个主成分的累积方差贡献率为86.59%,按照累积方差贡献率大于80%的原则,主成分的个数取为3,前三个主成分分别为:Z*1=0.3432x*1-0.446x*3+0.376x*5+0.379x*6+0.432x*7+0.446x*9Z*2=0.368x*1-0.614x*2-0.61x*4-0.307x*5-0.1224x*6Z*3=-0.122x*6+0.246x*7-0.950x*8第一主成分在x*7,x*9两个指标上取值为正且载荷较大,可视为反映耕地占比和灌溉田占耕地面积比例的主成分,第二主成分在x*2和x*4这两个指标的取值为负,绝对值载荷最大,不能作为人均耕地和人均收入的主成分。
第三主成分,x*8这个指标取值为负且,载荷绝对值最大,不能反映果园与林地面积之比的主成分。
根据该图结果可以认为选取前两个指标作为主成分分析的选择是正确的。
将八个指标按前两个主成分进行分类:由结果可以得出森林覆盖率为一类,人口密度、果园与林地面积之比、耕地占土地面积比、灌溉田占耕地面积比为一类,经济作物占农作物播种面积比例、人均粮食产量、农民人均收入、人均耕地面积为一类。
多元统计课程实验报告

一、实验背景随着社会经济的发展和科学技术的进步,数据量日益庞大,如何从大量数据中提取有价值的信息,成为统计学研究的热点问题。
多元统计分析作为统计学的一个重要分支,通过对多个变量之间的关系进行分析,为决策者提供有力的数据支持。
本实验旨在通过实际操作,让学生熟练掌握多元统计分析方法,提高数据分析能力。
二、实验目的1. 掌握多元统计分析的基本概念和方法;2. 学会运用多元统计分析方法解决实际问题;3. 提高数据分析能力,为后续课程打下坚实基础。
三、实验内容本次实验以某城市居民消费数据为例,运用多元统计分析方法对其进行分析。
四、实验步骤1. 数据导入首先,将实验数据导入统计软件(如SPSS、R等)。
本实验采用SPSS软件,数据集包含以下变量:(1)收入(y):居民年收入;(2)教育程度(x1):居民最高学历;(3)年龄(x2):居民年龄;(4)家庭人口(x3):家庭人口数量;(5)住房面积(x4):家庭住房面积。
2. 描述性统计分析对数据集进行描述性统计分析,包括各变量的均值、标准差、最大值、最小值等。
3. 相关性分析运用皮尔逊相关系数、斯皮尔曼等级相关系数等方法,分析变量之间的相关关系。
4. 主成分分析运用主成分分析方法,提取主要成分,降低数据维度。
5. 聚类分析运用K-means聚类分析方法,将居民划分为不同的消费群体。
6. 随机森林回归分析运用随机森林回归分析方法,预测居民收入。
五、实验结果与分析1. 描述性统计分析根据描述性统计分析结果,可知居民年收入、教育程度、年龄、家庭人口、住房面积的平均值、标准差、最大值、最小值等。
2. 相关性分析通过相关性分析,发现收入与教育程度、年龄、家庭人口、住房面积之间存在显著的正相关关系。
3. 主成分分析根据主成分分析结果,提取出两个主成分,累计方差贡献率为84.95%,可以解释大部分的变量信息。
4. 聚类分析通过K-means聚类分析,将居民划分为3个消费群体。
应用多元统计分析实验报告之主成分分析

应用多元统计分析实验报告一、研究目的下表1是2010年各地区6项重要指标的数据,这6项指标分别是:X1—城市用水普及率(%)X2—城市燃气普及率(%)X3—每万人拥有公共交通车辆(标台)X4—人均城市道路面积(平方米)X5—人均公园绿地面积(平方米)X6—每万人拥有公共厕所(座)表1 各地区城市设施水平指标本次实验的研究目的是根据这些指标用主成分分析法对各地区城市设施水平进行综合评价和排序,得出结论并提出建议。
二、研究过程从标准化数据出发,首先计算这些指标的主成分,然后通过主成分的大小进行排序。
1.利用SPSS进行因子分析表2和表3分别是特征根(方差贡献率)和因子载荷阵的信息。
表3 因子载荷阵2.利用因子分析结果进行主成分分析 ⑴.表4是特征向量的信息表4 特征向量矩阵 z1 z2 z3 z4 z5 z6 x1 0.52 0.35 (0.31) (0.00) 0.08 0.70 x2 0.58 0.09 (0.19) 0.45 (0.37) (0.53) x3 0.17 0.67 0.26 (0.36) 0.41 (0.39) x4 0.43 (0.32) 0.32 (0.66) (0.41) 0.03 x5 0.41 (0.51) 0.25 0.21 0.68 (0.01) x6 (0.01) 0.23 0.79 0.43 (0.24) 0.28⑵.利用主成分得分进行综合评价时,从特征向量可以写出所有6个主成分的具体形式:Y1=0.52X1+0.68X2+0.17X3+0.43X4+0.41X5-0.01X6Y2=0.35X1+0.09X2+0.67X3-0.32X4-0.51X5+0.23X6 Y3=-0.31X1-0.19X2+0.26X3+0.32X4+0.25X5+0.79X6 Y4=0.00X1+0.45X2-0.36X3-0.66X4+0.21X5+0.43X6 Y5=0.08X1-0.37X2+0.41X3-0.41X4+0.68X5-0.24X6 Y6=0.70X1-0.53X2-0.39X3+0.03X4-0.01X5+0.28X6⑶.以特征根为权,对6个主成分进行加权综合,得出各地区的综合得分及排序,具体数据见表5.综合得分的计算公式是6161Y Y Y ii ∑∑+⋯+=λλλλ三、结果说明从表5可以看出,北京、天津。
主成分分析报告

主成分分析报告在当今的数据驱动的世界中,我们经常面临着处理大量复杂数据的挑战。
如何从这些海量的数据中提取有价值的信息,简化数据结构,发现潜在的模式和趋势,成为了数据分析领域的重要课题。
主成分分析(Principal Component Analysis,简称 PCA)作为一种强大的数据分析工具,为我们提供了一种有效的解决方案。
主成分分析是一种多元统计分析方法,其主要目的是通过对原始变量的线性组合,构建一组新的不相关的综合变量,即主成分。
这些主成分能够尽可能多地保留原始数据的信息,同时实现数据的降维。
让我们先来了解一下主成分分析的基本原理。
假设我们有一组观测数据,每个观测包含多个变量。
主成分分析的核心思想是找到一组新的坐标轴,使得数据在这些坐标轴上的投影具有最大的方差。
第一个主成分就是数据在方差最大方向上的投影,第二个主成分则是在与第一个主成分正交的方向上,具有次大方差的投影,以此类推。
为什么要进行主成分分析呢?首先,它能够帮助我们简化数据结构。
当我们面对众多相关的变量时,通过主成分分析可以将其归结为少数几个综合变量,从而减少数据的复杂性,便于后续的分析和处理。
其次,主成分分析可以去除数据中的噪声和冗余信息,突出数据的主要特征,有助于发现数据中的隐藏模式和关系。
此外,它还可以用于数据压缩和可视化,使得我们能够更直观地理解数据。
在实际应用中,主成分分析有着广泛的用途。
在图像处理领域,它可以用于图像压缩和特征提取,减少图像数据的存储空间,同时保留图像的主要特征。
在金融领域,主成分分析可以用于构建投资组合,通过对多个金融资产的分析,找出主要的影响因素,从而优化投资组合。
在生物学研究中,主成分分析可以用于分析基因表达数据,发现不同样本之间的差异和相似性。
接下来,我们来看看如何进行主成分分析。
首先,需要对原始数据进行标准化处理,以消除量纲的影响。
然后,计算数据的协方差矩阵或相关矩阵。
接着,通过求解特征值和特征向量,确定主成分的方向和权重。
基于主成分分析的我国城镇居民生活消费支出的研究剖析

基于主成分分析的我国城镇居民生活消费支出的研究陈忠磊,吴川东,杨礼锚,邓雍,黄廷朗(20122211012011,62,49,47,12)摘要:我国城镇居民的消费性支出在逐步提高的同时,不同地区之间的消费水平和支出结构仍存在较大差异。
全国各地的城镇居民生活消费的分布规律可以反映近年来在城镇化进行中各地居民的生活水平情况,通过选取相关的消费性支出指标,利用SPSS软件,对2012年我国31个省、市、自治区城镇居民家庭平均每人全年消费性支出的分布规律进行聚类分析和主成分分析,并进行了主成分得分综合排序,找出各地区城镇居民在消费性支出方面存在的差异,并提出相应缩小差异的建议。
关键词:消费性支出;聚类分析;主成分分析;综合评价近年来,随着我国经济的快速发展,城镇居民的收入不断增加,并且在国家连续出台住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下,我国各地区城镇居民的消费支出也强劲增长,消费结构发生了巨大的变化,结构不合理现象也得到了一定程度的调整。
但是,由于各地区的经济发展不平衡及原有经济基础的差异,人民收入水平不同,各地区城镇间的消费性支出结构仍存在着明显差别。
为了进一步改善消费结构,正确引导消费,缩小消费性支出的地区差异,提高我国城市居民的消费水平和生活质量,有必要考察我国各地区城镇居民的消费性支出结构之间的异同并进行考察及系统分析研究,以期发现特点和规律,从宏观上把握各地区城镇居民的消费现状和不同地区消费水平的差异,为提高我国各地区消费水平和谐增长提供决策依据。
因此客观、准确、有效地分析这些地区差异具有重要的理论和实践指导意义。
为了研究全国各地区城镇居民人均年消费性支出的差异性和相似性,本文选取了全国31个省市自治区的相关数据,基于聚类分析、主成分分析等多元统计分析方法,运用SPSS 软件进行研究。
1主成分分析模型主成分分析是将多指标化为少数几个综合指标的一种统计方法,是由Pearson提出,后来被Hotelling发展起来的。
多元统计分析案例实验-使用SAS软件对我国各地区城镇居民消费性支出的主成分分析和聚类分析

实验三我国各地区城镇居民消费性支出的主成分分析和聚类分析一、实验目的1.掌握如何使用SAS软件来进行主成分分析和聚类分析;2.看懂和理解SAS输出的结果,并学会以此来作出分析;3.掌握对实际数据如何来进行主成分分析;4.对同一组数据使用五种系统聚类方法及k均值法,学会对各种聚类效果的比较,获取重要经验;5.掌握使用主成分进行聚类二、实验内容数据集sasuser.examp633中含有1999年全国31个省、直辖市和自治区的城镇居民家庭平均每人全年消费性支出的八个主要变量数据。
对这些数据进行主成分分析,可将这31个地区的前两个主成分得分标示于平面坐标系内,对各地区作直观的比较分析。
对同样的数据使用五种系统聚类方法及k均值法聚类,并对聚类效果作比较。
最后,对主成分的图形聚类和正规聚类的效果进行比较。
实验1进行主成分分析,根据前两个主成分得分所作的散点图对31个地区进行比较分析。
实验2分别使用最长距离法、中间距离法、两种类平均法、离差平方和法和k均值法进行聚类分析,并比较其聚类效果。
实验3主成分聚类,并与上述正规的聚类方法进行比较三、实验要求1.用SAS软件的交互式数据分析菜单系统完成主成分分析;2.完成五种系统聚类方法及k均值法,比较其聚类效果;3.根据前两个主成分得分的散点图作直观的聚类,并与上述正规的聚类方法进行比较。
四、实验指导1.进行主成分分析在inshigt中打开数据集sasuser.examp633,见图1。
选菜单过程如下:在图1中选分析⇒多元(Y X)⇒在变量框中选x1,x2,x3,x4,x5,x6,x7,x8(见图2)⇒Y⇒选输出⇒选主分量分析,主分量选项(见图3)⇒在图4中作图中的选择(主成分个数缺省时为“自动”选项,此时只输出特征值大于1的主成分)⇒确定⇒确定⇒确定图1图2图3图4 得到如图5、图6所示的结果:图5图6 从图5可以看出,前两个和前三个主成分的累计贡献率分别达到80.6%和87.8%,第一主成分1ˆy 在所有变量(除在*2x 上的载荷稍偏小外)上都有近似相等的正载荷,反映了综合消费性支出的水平,因此第一主成分可称为综合消费性支出成分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《多元统计分析》课程设计报告学生:峰学号:090090鹤090 学院: 理学院班级: 数学0题目: 主成分分析法在我国居民生活质量状况综合评价中的应用指导教师:辰职称: 教授红讲师2012 年 12 月 7 日一、问题分析1.1 问题及背景人均GDP达到1000美元,标志着我国居民生活水平迈上了一个新台阶,我国经济步入了一个崭新的发展时期。
然而,我国地域辽阔,人口众多,地区间经济发展很不平衡,城乡差距明显,经济发展的非均衡性已经严重威胁到我国经济的持续、健康发展。
若不妥善处理,将会成为制约我国经济发展的瓶颈因素。
事实上,东、中、西部地区的经济发展差距已是众所周知,并引起中央政府和有关部门的广泛重视。
但在地区间经济发展差距的背后,东、中、西部地区居民的生活质量究竟存在着多大的差距却鲜为人知。
随着生产力水平的不断提高,我国居民生活水平不断提高,生活质量也在不断改善。
但是,受各地生产力发展水平不平衡的影响,我国各地居民的生活质量也表现为不平衡。
利用主成分分析法对我国31个省市、自治区居民的生活状况进行评价分析。
为全面分析各地居民生活状况,可选取如下指标体系进行反应:职工人均工资、人均居住面积、城市人均用水普及量、城市煤气普及量、人均拥有道路面积、人均绿地公共面积、批发零售贸易商品销售总额、旅游外汇收入。
对我国居民生活质量问题的研究不仅是社会经济发展的客观要求,也是我国全面建设小康社会的迫切需要城市居民生活质量的评价体系,是依据中国城市居民生活的特征,并参阅国外生活质量评价研究的大量成果后构建的,集中体现了研究者的专业知识和对生活质量评价体系的理论构思,具有主观色彩,因此,有必要对理论遴选的评价指标进行隶属度分析、相关分析和辨别力分析等实证筛选,以增强评价指标的科学性、合理性和可操作性。
1.2 数据图1数据来源:《中国统计年鉴2009》二、主成分分析方法基本原理2.1 主成分分析定义主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太 多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
2.2 主成分分析法方法简介主成分分析(Principal Component Analysis ,PCA ), 将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。
又称主分量分析。
在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。
主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。
信息的大小通常用离差平方和或方差来衡量。
主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。
在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。
依次类推,I 个变量就有I 个主成分。
主成分分析是设法将原来众多具有一定相关性(比如P 个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。
主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关.通常数学上的处理就是将原来P 个指标作线性组合,作为新的综合指标。
最经典的做法就是用1F (选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(1F )越大,表示1F 包含的信息越多。
因此在所有的线性组合中选取的F1应该是方差最大的,故称1F 为第一主成分。
如果第一主成分不足以代表原来P 个指标的信息,再考虑选取2F 即选第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0)F ,F (21=Cov ,则称2F 为第二主成分,依此类推可以构造出第三、第四,……,第P 个主成分。
p pi 22i 11i X a X a X a Fp +⋅⋅⋅⋅⋅⋅++=其中m),1,(i a , ,a ,a pi 2i 1i ⋅⋅⋅⋅=⋅⋅⋅⋅⋅为X 的协方差阵Σ的特征值所对应的特征向量,P 21X , ,X ,X ⋅⋅⋅⋅⋅是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响。
值和单位特征向量,0p 21≥≥⋅⋅⋅≥≥λλλ。
进行主成分分析主要步骤如下: 1. 指标数据标准化; 2. 指标之间的相关性判定; 3. 确定主成分个数m ; 4. 主成分i F 表达式; 5. 主成分i F 命名;其中Li 为p 维正交化向量,i Z 之间互不相关且按照方差由大到小排列,则称i Z 为X 的第I 个主成分。
设X 的协方差矩阵为Σ,则Σ必为半正定对称矩阵,求特征值i λ(按从大到小排序)及其特征向量,可以证明,i λ所对应的正交化特征向量,即为第I 个主成分i Z 所对应的系数向量i L ,而i Z 的方差贡献率定义为∑j i /λλ,通常要求提取的主成分的数量k 满足85.0/k>∑∑jλλ。
2.3主成分分析主要目的主成分分析主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。
通常是选出比原始变量个数少,能解释大部分资料中的变异的几个新变量,即所谓主成分,并用以解释资料的综合性指标。
由此可见,主成分分析实际上是一种降维方法。
三、问题求解第一步:录入数据,有以下变量:职工人均工资,人均居住面积,城市人口用水普及量,城市煤气普及量,人均拥有道路面积,人均绿地公共面积,批发零售贸易商品销售总额,旅游外汇收入,见图2图2第二步:选择功能模块图3第三步:将变量添加到Varicrible图4 第四步:输入信息图5图6图7图8 第五步:单击“OK”按钮,完成运算。
图9四、结果分析分析:第一列是列出八个原始变量,第二列是根据主成分分析初始解计算出变量共同度,第三列是是根据主成分分析最终解计算出变量共同度,这时由于因子变量个数少于原始变量个数,因此每个变量的共同度必然小于1。
例如,第一行中0.730表示m个因子变量共同解释掉原始变量“人均工资”方差72.2%。
分析:上表为SAS输出结果,从上表可以看出特征值和和贡献率。
从上表可以看出公共因子对原变量总体的描述情况。
可以看出前2个公共因子的的贡献率达到73.019%,所以提取2个公共因子就可以反映原变量的大部分信息。
分析:上图为公共因子碎石图,它的横坐标为公共因子数,纵坐标为公共因子的特征值。
可以看出前2个公共因子的特征值变化非常明显,到2个以后趋于平稳。
所以得出提取2个公共因子可以对原变量的信息描述有显著作用。
这与Communalities的结论也相符合。
Component Score CoefficientMatrixComponent1 2人均工资.216 -.272居住面积.200 -.人均用水.173 .134煤气普及.187 .170人均道路-.068 .460人均绿地.018 .426商品总额.249 -.064旅游外汇.213 -.040分析:该表格是因子得分矩阵,这是根据回归年算法计算出来的因子得分函数的系数,根据这个表格可得下面的因子得分函数8765432110.213x 0.249x 0.018x 0.068x -0.187x 0.173x 0.200x 0.216x F ++++++= 8765432120.040x -0.064x -0.426x 0.460x 0.170x 0.134x 0.010x --0.272x F ++++= SAS 将根据2个因子得分函数自动计算样本的2个因子得分,并且2个因子作为新变量,保存到SAS 窗口中。
第一主成分在人均拥有道路面积的系数上为负,其他为正,而且职工人居工资、人均居住面积、批发零售贸易商品销售总额、旅游外汇收入的系数绝对值比较大,说明第一主成分代表了我国居民生活质量状况针对职工人居工资、人均居住面积、批发零售贸易商品销售总额、旅游外汇收入和其他居民生活质量状况的反应指标之间的差异。
第二主成分在职工人均工资、人均居住面积、批发零售贸易商品销售总额、旅游外汇收入的系数上为负,其他为正,而且人均拥有道路面积和人居绿地公共面积的系数的绝对值比较大,说明第二主成分代表了我国居民生活质量状况针对人均公共设施需求(人均拥有道路面积和人居绿地公共面积)和其他居民生活质量状况的反应指标之间的差异。
五、总结第一主成得分较高的有北京、天津、上海、、、,这几个省份都是经济比较发达的地区,第一主成分代表的意义为我国居民生活质量状况针对职工人居工资、人均居住面积、批发零售贸易商品销售总额、旅游外汇收入和其他居民生活质量状况的反应指标之间的差异。
第二主成得分较高的有、、等地,由于第二主成分代表的意义为我国居民生活质量状况针对人均消费品普及量及人均公共设施需求,由此可见这几个地区非常注重人均公共设施需求及人均消费品普及量这些方面。
六、课程设计心得体会通过此次课程设计,使我更加扎实的掌握了有关主成分分析法在我国居民生活质量状况综合评价中的应用方面的知识,在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。
实践出真知,通过亲自动手制作,使我们掌握的知识不再是纸上谈兵。
过而能改,善莫大焉。
在课程设计过程中,我们不断发现错误,不断改正,不断领悟,不断获龋最终的检测调试环节,本身就是在践行“过而能改,善莫大焉”的知行观。
这次课程设计终于顺利完成了,在设计中遇到了很多问题,最后在老师的指导下,终于游逆而解。
在今后社会的发展和学习实践过程中,一定要不懈努力,不能遇到问题就想到要退缩,一定要不厌其烦的发现问题所在,然后一一进行解决,只有这样,才能成功的做成想做的事,才能在今后的道路上劈荆斩棘,而不是知难而退,那样永远不可能收获成功,收获喜悦,也永远不可能得到社会及他人对你的认可!参考文献[1] 高惠璇.应用多元统计分析.北京:北京大学,2005[2] 高惠璇.实用统计方法与SAS系统.北京:北京大学,2001[3] 汪远征,徐雅静.SAS 软件与系统应用.北京:机械工业.2001[4] 梅长林.数据分析方法.北京:高等教育,2006. .. .. .源程序data CH12/princomp.sas ;input group RJGZ JZMJ RJYS MQPJ RJDL RJLD SPZE LYWH;card;56328 38.7 100 100 6.21 8.56 25832.4 445941748 28.31 100 100 14.39 8.92 9900.4 100124756 30.71 99.97 97.11 14.49 9.49 3976.5 27426114 21.47 82.03 74.25 12. 76 11.1 2127.9 57727729 26.39 96.89 92.38 9.95 9.37 8927.80 152623486 21.94 88.63 84.82 10.39 9.20 3040.4 21123046 21.72 84.24 79.45 9.28 9.46 2276.4 87056565 62.3 100 100 4.63 7.82 29712.5 497231667 44.05 99.88 98.23 20.28 13.11 20543.2 388034146 60.48 99.7 97.72 15.2 9.6 18270 302426363 29.88 95.11 87.6 14.15 9.29 3755.4 45425702 46.13 97.47 97.23 112.05 10.42 5743.4 239421000 37.56 96.49 90.18 11.06 10.6 1340.3 25226404 32.98 99.39 98.5 19.6 14.2 11775.8 139124816 31.69 85.56 66.91 9.90 8.2 4483.3 37422739 39.04 97.88 90.9 13.03 9.4 6183.6 44324870 40.72 94.57 84.26 12.01 7.96 2638.3 61733110 27.89 93.97 93.94 11.65 11.46 22348.8 917525660 31.75 92.87 84.04 11.83 8.61 1998.6 60221864 22.84 83.87 72.81 12.05 9.0 734.6 31426985 35.03 93.20 90.87 9.49 9.62 2891.2 45025038 34.94 88.09 81.09 10.78 8.74 4105.7 15424602 25.27 88.69 67.82 6.22 6.16 1076.5 11724030 27.44 95.22 76.1 12.09 7.62 3075.8 100847280 23.97 86.59 74.80 143.46 5.64 64.10 3125942 29.00 96.65 89.55 12.67 8.71 2487.4 66024017 19.87 87.85 65.32 10.37 7.87 1526 1630983 19.78 100 94.78 11.16 8.53 286.90 1030719 23.06 87.25 75.68 17.82 11 489.3 324687 22.78 92.82 88.61 12.47 7.912 863.3 136run;/程序文件:CH12/princomp.sas */proc princomp data=mylib.ch12_income out=income_out; /*把原始数据和主成分得分放入数据集var RJGZ JZMJ RJYS MQPJ RJDL RJLD SPZE LYWH;run;。