离散数学形成性考核作业7答案

合集下载

最新离散数学形成性考核作业7答案资料知识点复习考点归纳总结(数理逻辑部分)

最新离散数学形成性考核作业7答案资料知识点复习考点归纳总结(数理逻辑部分)

三一文库()*电大考试*电大离散数学数理逻辑部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。

本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。

要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月19日前完成并上交任课教师(不收电子稿)。

并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。

一、填空题1.命题公式()→∨的真值是 1 .P Q P2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为P∨Q→R.3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是(P∧Q∧┐R)∨(P∧Q∧R).4.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”可符号化为∃x ( P ( x) ∧Q ( x)).5.设个体域D={a, b},那么谓词公式)xA∀∨∃消去量词后的等值式为(A(a)∨A(b))xyB()(y∨(B(a) ∧B(b)).6.设个体域D={1, 2, 3},A(x)为“x大于3”,则谓词公式(∃x)A(x) 的真值为0 .7.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为y .8.谓词命题公式(∀x)(P(x) →Q(x) ∨R(x,y))中的约束变元为x .三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.解:设P:今天是天晴则该语句符号化为P2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.设P:小王去旅游,Q:小李也去旅游则该语句符号化为P∧Q3.请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式.解:设P:明天天下雪Q:我就去滑雪则该语句符号化为P→Q4.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.解:设P:他去旅游Q:他有时间则该语句符号化为P→Q5.请将语句“有人不去工作”翻译成谓词公式.解:设P(x):x是人Q(x):x不去工作则谓词公式为(∃x)(P(x)∧Q(x))6.请将语句“所有人都努力工作.”翻译成谓词公式.解:设P(x):x是人Q(x):x努力工作则谓词公式为(∀x)(P(x)→Q(x))四、判断说明题(判断下列各题,并说明理由.)1.命题公式⌝P∧P的真值是1.不正确,┐P∧P的真值是0,它是一个永假式,命题公式中的否定律就是┐P∧P=F2.命题公式⌝P∧(P→⌝Q)∨P为永真式.正确可以化简┐P∧(P→┐Q)∨P=┐P∧(┐P∨┐Q)∨P=┐P∨P=1,所以它是永真式当然方法二是用真值表3.谓词公式))xP∀xyG→∀是永真式.y∃→x,)(xP((x)(正确∀x P(x)→(∃y G(x,y)→∀xP(x))=∀x P(x)→(┐∃y G(x,y)∨∀xP(x))=∀x P(x)→(∀y(┐G(x,y))∨∀xP(x))=┐∀x P(x)∨(∀y(┐G(x,y))∨∀xP(x))=┐∀x P(x)∨∀y(┐G(x,y))∨∀xP(x)=┐∀x P(x) ∨∀xP(x)∨∀y(┐G(x,y))=1∨∀y(┐G(x,y))=1所以该式是永真式4.下面的推理是否正确,请给予说明.(1) (∀x)A(x)→ B(x) 前提引入。

最新离散数学作业7答案

最新离散数学作业7答案

离散数学数理逻辑部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。

本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。

要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。

并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。

一、填空题1.命题公式()→∨的真值是1或T .P Q P2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→R .3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是(P∧Q∧R)∨(P∧Q∧⌝R).4.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”可符号化为∃x(P(x) ∧Q(x)) .5.设个体域D={a, b},那么谓词公式)∨∃消去量词后的等值式为xA∀yB()(yx(A(a)∨A(b))∨((B(a)∧B(b)) .6.设个体域D={1, 2, 3},A(x)为“x大于3”,则谓词公式(∃x)A(x) 的真值为0(F) .7.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为y .8.谓词命题公式(∀x)(P(x) →Q(x) ∨R(x,y))中的约束变元为x .三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.设P:今天是晴天。

则P2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.设P:小王去旅游。

Q:小李去旅游。

则P∧Q3.请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式.设P:明天下雪。

离散数学形成性考核作业7答案

离散数学形成性考核作业7答案

一、填空题1.命题公式()→∨的真值是 1 .P Q P2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q )→R .3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是(P∧Q∧R)∨(P∧Q∧┐R) .4.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”可符号化为xPQx∧∃.(x())()5.设个体域D={a, b},那么谓词公式)x∨∃消去量词后的等值式为xA∀yB)((ybBaAB∨.∨A∧a)(b())(())(6.设个体域D={1, 2, 3},A(x)为“x大于3”,则谓词公式(∃x)A(x) 的真值为0 .7.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为y .8.谓词命题公式(∀x)(P(x) →Q(x) ∨R(x,y))中的约束变元为x .三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.解:设P:今天是晴天,命题“今天是晴天”翻译成命题公式为P。

2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.解:设P:小王去旅游,Q:小李去旅游.命题“小王去旅游,小李也去旅游”翻译成命题公式为P∧Q。

3.请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式.解:设P:明天天下雪,Q:我就去滑雪.命题“如果明天天下雪,我就去滑雪”翻译成命题公式为P→Q。

4.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.解:设P :他去旅游,Q :他有时间.命题“他去旅游,仅当他有时间”翻译成命题公式为P →Q 。

5.请将语句 “有人不去工作”翻译成谓词公式.解:设P(x):x 是人,Q(x):x 去工作.命题“有人不去工作”翻译成谓词公式为))()((x Q x P x ⌝∧∃。

6.请将语句“所有人都努力工作.”翻译成谓词公式.解:设P(x):x 是人,Q(x):x 努力工作.命题“所有人都努力工作.”翻译成谓词公式为))()((x Q x P x →∀四、判断说明题(判断下列各题,并说明理由.)1.命题公式⌝P ∧P 的真值是1.答:不正确。

离散数学-第七章习题答案

离散数学-第七章习题答案

第7章习题答案1.f(x)=2|x|+1是从整数集合到正整数集合的函数,它的值域是什么?解:它的值域是正奇数集合。

2.试问下列关系中哪个能构成函数?(1){〈x,y〉|x,y∈N,x+y<10}(2){〈x,y〉|x,y∈R,y=x2}(3){〈x,y〉|x,y∈R,y2=x}解;(1)、(3)不满足函数的定义,只有(2)是函数。

3.下列集合能够定义函数吗?如果能,求出它们的定义域和值域。

(1){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈3,〈1,4〉〉,〈4,〈1,4〉〉}(2){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈3,〈3,2〉〉}(3){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈1,〈2,4〉〉}(4){〈1,〈2,3〉〉,〈2,〈2,3〉〉,〈3,〈2,3〉〉}解:(1)、(2)、(4)定义的是函数。

(1)的定义域是{1,2,3,4},值域是{〈2,3〉,〈3,4〉,〈1,4〉}(2)的定义域是{1,2,3},值域是{〈2,3〉,〈3,4〉,〈3,2〉}(4)的定义域是{1,2,3},值域是{〈2,3〉}4.设f,g都是函数,并且有f⊆g和dom(g)=dom(f),证明f=g证明:假设f≠g,因为f⊆g和dom(g)=dom(f),则存在x1∈dom(g)和dom(f),使得〈x1,y1〉∈g但〈x1,y1〉∉f,因为f是函数,在定义域上处处有定义,所以必存在y2,使得〈x1,y2〉∈f,由f⊆g得〈x1,y2〉∈g,这与g是函数满足单值性矛盾。

故假设错误,必有f=g。

6.设X={0,1,2},求出X X中的如下函数(1) f2(x)=f(x)(2) f2(x)=x(3) f3(x)=x解:(1)有10个函数,分别是:f1(x)={〈0,0〉,〈1,0〉,〈2,0〉}f2(x)={〈0,1〉,〈1,1〉,〈2,1〉}f3(x)={〈0,2〉,〈1,2〉,〈2,2〉}f4(x)={〈0,1〉,〈1,1〉,〈2,2〉}f5(x)={〈0,2〉,〈1,1〉,〈2,2〉}f6(x)={〈0,0〉,〈1,0〉,〈2,2〉}f7(x)={〈0,0〉,〈1,2〉,〈2,2〉}f8(x)={〈0,0〉,〈1,1〉,〈2,0〉}f9(x)={〈0,0〉,〈1,1〉,〈2,1〉}f10(x)={〈0,0〉,〈1,1〉,〈2,2〉}(2)有4个函数,分别是:f1(x)={〈0,0〉,〈1,1〉,〈2,2〉}f2(x)={〈0,0〉,〈1,2〉,〈2,1〉}f3(x)={〈0,2〉,〈1,1〉,〈2,0〉}f4(x)={〈0,1〉,〈1,0〉,〈2,2〉}(3)有3个函数,分别是:f 1(x )={〈0,0〉,〈1,1〉,〈2,2〉}f 2(x )={〈0,1〉,〈1,2〉,〈2,0〉}f 3(x )={〈0,2〉,〈1,0〉,〈2,1〉}8.设f,g,h 是N → N 的函数, 其中N 是自然数集合,f(n)=n +1, g(n)=2n,⎩⎨⎧=是奇数若是偶数若n n n h 10)(试确定:f f ,f g ,g h ,h g 及(f g) h 。

国家开放大学电大本科《离散数学》网络课形考网考作业及答案

国家开放大学电大本科《离散数学》网络课形考网考作业及答案

国家开放大学电大本科《离散数学》网络课形考网考作业及答案国家开放大学电大本科《离散数学》网络课形考网考作业及答案100%通过考试说明:2022年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

课程总成绩=形成性考核×30%+终结性考试×70%形考任务1单项选择题题目1若集合A={a,{a},{1,2}},则下列表述正确的是().选择一项:题目2若集合A={2,a,{a},4},则下列表述正确的是().选择一项:题目3设集合A={1,2,3,4}上的二元关系R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>},则S是R的()闭包.选择一项:A.传递B.对称C.自反和传递D.自反题目4设集合A={1,2,3},B={3,4,5},C={5,6,7},则A∪B–C=().选择一项:A.{1,2,3,5}B.{4,5,6,7}C.{2,3,4,5}D.{1,2,3,4}题目5如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A.1B.3C.2D.0题目6集合A={1,2,3,4}上的关系R={<x,y>|x=y且x,y∈A},则R的性质为().选择一项:A.不是对称的B.反自反C.不是自反的D.传递的题目7若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是().选择一项:题目8设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:A.3B.2C.8D.6题目9设A={1,2,3,4,5,6,7,8},R是A上的整除关系,B={2,4,6},则集合B的最大元、最小元、上界、下界依次为().选择一项:A.6、2、6、2B.无、2、无、2C.8、1、6、1D.8、2、8、2题目10设集合A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>},g={<1,3>,<2,2>,<3,2>},h={<1,3>,<2,1>,<3,1>},则h=().选择一项:A.f◦fB.g◦fC.g◦gD.f◦g判断题题目11设A={1,2}上的二元关系为R={<x,y>|xA,yA,x+y=10},则R的自反闭包为{<1,1>,<2,2>}.()选择一项:对错题目12空集的幂集是空集.()选择一项:对错题目13设A={a,b},B={1,2},C={a,b},从A到B的函数f={<a,1>,<b,2>},从B到C的函数g={<1,b>,<2,a>},则g°f={<1,2>,<2,1>}.()选择一项:对错题目14设集合A={1,2,3,4},B={2,4,6,8},下列关系f={<1,8>,<2,6>,<3,4>,<4,2,>}可以构成函数f:.()选择一项:对错题目15设集合A={1,2,3},B={2,3,4},C={3,4,5},则A∩(C-B)={1,2,3,5}.()选择一项:对错题目16如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对错题目17设集合A={a,b,c,d},A上的二元关系R={<a,b>,<b,a>,<b,c>,<c,d>},则R具有反自反性质.()选择一项:对错题目18设集合A={1,2,3},B={1,2},则P(A)-P(B)={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对错题目19若集合A={1,2,3}上的二元关系R={<1,1>,<1,2>,<3,3>},则R是对称的关系.()选择一项:对错题目20设集合A={1,2,3,4},B={6,8,12},A到B的二元关系R=那么R-1={<6,3>,<8,4>}.()选择一项:对错形考任务2单项选择题题目1无向完全图K4是().选择一项:A.树B.欧拉图C.汉密尔顿图D.非平面图题目2已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为().选择一项:A.4B.8C.3D.5题目3设无向图G的邻接矩阵为则G的边数为().选择一项:A.7B.14C.6D.1题目4如图一所示,以下说法正确的是().选择一项:A.{(a,e),(b,c)}是边割集B.{(a,e)}是边割集C.{(d,e)}是边割集D.{(a,e)}是割边题目5以下结论正确的是().选择一项:A.有n个结点n-1条边的无向图都是树B.无向完全图都是平面图C.树的每条边都是割边D.无向完全图都是欧拉图题目6若G是一个欧拉图,则G一定是().选择一项:A.汉密尔顿图B.连通图C.平面图D.对偶图题目7设图G=<V,E>,v∈V,则下列结论成立的是().选择一项:题目8图G如图三所示,以下说法正确的是().选择一项:A.{b,d}是点割集B.{c}是点割集C.{b,c}是点割集D.a是割点题目9设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是().选择一项:A.(a)是强连通的B.(d)是强连通的C.(c)是强连通的D.(b)是强连通的题目10设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是().选择一项:A.(b)只是弱连通的B.(c)只是弱连通的C.(a)只是弱连通的D.(d)只是弱连通的判断题题目11设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.()选择一项:对错题目12汉密尔顿图一定是欧拉图.()选择一项:对错题目13设连通平面图G的结点数为5,边数为6,则面数为4.()选择一项:对错题目14设G是一个有7个结点16条边的连通图,则G为平面图.()选择一项:对错题目15如图八所示的图G存在一条欧拉回路.()选择一项:对错题目16设图G如图七所示,则图G的点割集是{f}.()选择一项:对错题目17设G是一个图,结点集合为V,边集合为E,则()选择一项:对错题目18设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.()选择一项:对错题目19如图九所示的图G不是欧拉图而是汉密尔顿图.()选择一项:对错题目20若图G=<V,E>,其中V={a,b,c,d},E={(a,b),(a,d),(b,c),(b,d)},则该图中的割边为(b,c).()选择一项:对错形考任务3单项选择题题目1命题公式的主合取范式是().选择一项:题目2设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为().选择一项:题目3命题公式的主析取范式是().选择一项:题目4下列公式成立的为().选择一项:题目5设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6前提条件的有效结论是().选择一项:A.QB.┐QC.PD.┐P题目7命题公式(P∨Q)→R的析取范式是().选择一项:A.(P∨Q)∨RB.┐(P∨Q)∨RC.(P∧Q)∨RD.(┐P∧┐Q)∨R题目8下列等价公式成立的为().选择一项:题目9下列等价公式成立的为().选择一项:题目10下列公式中()为永真式.选择一项:A.┐A∧┐B↔┐(A∧B)B.┐A∧┐B↔A∨BC.┐A∧┐B↔┐(A∨B)D.┐A∧┐B↔┐A∨┐B判断题题目11设个体域D={1,2,3},A(x)为“x小于3”,则谓词公式(∃x)A(x)的真值为T.()选择一项:对错题目12设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.()选择一项:对错题目13下面的推理是否正确.()(1)(∀x)A(x)→B(x)前提引入(2)A(y)→B(y)US(1)选择一项:对错题目14含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).()选择一项:对错题目15命题公式P→(Q∨P)的真值是T.()选择一项:对错题目16命题公式┐P∧P的真值是T.()选择一项:对错题目17谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.()选择一项:对错题目18命题公式┐(P→Q)的主析取范式是P∨┐Q.()选择一项:对错题目19设个体域D={a,b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).()选择一项:对错题目20设个体域D={a,b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).()选择一项:对错形考任务4要求:学生提交作业有以下三种方式可供选择:1.可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2.在线提交word文档.3.自备答题纸张,将答题过程手工书写,并拍照上传形考任务5网上学习行为(学生无需提交作业,占形考总分的10%)。

离散数学形考任务1-7答案

离散数学形考任务1-7答案

离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。

散数学形成性考核作业参考答案

散数学形成性考核作业参考答案

离散数学形成性考核作业(一)参考答案第1章 集合及其运算1.用列举法表示“大于2而小于等于9的整数”集合.{3,4,5,6,7,8,9}。

2.用描述法表示“小于5的非负整数集合”集合.{x ∣x ∈Z ∧0≤x ≤5}。

3.写出集合B ={1, {2, 3 }}的全部子集.{},{1},{{2, 3 }},{1, {2, 3 }}。

4.求集合A ={∅∅,{}}的幂集.Φ,{Φ},{{Φ}},{Φ,{Φ}}。

5.设集合A ={{a }, a },命题:{a }⊆P (A )是否正确,说明理由.错误。

P(A)中无元素a 。

6.设A B C ==={,,},{,,},{,,},123135246求(1)A B ⋂ (2)A B C ⋃⋃(3)C -A (4)A B ⊕(1){3};(2){1,2,3,4,5,6};(3){4,6};(4){2,5}。

7.化简集合表示式:((A ⋃B )⋂B ) -A ⋃B .((A ∪B )∩ B) - A ∪B =( B -A )∪B = (B ∩~A )∪B = B 。

8.设A , B , C 是三个任意集合,试证:A - (B ⋃C ) = (A -B ) -C .A -(B ∪C) = A ∩~(B ∪C) = A ∩~B ∩~C = (A - B)–C 。

9.填写集合{4,9 }⊂{9,10,4}之间的关系.10.设集合A = {2, a , {3}, 4},那么下列命题中错误的是( A ).A .{a }∈AB .{ a , 4, {3}}⊆AC .{a }⊆AD .∅⊆A11.设B = { {a }, 3, 4, 2},那么下列命题中错误的是( B ).A .{a }∈B B .{2, {a }, 3, 4}⊆BC .{a }⊆BD .{∅}⊆B第2章 关系与函数1.设集合A = {a , b },B = {1, 2, 3},C = {3, 4},求 A ⨯(B ⋂C ),(A ⨯B )⋂(A ⨯C ) ,并验证A ⨯(B ⋂C ) = (A ⨯B )⋂(A ⨯C ).A ×(B ∩C ) = {a,b}×{3} = {<a,3>,<b,3>};(A ×B )∩(A ×C )= {<a,1>,<a,2>,<a,3>,<b,1>,<b,2>,<b,3>}∩{<a,3>,<a,4>,<b,3><b,4>}={<a,3>,<b,3>}验证了A ×(B ∩C ) =(A ×B )∩(A ×C )。

离散数学作业7答案

离散数学作业7答案

离散数学数理逻辑部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。

本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。

要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。

并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。

一、填空题1.命题公式()→∨的真值是1或T .P Q P2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→R .3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是(P∧Q∧R)∨(P∧Q∧⌝R).4.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”可符号化为∃x(P(x) ∧Q(x)) .5.设个体域D={a, b},那么谓词公式)xA∀∃消去量词后的等值式为∨x(yB)(y(A(a)∨A(b))∨((B(a)∧B(b)) .6.设个体域D={1, 2, 3},A(x)为“x大于3”,则谓词公式(∃x)A(x) 的真值为0(F) .7.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为y .8.谓词命题公式(∀x)(P(x) →Q(x) ∨R(x,y))中的约束变元为x .三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.设P:今天是晴天。

则P2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.设P:小王去旅游。

Q:小李去旅游。

则P∧Q3.请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式.设P:明天下雪。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题
1.命题公式()
→∨的真值是 1 .
P Q P
2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q )→R .3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是
(P∧Q∧R)∨(P∧Q∧┐R) .
4.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”可符号化为x
P
Q
x∧
∃.
(x
(
))
(
)
5.设个体域D={a, b},那么谓词公式)
x

∃消去量词后的等值式为
xA∀
yB
)
(
(y
b
B
a
A
B
∨.

A∧
a
)
(b
(
))
(
(
)
)
(
6.设个体域D={1, 2, 3},A(x)为“x大于3”,则谓词公式(∃x)A(x) 的真值为0 .
7.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为y .8.谓词命题公式(∀x)(P(x) →Q(x) ∨R(x,y))中的约束变元为x .
三、公式翻译题
1.请将语句“今天是天晴”翻译成命题公式.
解:设P:今天是晴天,
命题“今天是晴天”翻译成命题公式为P。

2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.
解:设P:小王去旅游,Q:小李去旅游.
命题“小王去旅游,小李也去旅游”翻译成命题公式为P∧Q。

3.请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式.
解:设P:明天天下雪,Q:我就去滑雪.
命题“如果明天天下雪,我就去滑雪”翻译成命题公式为P→Q。

4.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.
解:设P :他去旅游,Q :他有时间.
命题“他去旅游,仅当他有时间”翻译成命题公式为P →Q 。

5.请将语句 “有人不去工作”翻译成谓词公式.
解:设P(x):x 是人,Q(x):x 去工作.
命题“有人不去工作”翻译成谓词公式为))()((x Q x P x ⌝∧∃。

6.请将语句“所有人都努力工作.”翻译成谓词公式.
解:设P(x):x 是人,Q(x):x 努力工作.
命题“所有人都努力工作.”翻译成谓词公式为))()((x Q x P x →∀
四、判断说明题(判断下列各题,并说明理由.)
1.命题公式⌝P ∧P 的真值是1.
答:不正确。

因为当P 是真命题时,┐P 是假命题,当P 是假命题时,┐P 是真命题,所以┐P ∧P 是假命题,真值是0。

2.命题公式⌝P ∧(P →⌝Q )∨P 为永真式.
答:正确。

因为┐P ∧(P →┐Q )P Q P P ⌝⇔⌝∨⌝∧⌝⇔)(,┐P ∨P 1⇔,所以命题公式是永真式。

3.谓词公式))(),(()(x xP y x yG x xP ∀→∃→∀是永真式.
答:正确。

因为))(),(()(x xP y x yG x xP ∀→∃→∀))(),(()(x xP y x yG x xP ∀∨⌝∃→∀⇔
)(),()())(),(()(x xP y x yG x xP x xP y x yG x xP ∀∨⌝∃∨⌝∀⇔∀∨⌝∃∨⌝∀⇔ 1),(1),())()((⇔⌝∃∨⇔⌝∃∨∀∨⌝∀⇔y x yG y x yG x xP x xP 。

所以命题公式是永真式。

4.下面的推理是否正确,请给予说明.
(1) (∀x )A (x )→ B (x ) 前提引入
(2) A (y ) →B (y ) US (1)
答:不正确。

因为x ∀的辖域是)(x A ,不包含)(x B ,所以根据全称量词消去规则,只能得到)()(x B y A ∧,而不能得到)()(y B y A ∧。

四.计算题
1. 求P →Q ∨R 的析取范式,合取范式、主析取范式,主合取范式.
解:4M R Q P R Q P ⇔∨∨⌝⇔∨→
所以P →Q ∨R 的析取范式为R Q P ∨∨⌝,
合取范式为)(R Q P ∨∨⌝,
主合取范式为)(R Q P ∨∨⌝,即4M 。

则主析取范式为7653210m m m m m m m ∨∨∨∨∨∨,
2.求命题公式(P ∨Q )→(R ∨Q ) 的主析取范式、主合取范式.
解:)()()()()()(Q R Q P Q R Q P Q R Q P ∨∨⌝∧⌝⇔∨∨∨⌝⇔∨→∨
1)()1()()()(∧∨∨⌝⇔∨∧∨∨⌝⇔∨∨⌝∧∨∨⌝⇔R Q P R Q R P Q R Q Q R P 4M R Q P ⇔∨∨⌝⇔
所以(P ∨Q )→(R ∨Q )的主合取范式为)(R Q P ∨∨⌝,即4M 。

则主析取范式为7653210m m m m m m m ∨∨∨∨∨∨,
3.设谓词公式()((,)()(,,))()(,)x P x y z Q y x z y R y z ∃→∀∧∀.
(1)试写出量词的辖域;
(2)指出该公式的自由变元和约束变元.
解:(1)量词)(x ∃的辖域为),,()(),(z x y Q z y x P ∀→,量词)(z ∀的辖域为),,(z x y Q ,量词)(y ∀的辖域为),(z y R ;
(2)该公式的自由变元为z y ,,y 自由出现2次,z 自由出现1次,约束变元为z y x ,,,x 约束出现2次,z y ,各约束出现1次。

4.设个体域为D ={a 1, a 2},求谓词公式∀y ∃xP (x ,y )消去量词后的等值式;
解:谓词公式∀y ∃xP(x,y)消去量词后的等值式为:⇒∃∧∃),(),(21a x xP a x xP )),(),(()),(),((22211211a a P a a P a a P a a P ∨∧∨
五、证明题
1.试证明 (P →(Q ∨⌝R ))∧⌝P ∧Q 与⌝ (P ∨⌝Q )等价.
证明:Q P R Q P Q P R Q P ∧⌝∧⌝∨∨⌝⇔∧⌝∧⌝∨→))(())((
)()))(((Q P Q P Q P R Q P ⌝∨⌝⇔∧⌝⇔∧⌝∧⌝∨∨⌝⇔ 所以,(P →(Q ∨⌝R ))∧⌝P ∧Q 与⌝ (P ∨⌝Q )等价
2.试证明(∃x )(P (x ) ∧R (x ))⇒(∃x )P (x ) ∧ (∃x )R (x ).
证明:(1) (∃x )(P (x ) ∧R (x )) P
(2) P (c) ∧R (c) ES(1)
(3) P(c) T (2) E
(4) R(c) T (2) E
(5) (∃x )P (x ) EG(3)
(6) (∃x ) R (x ) EG(4)
(7) (∃x )P (x ) ∧(∃x )R (x ) T (5) (6) E。

相关文档
最新文档