离散数学作业答案

合集下载

《离散数学》作业参考答案

《离散数学》作业参考答案
Q→(P R) (P Q R) (P Q R) (P Q R) (P Q R) ( P Q R) ( P Q R) ( P Q R)(主析取范式)
7 (P→Q) (P→R) ( P Q) ( P R) (合取范式) ( P Q (R R) ( P ( Q Q) R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R)(主合取范式)
(P ( Q Q)) (( P P) Q) (P Q) (P Q) ( P Q) (P Q) (P Q) (P Q) ( P Q)(主析取范式) 2.Q→( P R) Q P R(主合取范式) (Q→( P R)) ( P Q R) ( P Q R) ( P Q R) ( P Q R) (P Q R)
E
(6)
(8)
E
前提
(9) E E
(7),(8)
8 、A→(C B),B→ A,D→ C A→ D.
证明:
(1) A
附加前提
(2) A→(C B) 前提
(3) C B
(1),(2)
(4) B→ A
前提
(5) B
(1),(4)
(6) C
(3),(5)
(7) D→ C
前提
(8) D
( P (Q Q)) (( P P) Q) ( P Q) ( P Q) ( P Q) (P Q) ( P Q) ( P Q) (P Q)(主析取范式) 4. (P→Q) (R P) ( P Q) (R P) (P Q) (R P)(析取范式) (P Q (R R)) (P ( Q Q) R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R)(主析取范式) ( (P→Q) (R P)) (P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R)

离散数学大作业答案

离散数学大作业答案

一、简要回答下列问题:(每小题3分,共30分)1.请给出集合的结合率。

答:结合律(AUB)UC=AU(BUC)x∈(AUB)UC,即 x∈AUB 或 x∈C即 x∈A 或 x∈B 或 x∈C 即 x∈A 或 x∈B∪C即 x∈AU(BUC)说明 (AUB)UC包含于AU(BUC)同理可证AU(BUC)包含于(AUB)UC所以(AUB)UC=AU(BUC)2.请给出一个集合A,并给出A上既不具有自反性,又不具有反自反性的关系。

3.设A={1,2},问A上共有多少个不同的对称关系?答:不同的对称关系有:8种R = ΦR = {<1,1>}R = {<2,2>}R = {<1,1>,<2,2>}R = {<1,2>,<2,1>}R = {<1,1>,<1,2>,<2,1>}R = {<1,2>,<2,1>,<2,2>}R = {<1,1>,<1,2>,<2,1>,<2,2>}4.设A={1,2,3,4,5,6},R是A上的整除关系,M={2,3},求M的上界,下界。

5.关于P,Q,R请给出使极小项m0,m4为真的解释。

答:m0= ┐p∧┐q∧┐r m4= p∧┐q∧┐r6.什么是图中的简单路?请举一例。

答:图的通路中,所有边e1,e2,…,ek互不相同,称为简单通路。

7.什么是交换群,请举一例。

答:如果群〈G,*〉中的运算*是可以交换的,则称该群为可交换群,或称阿贝尔群。

如〈I,+〉是交换群。

8.什么是群中右模H合同关系?答:设G是群,H是G的子群,a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),记为a≡b(右mod H)。

9.什么是有壹环?请举一例。

答:幺元:如果A中的一个元素e,它既是左幺元又是右幺元,则称e为A中关于运算☆的幺元。

离散数学习题答案.docx

离散数学习题答案.docx

精品文档离散数学习题答案习题一及答案:( P14-15 )14、将下列命题符号化:( 5)李辛与李末是兄弟解:设 p:李辛与李末是兄弟,则命题符号化的结果是p( 6)王强与刘威都学过法语解:设 p:王强学过法语; q:刘威学过法语;则命题符号化的结果是p q ( 9)只有天下大雨,他才乘班车上班解:设 p:天下大雨; q:他乘班车上班;则命题符号化的结果是q p( 11)下雪路滑,他迟到了解:设 p:下雪; q:路滑; r :他迟到了;则命题符号化的结果是( p q)r15、设 p: 2+3=5.q:大熊猫产在中国 .r:太阳从西方升起 .求下列复合命题的真值:( 4)(p q r )(( p q)r )解: p=1, q=1,r=0 ,(p q r )(110)1,((p q)r )((11)0)(00)1(p q r )(( p q)r ) 1 1119、用真值表判断下列公式的类型:( 2)( p p)q解:列出公式的真值表,如下所示:p q p qp) ( p p)q( p001111011010100101110001由真值表可以看出公式有 3 个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值:精品文档( 4)( p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:( p q)1p0q0q0所以公式的成真赋值有: 01,10, 11。

习题二及答案:( P38)5、求下列公式的主析取范式,并求成真赋值:( 2)(p q) (q r )解:原式( p q) q r q r( p p) q r( p q r ) ( p q r )m3m7,此即公式的主析取范式,所以成真赋值为011, 111。

6、求下列公式的主合取范式,并求成假赋值:( 2)( p q) ( p r )解:原式( pp r ) ( p q r )( p q r )M 4,此即公式的主合取范式,所以成假赋值为 100。

离散数学作业标准答案

离散数学作业标准答案

离散数学作业一、选择题1、下列语句中哪个就是真命题(C )。

A.我正在说谎。

B.如果1+2=3,那么雪就是黑色的。

C.如果1+2=5,那么雪就是白色的。

D.严禁吸烟!2、设命题公式))((r q p p G →∧→=,则G 就是( C )。

A 、 恒假的B 、 恒真的C 、 可满足的D 、 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ∃∀→中的变元x ( C )。

A.就是自由变元但不就是约束变元 B.既不就是自由变元又不就是约束变元 C.既就是自由变元又就是约束变元 D.就是约束变元但不就是自由变元4、设A={1,2,3},则下列关系R 不就是等价关系的就是(C ) A.R={<1,1>,<2,2>,<3,3>}B.R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>}C.R={<1,1>,<2,2>,<3,3>,<1,4>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>,<3,1>,<3,2>} 5、设R 为实数集,映射σ=R →R,σ(x)= -x 2+2x-1,则σ就是( D )。

A.单射而非满射B.满射而非单射C.双射D.既不就是单射,也不就是满射 6、下列二元运算在所给的集合上不封闭的就是( D ) A 、 S={2x-1|x ∈Z +},S 关于普通的乘法运算 B 、 S={0,1},S 关于普通的乘法运算 C 、 整数集合Z 与普通的减法运算D 、 S={x | x=2n ,n ∈Z +},S 关于普通的加法运算7、*运算如下表所示,哪个能使({a,b},*)成为含幺元半群( D )b b b a a a b a * a b b b a a b a *8( A )A B C D 9、下列各组数中,能构成无向图的度数列就是( D ) A.1,1,1,2,4 B.1,2,3,4,5 C.0,1,0,2,4 D.1,2,3,3,510、一棵树有2个4度顶点,3个3度顶点,其余都就是树叶,则该树中树叶的个数就是( B )A 、8B 、9C 、 10D 、 11 11、“所有的人都就是要死的。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学课后答案详细

离散数学课后答案详细

第一章命题逻辑基本概念课后练习题答案4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.7.因为p与q不能同时为真.13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。

2. 存在三个可识别的状态A,B,C。

置换群 $S_3$ 作用在状态集上。

定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。

确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。

3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。

4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。

b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。

答案1. $A \cap B = \{2,4,6\}$。

2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。

这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。

所以合数的个数不小于任意$n$。

4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。

如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。

所以从这条路径中任意取出的子路径都是最短路径。

b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。

因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。

所以从$i$到$j$的最短路径可能不唯一。

(完整版)离散数学习题答案

(完整版)离散数学习题答案

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是p q∧(9)只有天下大雨,他才乘班车上班解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p →(11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r∧→15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起.求下列复合命题的真值:(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→解:p=1,q=1,r=0,,()(110)1p q r ∧∧⌝⇔∧∧⌝⇔(())((11)0)(00)1p q r ⌝∨⌝→⇔⌝∨⌝→⇔→⇔()(())111p q r p q r ∴∧∧⌝↔⌝∨⌝→⇔↔⇔19、用真值表判断下列公式的类型:(2)()p p q→⌝→⌝解:列出公式的真值表,如下所示:p qp⌝q⌝()p p →⌝()p p q→⌝→⌝001111011010100101110001由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值:(4)()p q q⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩所以公式的成真赋值有:01,10,11。

习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧,此即公式的主析取范式,()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值:(2)()()p q p r ∧∨⌝∨解:原式,此即公式的主合取范式,()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔所以成假赋值为100。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。

请用A
和B表示ECNU不必学习离散数学的二年级的学生的集合。

2.试求:
(1)P(φ)
(2)P(P(φ))
(3)P(P(P(φ)))
3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个?
能被5整除的有40个,
能被15整除的有13个,
∴能被3或5整除,但不能被15整除的正整数共有
66-13+40-13=80个。

第三章
1.下列语句是命题吗?
(1)2是正数吗?
(2)x2+x+1=0。

(3)我要上学。

(4)明年2月1日下雨。

(5)如果股票涨了,那么我就赚钱。

2.请用自然语言表达命题(p⌝→r)∨(q⌝→r),其中p、q、r为如下命题:
p:你得流感了
q:你错过了最后的考试
r:这门课你通过了
3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。

4.给出p→(q→s),q,p∨⌝r⇒r→s的形式证明。

第四章
1.将∀x(C(x)∨∃y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同
班同学,个体域是学校全体学生的集合。

解:
学校的全体学生要么自己有电脑,要么其同班同学有电脑。

2.构造∀x(P(x)∨Q(x)),∀x(Q(x)→⌝R(x)),∀xR(x)⇒∀xP(x)的形式证明。

解:
①∀xR(x) 前提引入
②R(e) ①US规则
③∀x(Q(x)→⌝R(x)) 前提引入
④Q(e) →⌝R(e) ③US规则
⑤⌝Q (e) ②④析取三段论
⑥∀x(P(x)∨Q(x)) 前提引入
⑦P(e) ∨Q(e) ⑥US规则
⑧P(e) ⑤⑦析取三段论
⑨∀x (P(x)) ⑧EG规则
第五章
1.设R、S、T都是X上的关系。

证明:R︒(S∩T)⊆(R︒S)∩(R︒T),(R∩S)︒T⊆(R︒T)∩(S︒T)。

2.设X是所有人组成的集合,定义X上的关系R1和R2:aR1b当且仅当a比b高,aR2b
当且仅当a和b有共同的祖父母。

问关系R1和R2是否是自反、反自反、对称、反对称、传递的?
3.设R1和R2是X上的关系。

证明t(R1⋃R2)⊇t(R1)⋃t(R2)。

4.下列集合关于整除关系⎪构成偏序集。

请分别画出它们的哈斯图,判断它们是否是全
序集,给出它们的极大元、极小元、最大元、最小元。

(2){2,4,8,16};
(4){2,3,4,5,9,10,80}。

第六章
1.f:X→Y,下列命题是否成立?
(1)f是一对一的当且仅当对任意a,b∈X,当f(a)=f(b)时,必有a=b;
(2)f是一对一的当且仅当对任意a,b∈X,当f(a)≠f(b)时,必有a≠b。

2.下图展示了五个关系的关系图。

问:这些关系中,哪些是函数?哪些是一对一的函数?
哪些是到上的函数?哪些是一一对应?
第七章
1.6个学生:Alice、Bob、Carol、Dean、Santos和tom,其中,Alice和Carol不和,Dean
和Carol不和,Santos、Tom和Alice两两不和。

请给出表示这种情形的图模型。

2.设简单无向图G=(V,E),若δ(G)≥k(k≥1),则G有长度为k的基本通路。

解:证明:
我们假设存在k-1的基本通路,则存在k个顶点,通路最后一个顶点与通路上顶点相连的度数至多为k-1。

因为δ(G)≥k(k≥1),所以该顶点必定与其他顶点相连,那么存在长度为K的基本通路。

得证。

3.一大学有5个专业委员会:物理、化学、数学、生物、计算机,6位院士:B、C、D、
G、S、W。

专业委员会由院士组成,物理委员会有院士:C、S和W,化学委员会有院
士:C、D和W;数学委员会有院士:B、C、G和S;生物委员会有院士:B和G;计算机委员会有院士:D和G。

每个专业委员会每周开一小时例会,所有成员都不能缺席。

如果某院士同时是两个专业委员会的成员,那么这两个专业委员会的例会就不能安排在同一个时间。

现要为这些例会安排时间,希望它们的时间尽可能集中。

问最少需要几个开会时间?请给出一种安排。

第八章
1.说明下图不是哈密顿图。

解:从图中删除所标记的6个顶点,所得到的图由7个孤立点组成,有7个连通分量。

所以,该图不满足哈密顿图的必要条件,因而不是哈密顿图
2.证明连通图的割边一定是每棵生成树的边。

证明:删除割边后的图一定不连通,其中不存在生成树。

所以,每课生成树都包含割边
第九章
1.股评家推荐了12个股票,一股民欲购买其中的3个。

问在下列各种条件下,分别有多
少种不同的投资方式?
(1)每个股票各投资3000元;
(2)3个股票分别投资5000元、3000元和1000元。

2.16支互不同颜色的蜡笔平分给4个孩子,有多少种不同的分法?
解: C(16,4) C(12,4) C(8,4) C(4,4)
3. 某学校有2504个计算机科学专业的学生,其中1876人选修了C 语言,999人选修了
Fortran 语言,345人选修了JA V A ,876人选修了C 语言和Fortran 语言,231人选修了Fortran 和JA V A ,290人选修了C 和JA V A ,189个学生同时选了C 、Fortran 和JAV A 。

问没有选这3门程序设计语言课中的任何一门的学生有多少个?
第十章
1. 求初值问题的通项公式:a n =10a n-1-25a n-2;a 0=-7,a 1=15。

解:
特征方程:r 2-10r+25=0,特征根:r 2=r 1=5
通解:a n =(α+βn)5n
由a 0=α50=α=-7和a 1= (-7+β)51 =15解得:α=-7,β=10
初值问题的解:a n =(-7+10n)2n
2. 计算广义二项式系数35-⎛⎫
⎪⎝⎭和 1.23⎛⎫ ⎪⎝⎭
的值。

解: ()()3331351215!5----⋯--+⎛⎫==- ⎪⎝⎭ 1.2 1.2(1.21)...(1.231)0.0323!3--+⎛⎫== ⎪⎝⎭
3. 某人有大量1角、2角和3角的邮票(面值相同的邮票看成是相同的),现要在信封上
贴邮票,邮票排成一行且邮票的总值为r 角。

若不考虑贴邮票的次序,ar 表示贴邮票的方法数,求{ar}的生成函数。

相关文档
最新文档