2016-2017第一学期海口市八年级数学期末检测题(含答案)

合集下载

(完整版)海口市八年级上数学期末模拟试题含答案,推荐文档

(完整版)海口市八年级上数学期末模拟试题含答案,推荐文档

∴ AD=BF=1,DF=DC=AB.
∵ ∠DCB=60°,
∴ △DFC是等边三角形,
∴ BC=2DC=2. 在Rt△DBC中,根据勾股定理,得
BD= BC 2 DC 2 22 12 3 . ………………………………(8分)
(2) ∵ CE=CD , ∴ ∠4=∠E= 1 ∠DCB=30°, 2
(注:用其它方法求解参照以上标准给分.)
AE∥
D.a 8 - a 5 = a 3
3. 下面四个数中与 11 最接近的数是( )
A.2
B.3
C.4
D.5
4.若m+n=2,mn=1,则(1-m)(1-n)的值为( )
A. 0
B. 1
C. 2
D. 3
5.在下列图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
6.以下列线段a、b、c的长为边,能构成直角三角形的是( )
2015—2016学年度第一学期海南省海口市八年级数学科期末检测题模拟试题
时间:100分钟
满分:100分
得分:
一、选择题(每小题2分,共24分)
1.2的平方根是( )
A.4
B. 2
C. ±2
D.± 2
2. 下列计算正确的是( )
A.a + 2 a 2 = 3 a 3
B.a 3 ·a 2 = a 6
C.( a 3 ) 2 = a 6
) A.2
B.2.5
C.3
D.4
A
F
C
F
A
D
O
B
E
A
C
D
图1
D
B
图2

《试卷3份集锦》海口市2017-2018年八年级上学期期末监测数学试题

《试卷3份集锦》海口市2017-2018年八年级上学期期末监测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选B.2.下列物品不是利用三角形稳定性的是( )A.自行车的三角形车架B.三角形房架C.照相机的三脚架D.放缩尺【答案】D【解析】试题分析:只要三角形的三边确定,则三角形的大小唯一确定,即三角形的稳定性.解:A,B,C都是利用了三角形稳定性,放缩尺,是利用了四边形不稳定性.故选D.考点:三角形的稳定性.3.若4x2+kxy+9y2是一个完全平方式,则k的值是()A.12 B.72 C.±36 D.±12【答案】D【分析】根据完全平方公式可知,这里首末两项是2x和3y的平方,那么中间项为加上或减去2x和3y的乘积的2倍.【详解】解:∵4x2+kxy+9y2是完全平方式,∴kxy=±2×2x•3y,解得k=±1.【点睛】本题考查完全平方公式的知识,解题的关键是能够理解并灵活应用完全平方公式.4.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°【答案】D【解析】∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°.∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°.∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°.故选D.5.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处【答案】A【分析】利用角平分线性质定理即可得出答案.【详解】角的平分线上的点,到这个角的两边的距离相等.又要求砂石场建在三条公路围成的一块平地上,所以应建在三个内角平分线的交点上.故选A.考点:角平分线的性质6.如图所示.在△ABC中,∠C=90°,DE垂直平分AB,交BC于点E,垂足为点D,BE=6cm,∠B=15°,则AC等于()A.6cm B.5cm C.4cm D.3cm【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分性质求出BE=AE=6cm,求出∠EAB=∠B=15°,即可求出∠EAC,根据含30°角的直角三角形性质求出即可.【详解】∵在△ABC中,∠ACB=90°,∠B=15°∴∠BAC=90°-15°=75°∵DE垂直平分AB,BE=6cm∴BE=AE=6cm,∴∠EAB=∠B=15°∴∠EAC=75°-15°=60°∵∠C=90°∴∠AEC=30°∴AC=12AE=12×6cm=3cm故选:D【点睛】本题考查了三角形内角和定理,线段垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等,直角三角形中,30°角所对的边等于斜边的一半.7.分式21x--可变形为()A.21x--B.21x+C.21x-+D.21x-【答案】D【分析】根据分式的性质,可化简变形.【详解】2221(1)1x x x-==----.故答案为D【点睛】考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.8.点P(x,y)是平面直角坐标系内的一个点,且它的横、纵坐标是二元一次方程组3243 x y ax y a-=-⎧⎨+=-+⎩的解(a 为任意实数),则当 a 变化时,点P 一定不会经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【分析】首先用消元法消去a,得到y与x的函数关系式,然后根据一次函数的图象及性质即可得出结论.【详解】解:3243x y a x y a -=-⎧⎨+=-+⎩①②用②×2+①,得52x y +=∴52y x =-+∵50,20-<>∴52y x =-+过一、二、四象限,不过第三象限∴点P 一定不会经过第三象限,故选:C .【点睛】本题考查了一次函数与二元一次方程的知识,解题的关键是首先消去a ,求出y 与x 的函数关系式. 9.点P(2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P 所在的象限.解答:解:∵点P 的横坐标为正,纵坐标为负,∴点P (2,-3)所在象限为第四象限.故选D .10.下列各组数为勾股数的是( )A .7,12,13B .3,4,7C .3,4,6D .8,15,17 【答案】D【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A 、不是勾股数,因为72+122≠132;B 、不是勾股数,因为32+42≠72;C 、不是勾股数,因为32+42≠62;D 、是勾股数,因为82+152=172,且8,15,17是正整数.故选:D .【点睛】本题考查了勾股定理中勾股数的意义,理解掌握其判断方法是关键.二、填空题11.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥CD ,OE ∥BC 交CD 于E ,若OC=4,CE=3,则BC 的长是____.【答案】1.【分析】首先利用三角形的中位线定理求得CD 的长,然后利用勾股定理求得AD 的长,即可求出BC 的长.【详解】解:∵四边形ABCD 是平行四边形,∴OA=OC ,AD ∥BC .∵OE ∥BC ,∴OE ∥AD ,∴OE 是△ACD 的中位线.∵CE=3cm ,∴DC=2OE=2×3=2.∵CO=4,∴AC=3.∵AC ⊥CD ,∴AD 222268AC CD =++=1,∴BC=AD=1.故答案为:1.【点睛】考查了平行四边形的性质,三角形中位线定理,勾股定理,正确的理解平行四边形的性质是解答本题的关键,难度不大.12.把直线y =﹣23x 向下平移_____个单位得到直线y =﹣23x ﹣1. 【答案】1.【分析】直接根据“上加下减”的原则即可解答.【详解】解:∵0﹣(﹣1)=1,∴根据“上加下减”的原则可知,把直线y =﹣23x 向下平移1个单位得到直线y =﹣23x ﹣1. 故答案为:1.【点睛】本题考查一次函数的图像与几何变换,熟知图像平移的法则是解题的关键.13.如图,直线3:1l y x =+ 与x 轴正方向夹角为30,点123,,,A A A 在x 轴上,点123,,,B B B 在直线l 上,11122233,,OB A A B A A B A ∆∆∆均为等边三角形,则2020A 的横坐标为__________.【答案】()20202-13 【分析】分别求出123,,,A A A 的坐标,得到点的规律,即可求出答案.【详解】设直线交x 轴于A ,交y 轴于B ,当x=0时,y=1;当y=0时,x=3-,∴A(3-,0),∴B (0,1),∴OA=3,OB=1,∵11122233,,OB A A B A A B A ∆∆∆是等边三角形,∴1121232360B OA B A A B A A ∠∠∠===∵∠BOA=30,∴OA 1=OB 1=OA=3,A 1A 2=A 1B 2=AA 1=23,A 2A 3=A 2B 3=AA 2=43,∴OA 1=3,OA 2=23,OA 3=43,∴A 1(3,0),A 2(23,0),A 3(43,0),∴2020A 的横坐标是()20202-13.【点睛】此题考查点坐标的规律探究,一次函数的性质,等边三角形的性质,等腰三角形的性质,根据几种图形的性质求出A 1,A 2,A 3的坐标得到点坐标的规律是解题的关键.14.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x --+=-;()324(1)11x x x x x -+++=-;……根据前面各式的规律可得到()12(1)1n n n x x x x x ---+++++=________.【答案】+1n x -1 【分析】根据题目中的规律可看出,公式左边的第一项为(x-1),公式左边的第二项为x 的n 次幂开始降次排序,系数都为1,公式右边为+1n x -1即可.【详解】由题目中的规律可以得出,()12(1)1n n n x x xx x ---+++++=+1n x -1,故答案为:+1n x -1.【点睛】本题考查了整式乘除相关的规律探究,掌握题目中的规律探究是解题的关键.15.函数y =5x -自变量x 的取值范围是__.【答案】5x ≥【分析】根据二次根式有意义的条件:被开方数大于等于0即可确定a 的取值范围.【详解】∵二次根式5x -有意义, 50x ∴-≥ ,解得5x ≥ ,故答案为:5x ≥.【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.16.腰长为4的等腰直角ABC ∆放在如图所示的平面直角坐标系中,点A 、C 均在y 轴上,C(0,2),∠ACB=90︒,AC=BC=4,平行于y 轴的直线x=-2交线段AB 于点D ,点P 是直线x=-2上一动点,且在点D 的上方,当4ABP S ∆=时,以PB 为直角边作等腰直角BPM ∆,则所有符合条件的点M 的坐标为________.【答案】(6,8)-或(2,4)或(8,4)-或(0,0)【分析】根据等腰直角三角形存在性问题的求解方法,通过分类讨论,借助全等的辅助,即可得解.【详解】∵90ACB ∠=︒,AC=BC=4,平行于y 轴的直线2x =-交线段AB 于点D ,()0,2C∴()2,4D -∵4ABP S ∆= ∴142PD BC ⋅= ∴PD=2∴()2,6P -以PB 为直角边作等腰直角1BPM ∆如下图,作1M R ⊥PD 于R∵1PM PB =190M RP PSB ∠=∠=︒,1190RM P RPM SPB ∠=︒-∠∠=∴()1RM P SPB AAS ∆≅∆∴14M R PS ==,RP=BS=2∴()16,8M -;以PB 为直角边作等腰直角2BPM ∆同理可得()22,4M ;以PB 为直角边作等腰直角3BPM ∆同理可得()38,4M -;以PB 为直角边作等腰直角4BPM ∆同理可得()40,0M ,∴M 的坐标为(6,8)-或(2,4)或(8,4)-或(0,0),故答案为:(6,8)-或(2,4)或(8,4)-或(0,0).【点睛】本题主要考查了等腰直角三角形的存在性问题,通过面积法及三角形全等的判定和性质进行求解是解决本题的关键.17.如图,在Rt ABC ∆中,90ABC ∠=︒,6AB =,8BC =,BAC ∠,ACB ∠的平分线相交于点E ,过点E 作//EF BC 交AC 于点F ,则______EF =;【答案】103【解析】过E 作EG ∥AB ,交AC 于G ,易得AG=EG ,EF=CF ,依据△ABC ∽△GEF ,即可得到EG :EF :GF=3:4:5,故设EG=3k=AG ,则EF=4k=CF ,FG=5k ,根据AC=10,可得3k+5k+4k=10,即k=56,进而得出EF=4k=103. 【详解】过E 作EG ∥AB ,交AC 于G ,则∠BAE=∠AEG ,∵AE 平分∠BAC ,∴∠BAE=∠CAE ,∴∠CAE=∠AEG ,∴AG=EG ,同理可得,EF=CF ,∵AB ∥GE ,BC ∥EF ,∴∠BAC=∠EGF ,∠BCA=∠EFG ,∴△ABC ∽△GEF ,∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG :EF :GF=AB :BC :AC=3:4:5,设EG=3k=AG ,则EF=4k=CF ,FG=5k ,∵AC=10,∴3k+5k+4k=10,∴k=56, ∴EF=4k=103.故答案是:103. 【点睛】 考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.三、解答题18.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因a a a =,()21211=a a 2121互为有理化因式. (1)231-的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3233333==⨯, ()()25353521538215415535353++++====--+2323-+ (3)利用所需知识判断:若25a =+25b =a b ,的关系是 . (4)直接写结果:()20201213220202019=+++ . 【答案】(1)231+;(2)743-(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(23-,化简即可;(3)将25a =+(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()23123111-+=, ∴231-的有理化因式是231+; (2)2323-+=)()()22344337432323--+==-+-; (3)∵()()2552252525a -===-++-,25b =-, ∴a 和b 互为相反数;(4)()2020121324320202019+++⋯+⨯+ ⎪++++⎝⎭=()()2132432020201920201-+-+-+⋯+-⨯+ =()()2020120201-+ =20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.19.如图,在ABC ∆中,110ACB ∠=,B A ∠>∠,D ,E 为边AB 上的两个点,且BD BC =,AE AC =. (1)若30A ∠=,求DCE ∠的度数;(2)DCE ∠的度数会随着A ∠度数的变化而变化吗?请说明理由.【答案】(1)35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【分析】(1)根据等腰三角形性质求出∠ACE=∠AEC ,∠BCD=∠BDC ,得∠BCE=∠ACB-∠ACE =110°-75°=35°;再根据∠DCE=∠BCD-∠BCE 可得;(2)解题方法如(1),求∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()1807018022A B --∠-∠=,∠BCE=∠ACB-∠ACE ,所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A ). 【详解】因为BD BC =,AE AC =所以∠ACE=∠AEC=180180307522A -∠-== ; ∠BCD=∠BDC=180180407022B -∠-==所以∠BCE=∠ACB-∠ACE=110°-75°=35°所以∠DCE=∠BCD-∠BCE=70°-35°=35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,理由:因为在ABC ∆中,110ACB ∠=,所以18011070;B A A ∠=--∠=-∠因为BD BC =,AE AC =所以∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()18070180110222A B A --∠-∠+∠== 所以∠BCE=∠ACB-∠ACE=110°-180∠2A所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A )=35° 故DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【点睛】考核知识点:等腰三角形.理解等腰三角形边角关系是关键.20.某超市第一次用6000元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍多20件,甲、乙两种商品的进价和售价如下表(利润=售价-进价)(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、 乙两种商品全部卖出后一共可获得多少利润?(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多280元,则第二次乙商品是按原价打几折销售的?【答案】(1)该超市第一次购进甲种商品160件,购进乙种商品100件;(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得2160元;(3)第二次乙商品是按原价打八五折销售.【分析】(1)设第一次购进甲种商品x 件,购进乙种商品y 件,根据单价×数量=总价,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打m 折销售,根据总利润=单件利润×销售数量,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】解:(1)设第一次购进甲种商品x 件,购进乙种商品y 件,根据题意得:202860002320x y x y +=⎧⎨=+⎩, 解得160100x y =⎧⎨=⎩. 答:该超市第一次购进甲种商品160件,购进乙种商品100件.(2)(26﹣20)×160+(40﹣28)×100=2160(元).答:该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得2160元.(3)设第二次乙种商品是按原价打m 折销售的,根据题意得:(26﹣20)×160×2+(40×m 10﹣28)×100=2160+360, 解得:m =8.1.答:第二次乙商品是按原价打八五折销售.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.21.如图,点D ,E 分别在ABC 的边上,DE BC ∥,AD AE =,60ADE ︒∠=.求证:AB BC CA ==【答案】见解析【分析】首先判定△ADE 是等边三角形,从而得到∠ADE=∠AED=60°.接着根据平行线的性质得到∠B=∠C=60°,所以△ABC 是等边三角形,所以AB=BC=AC.【详解】证明:∵AD AE =,160∠=︒∴ADE ∆是等边三角形∴2160A ∠=∠=∠=︒∵DE BC ∥∴1B ∠=∠,2C ∠=∠∴60∠=∠=∠=︒A B C∴AB BC CA ==【点睛】本题考查到了等边三角形的性质与判定和平行线的性质,难度不大.22.化简求值:2(2)3()(2)(2)x y x x y x y x y +-+--+,其中12x =,2y =-. 【答案】xy+5y 2,19【分析】通过整式的混合运算对原式先进行化简,再将x 和y 的值代入即可得解. 【详解】原式2222244334x xy y x xy x y =+++﹣﹣﹣ 25xy y =+ 将12x =,2y =-代入,原式21 (2)5(2)192=⨯-+⨯-=. 【点睛】本题主要考查了整式的先化简再求值,熟练掌握整式的混合运算是解决本题的关键.23.某校八年级五班为了了解同学们春节压岁钱的使用情况,对全班同学进行了问卷调查,每个同学只准选一项.调查问卷:A .把压岁钱积攒起来,准备给爸妈买生日礼物,B .把压岁钱积攒起来,准备给同学买生日礼物,C .把压岁钱积攒起来,准备给自己买漂亮衣服,D .把压岁钱积攒起来,准备买学习用品或课外书,E.漫无目的,随便花,班委会的同学把调查结果进行了统计,并绘制出条形统计图和扇形统计图(都不完整),如图1和图2所示:根据统计图回答:(1)该班共有学生______人. (2)在扇形统计图中,标出D 所占的百分比,并计算D 所对应的圆心角度数.(3)补全条形统计图.(4)根据以上信息,请你给班同学就“如何使用压岁钱?”提出合理建议.(不超过30字)【答案】 (1)50人;(2)006,21.6;(3)详见解析;(4)大部分同学花钱漫无目的,随便花,要加强零用钱合理使用教育.【分析】(1)该班总人数:0048÷;(2)D 组百分比:0000000013020368----;圆心角度数:003606÷;(3)先求出各组对应人数,再画条形图;(4)根据各组的人数进行分析即可.【详解】解:(1)该班总人数:48%50÷=(人);(2)D 组百分比:130%20%36%8%6%----=圆心角度数:3606%21.6÷=︒(3)各组人数:C 5030%15⨯=(人),E 5036%18⨯=(人)条形图如图:(4)大部分同学花钱漫无目的,随便花,要加强零用钱合理使用教育.【点睛】此题考查了统计图的选择以及利用样本估计总体的知识.注意掌握选择样本的代表性以及用样本估计总体的知识.24.如图,四边形ABCD中,∠B=90°, AB//CD,M为BC边上的一点,AM平分∠BAD,DM平分∠ADC,求证:(1) AM⊥DM;(2) M为BC的中点.【答案】(1)详见解析;(2)详见解析【分析】(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,求出∠AMD=90°,根据垂直的定义得到答案;(2)作MN⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换可得结论.【详解】证明:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作MN⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.【点睛】本题考查的是平行线的性质、三角形内角和定理以及角平分线的性质,掌握平行线的性质和角平分线上的点到角的两边的距离相等是解题的关键.25.节约用水是我们的美德,水龙头关闭不严会造成滴水,容器内盛水()w L 与滴水时间t(h)的关系用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的函数图象,结合图象解答下列问题. (1)容器内原有水多少升.(2)求w 与t 之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升.【答案】(1)容器的原有水0.31;(2)一天滴水量为485L . 【解析】试题分析:(1)由图象可知,当t=0时,w=0.3,即容器内原有水0.3升;(2)设w 与t 之间的函数关系式为w=kt+b ,将(0,0.3),(1.5,0.9)代入,即可求出w 与t 之间的函数关系式;由解析式可知,每小时滴水量为0.4L ,一天的滴水量为:0.4×24=9.6L .试题解析:(1)根据图象可知,t=0时,w=0.3,即容器内原有水0.3升;(2)设w 与t 之间的函数关系式为w=kt+b ,将(0,0.3),(1.5,0.9)代入,得:1.50.9{0.3k b b +==,解得:0.4{0.3k b ==,故w 与t 之间的函数关系式为w=0.4t+0.3;由解析式可知,每小时滴水量为0.4L ,一天的滴水量为:0.4×24=9.6L ,即在这种滴水状态下一天的滴水量是9.6升.考点:一次函数的应用.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1,113,π中,无理数是 ( )AB .113CD .π 【答案】D【分析】无理数就是无限不循环小数,利用无理数的定义即可判定选择项.,113,π中,=2=-3,π是无理数.故选D.【点睛】此题主要考查了无理数的定义.初中范围内学习的无理数有三类:①π类,②开方开不尽的数,③虽有规律但是无限不循环的数.2.下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查【答案】C【分析】根据普查和抽样调查的特点解答即可.【详解】解:A .对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B .对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C .对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D .对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C .【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.如图,在ABC ∆中,DE 是AC 的垂直平分线,8AC cm =,且ABD ∆的周长为16cm ,则ABC ∆的周长为( )A .24cmB .21cmC .18cmD .16cm【答案】A 【分析】根据线段的垂直平分线的性质得到DA =DC ,根据三角形的周长公式计算,得到答案.【详解】∵DE 是AC 的垂直平分线,∴DA =DC ,∵△ABD 的周长为16cm ,∴AB +BD +DA =AB +BD +DC =AB +BC =16cm ,∴△ABC 的周长=AB +BC +AC =16+8=24(cm ),故选:A .【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4.如图,已知∠ACB =∠DBC ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠ABC =∠DCBB .∠ABD =∠DCAC .AC =DBD .AB =DC【答案】D 【分析】根据全等三角形的判定定理 逐个判断即可.【详解】A 、∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD+∠DBC =∠ACD+∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.如图,在ABC ∆中,CE 平分ACB ∠交AB 于点E ,CF 平分ACD ∠,//EF BC ,EF 交AC 于点M ,若5CM =,则22CE CF +=( )A .75B .100C .120D .125【答案】B 【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理求得CE 1+CF 1=EF 1.【详解】∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ACE=12∠ACB ,∠ACF=12∠ACD ,即∠ECF=12(∠ACB+∠ACD )=90°, 又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF ,∴CM=EM=MF=5,EF=10,由勾股定理可知CE 1+CF 1=EF 1=2.故选:B【点睛】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.6.交通警察要求司机开车时遵章行驶,在下列交通标志中,不是轴对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形的定义,逐一判断选项,即可.【详解】∵A 是轴对称图形,∴A 不符合题意,∵B 是轴对称图形,∴B 不符合题意,∵C 不是轴对称图形,∴C 符合题意,∵D 是轴对称图形,∴D 不符合题意,故选C .【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.7.在xy , 1,23x ,(x+y ),2xy x y +这四个有理式中,分式是( ) A .xyB .2xC .13(x+y )D .2xy x y+ 【答案】D【分析】根据分式的定义逐项排除即可;【详解】解:A .属于整式中单项式不是分式,不合题意;B .属于整式中的单项式不是分式,不合题意;C .属于整式中的多项式不是分式,不合题意;D .属于分式,符合题意;故答案为D .【点睛】本题考查了分式的定义,牢记分式的分母一定含有字母其π不是字母是解答本题的关键.8.如图,AC 、BD 相交于点O ,OA =OB ,OC =OD ,则图中全等三角形的对数是( ).A .1对B .2对C .3对D .4对【答案】C 【解析】试题分析:已知OA=OB,∠DOA=∠COB,OC=OD,即可得△OAD ≌△OBC ,所以∠ADB=∠BCA,AD=BC,再由OA =OB ,OC =OD ,易得AC=-BD ,又因AB=BA,利用SSS 即可判定△ABD ≌△BAC,同理可证△ACD ≌△BDC,故答案选C .考点:全等三角形的判定及性质.9.已知如图,等腰ABC ∆中,,120,AB AC BAC AD BC =∠=︒⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,.OP OC =下面的结论:① 30APO DCO ∠+∠=︒;②OPC ∆是等边三角形;③AC AO AP =+;④APO DCO ∠=∠.其中正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】A 【分析】①连接BO ,根据等腰三角形的性质可知AD 垂直平分BC ,从而得出BO=CO ,又OP=OC,得到BO=OP ,再根据等腰三角形的性质可得出结果;②证明∠POC=60°,结合OP=OC ,即可证得△OPC 是等边三角形;③在AC 上截取AE=PA ,连接PE ,先证明△OPA ≌△CPE ,则AO=CE ,AC=AE+CE=AO+AP ;④根据∠APO=∠ABO ,∠DCO=∠DBO ,因为点O 是线段AD 上一点,所以BO 不一定是∠ABD 的角平分线,可作判断.【详解】解:①如图1,连接OB ,∵AB=AC ,AD ⊥BC ,∴BD=CD ,∠BAD=12∠BAC=12×120°=60°, ∴OB=OC ,∠ABC=90°-∠BAD=30°,∵OP=OC ,∴OB=OC=OP ,∴∠APO=∠ABO ,∠DCO=∠DBO ,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°-(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形,故②正确;③如图2,在AC上截取AE=PA,连接PE,∵∠PAE=180°-∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,PA PEAPO CPE OP CP=⎧⎪∠=∠⎨⎪=⎩,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP,故③正确;④由①中可得,∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故④不正确;故①②③正确.故选:A.【点睛】本题主要考查了等腰三角形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,正确作出辅助线是解决问题的关键.10.已知小明从A地到B地,速度为4千米/小时,,A B两地相距3千米,若用x(小时)表示行走的时间,y(千米)表示余下的路程,则y与x之间的函数表达式是()A .4y x =B .43y x =-C .4y x =-D .34y x =-【答案】D 【分析】根据路程=速度×时间,结合“剩下的路程=全路程-已行走”容易知道y 与x 的函数关系式.【详解】∵剩下的路程=全路程-已行走,∴y=3-4x .故选:D .【点睛】本题主要考查了一次函数的应用,理清“路程、时间、速度”的关系是解答本题的关键.二、填空题11.约分:222x y xy - =_____. 【答案】2x y- 【分析】根据分式的基本性质,约分化简到最简形式即可.【详解】22=22x y x y xy--, 故答案为:2x y-. 【点睛】 考查了分式的基本性质,注意负号可以提到前面,熟记分式约分的方法是解题关键.12.如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线ED 交AB 于点E ,交BC 于点D ,若CD=3,则BD 的长为______.【答案】1【分析】根据线段垂直平分线的性质求出AD=BD ,求出∠BAD=∠B=30°,求出∠CAD=30°,根据含30°角的直角三角形的性质求出AD 即可.【详解】∵DE 是线段AB 的垂直平分线,∴AD=BD ,∵∠B=30°,∴∠BAD=∠B=30°,又∵∠C=90°∴∠CAB=90°-∠B=90°-30°=10°,∴∠DAC=∠CAB-∠BAD=10°-30°=30°,∴在Rt △ACD 中,AD=2CD=1,∴BD=AD=1.故答案为:1.【点睛】本题考查的是线段垂直平分线的性质,含30°角的直角三角形的性质,掌握线段垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.13.如图,点F 是△ABC 的边BC 延长线上一点,DF ⊥AB 于点D ,∠A =30°,∠F =40°,∠ACF 的度数是_____.【答案】80°【分析】根据三角形的内角和可得∠AED =60°,再根据对顶角相等可得∠AED =∠CEF =60°,再利用三角形的内角和定理即可求解.【详解】解:∵DF ⊥AB ,∴∠ADE =90°,∵∠A =30°,∴∠AED =∠CEF =90°﹣30°=60°,∴∠ACF =180°﹣∠F ﹣∠CEF =180°﹣40°﹣60°=80°,故答案为:80°.【点睛】本题考查三角形的内角和定理、对顶角相等,灵活运用三角形的内角和定理是解题的关键.14.一次函数y=kx+b 与y=x+2两图象相交于点P (2,4),则关于x ,y 的二元一次方程组2y kx b y x =+⎧⎨=+⎩的解为____. 【答案】24x y =⎧⎨=⎩. 【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】∵一次函数y=kx+b 与y=x+2两图象相交于点P (2,4),∴关于x ,y 的二元一次方程组2y kx b y x =+⎧⎨=+⎩的解为24x y =⎧⎨=⎩.故答案为:24x y =⎧⎨=⎩. 【点睛】 本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 15.已知:如图,ABC 和ADE 为两个共直角顶点的等腰直角三角形,连接CD 、BE .图中一定与线段CD 相等的线段是__________.【答案】BE【解析】∵△ABC 和△ADE 都是等腰直角三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=90°,∴∠BAC -∠BAD=∠DAE -∠BAD ,∴∠DAC=∠BAE ,∵在△CAD 和△BAE 中,AB AC DAC BAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAD ≌△BAE ,∴CD=BE.故答案为BE.点睛:本题关键在于掌握三角形全等的判定方法.16.已知一组数据:2,4,5,6,8,则它的方差为__________.【答案】1【分析】先求出这组数据的平均数,再由方差的计算公式计算方差.【详解】解:一组数据2,1,5,6,8, 这组数据的平均数为:1(24568)55x =++++=, ∴这组数据的方差为:2222221(25)(45)(55)(65)(85)45S ⎡⎤=-+-+-+-+-=⎣⎦. 故答案为:1.【点睛】。

海口市八年级上学期数学期末考试试卷

海口市八年级上学期数学期末考试试卷

海口市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分。

每小题只有一个 (共10题;共30分)1. (3分) (2019七下·谢家集期中) 在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,则目标的坐标可能是()A . (5,﹣4)B . (﹣1,﹣6)C . (﹣3,10)D . (7,3)2. (3分)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A . 7cmB . 8cmC . 7cm或3cmD . 3cm3. (3分)如图,矩形ABCD的对角线AC⊥OF,边CD在OE上,∠BAC=70°,则∠EOF等于()A . 10°B . 20°C . 30°D . 70°4. (3分)不等式x﹣2≤0的解集在数轴上表示正确的是()A .B .C .D .5. (3分)图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A . 51B . 49C . 76D . 无法确定6. (3分)如果一元一次不等式组的解集为x>3,则a的取值范围是()A . a>3B . a≥3C . a<3D . a≤37. (3分)如图,直线y=kx+b经过点A(﹣1,m)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b <0的解集为()A . x<﹣2B . ﹣2<x<﹣1C . ﹣2<x<0D . ﹣1<x<08. (3分)在平面直角坐标系中,点(﹣1,2)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (3分)若直角三角形的两条直角边长分别为3cm、4cm,则斜边上的高为()A . cmB . cmC . 5 cmD . cm10. (3分) (2018八上·东城期末) 如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A . 140°B . 100°C . 50°D . 40°二、填空题(本题有6小题,每小题4分,共24分) (共6题;共24分)11. (4分)小明从A地出发行走到B地,并从B地返回到A地,同时小张从B地骑车匀速到达A地后,发现忘带东西,立刻以原速返回取到东西后,再以原速赶往A地,结果与小明同时到达A地,如图为小明离A地距离s(单位:km)与所用时间t(单位:h)之间关系,则小明与小张第2次相遇时离A地________km.12. (4分) (2017八下·下陆期中) 命题“菱形是对角线互相垂直的四边形”的逆命题是 ________.13. (4分) (2017八上·启东期中) 知等腰三角形的两边长是5和12,则它的周长是________.14. (4分)我们学过的全等变换方式有________、________、________,生活中常用这三种图形变换进行图案设计.在图形的上述变换过程中,其________和________不变,只是________发生了改变.15. (4分) (2020八下·武汉期中) 如图,等腰三角形纸片ABC中,AD⊥BC与点D,BC=2,AD= ,沿AD 剪成两个三角形.用这两个三角形拼成平行四边形,该平行四边形中较长对角线的长为________.16. (4分) (2019八上·惠山期中) 如图在三角形纸片ABC中,已知∠ABC=90º,AC=5,BC=4,过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的点P处,折痕为MN,当点P在直线l上移动时,折痕的端点M、N也随之移动,若限定端点M、N分别在AB、BC边上(包括端点)移动,则线段AP长度的最大值与最小值的差为________.三、解答题(本题有8小题,共66分) (共8题;共66分)17. (6分)(2018·武进模拟) 解方程和不等式组:(1)(2)18. (6分)已知y-3与x成正比例,且x=2时,y=7,求:(1) y与x的函数关系式.(2)其图象与坐标轴的交点坐标.19. (6分) (2017八上·潮阳月考) 如图,点D、B分别在∠A的两边上,C是∠A内一点,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分别为E、F。

海口市八年级上学期数学期末考试试卷

海口市八年级上学期数学期末考试试卷

海口市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A .B .C .D .2. (2分)在3.14,,π和这四个实数中,无理数是()A . 3.14和B . π和C . 和D . π和3. (2分) (2017八下·南沙期末) 以下列各组数为边长首尾相连,能构成直角三角形的一组是()A . 2,3,4B . 1,2,C . 5,12,17D . 6,8,124. (2分) (2016八上·思茅期中) 等腰三角形的周长为16,其中一边长为6,则另两边长为()A . 6和4B . 5和5C . 6和6D . 6和4或5和55. (2分) (2020八上·崇左期末) 已知一个等腰三角形底边的长为5cm,一腰上的中线把其周长分成的两部分的差为3cm,则腰长为()A . 2cmB . 8cmC . 2cm或8cmD . 10cm6. (2分) (2020八下·灵璧月考) 如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于点D,若AC=5cm,则AE+DE等于()A . 3cmB . 4cmC . 5cmD . 6cm7. (2分)若正比例函数y=kx与y=2x的图象关于x轴对称,则k的值等于()A .B . -2C . -D . 28. (2分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为()A . 20kgB . 25 kgC . 28 kgD . 30 kg9. (2分)(2012·杭州) 如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A . 点B到AO的距离为sin54°B . 点B到AO的距离为tan36°C . 点A到OC的距离为sin36°sin54°D . 点A到OC的距离为cos36°sin54°10. (2分)(2020·自贡) 如图,在平行四边形中,,是锐角,于点E,F是的中点,连接;若,则的长为()A . 2B .C .D .二、填空题 (共9题;共9分)11. (1分) (2020八上·长安月考) 一个正数的两个平方根分别为和,则这个数为________.12. (1分) (2019九下·南关月考) 将635000精确到万位的结果是________.13. (1分) (2019八下·洛龙期中) 如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是________.14. (1分) (2017八下·桂林期末) 点P(2,3)关于x轴的对称点的坐标为________.15. (1分) (2017八上·秀洲月考) 点P(2,3)向下平移2个单位,所得点的坐标是________。

2016-2017第一学期海口市八年级数学期末检测题(含答案)

2016-2017第一学期海口市八年级数学期末检测题(含答案)

八年级数学 第1页(共6页)2016—2017学年度第一学期海口市八年级数学科期末检测题时间:100分钟 满分:100分 得分:一、选择题(每小题2分,共28分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1. 16的平方根是A .-4B .4C .±4D .±82.下列说法中,正确的是 A .9=±3B . -64的立方根是 -4C . -5的算术平方根是5D . 0.01的平方根是0.13.下列实数中,属于无理数的是A .74B .0C .312 D .0.3131131113 4.下列计算正确的是A .a 2·a 3=a 6B .3a 2-a 2=2C .a 8÷a 2=a 4D .(-2a )3=-8a 35. 计算(2xy )3÷2xy 2的结果是A .2yB .3x 2yC .4xyD .4x 2y6. 下列四个算式,计算结果为x 2-x -12的是A . (x +3)(x -4)B . (x -3)(x +4)C . (x -3)(x -4)D . (x +3)(x +4) 7. 已知x 2+kx +9可以用完全平方公式进行因式分解,则k 的值为A .-6B .3C .6D .±6八年级数学 第2页(共6页)8.若n 为大于0的整数,则(2n +1)2-(2n -1)2一定是A .6的倍数B .8的倍数C .12的倍数D .16的倍数9. 如图1,在△ABC 中,点D 在BC 上,若AD=BD=DC ,则∠BAC 等于A . 60°B . 80°C . 90°D . 100°10.如图2,在△ABC 中,AB=AC=2,∠B =60°,AD 平分∠BAC ,则AD 等于 A .1 B .2 C .3D .1.511.如图3,在△ABC 中,AB =AC ,DE 是AC 的垂直平分线,△BCD 的周长为24,BC =10,则AC 等于A .11B .12C .14D .1612. 如图4,AB ∥DE ,AC ∥DF ,AC =DF ,要使△ABC ≌△DEF 需再补充一个条件,下列条件中,不能..选择的是 A .AB =DE B .BC =EF C .EF ∥BC D .∠B =∠E13. 我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图5所示),若大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,则(a +b )2的值为 A .49 B .25 C .24 D .13 等车时间x /分钟 0<x ≤10 10<x ≤1515<x ≤2020<x ≤2525<x ≤30频数(等车人数)10 911155则旅客的等车时间不超过25分钟的频率为 A .0.9B .0.5C .0.3D .0.1图5 BAC图4FED图3ABCED 图1DABC图2D ABC八年级数学 第3页(共6页)二、填空题(每小题3分,共12分) 15.比较大小:3 .16. 若(m -3)2=4,则m 2-6m = .17. 如图6,在△ABC 中,∠C =90°,AB =10,BC =8,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,则△BED 的周长为 .18.如图7,在△ABC 中,AB =AC ,点D 、E 分别在边BC 、AC 上(均不与点A 、B 、C 重合),且∠1=∠C =40°,若BD =CE ,则∠BAD = 度. 三、解答题(共60分)19.计算(第(1)、(2)小题每题4分,第(3)小题7分,共15分) (1)(3x -2y )2-2x (3x -2y ); (2)(2a +1)(4a 2-2a +1);(3)先化简,再求值:(-x -2y )(x -2y )-(2y -x )2+(2x 3-4x 2y )÷2x ,其 中x =-3,31y .20.把下列多项式分解因式(每小题4分,共8分)(1)12xy 2-3x 3; (2)(x -2)(x -4)+1.图7ABCD E1图6ABCD E八年级数学 第4页(共6页)21.(8分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的统计图表(表1,图8.1,图8.2).根据以上信息完成下列问题:(1)统计表中的m = ,n = ; (2)补全条形统计图;(3)扇形统计图中“E ”类所对应的圆心角是 度.22.(8分)如图9,在6×8的正方形网格中,每个小正方形的边长都为1,△ABC 的顶点在格点上.(1)在△ABC 中,AB 的长为 ,AC 的长为 ;各类别人数分布比例 17% 35% AB CD E 图8.2 类别 正确字数x 人数 A 0≤x <8 16B 8≤x <16 20C 16≤x <24 34D 24≤x <32 mE 32≤x <40n表1 图8.1 0 20 40 60 80 人数 16 20 34八年级数学 第5页(共6页)(2)在网格中,直接画出所有与△ABC 全等的△DBC .23.(8分)如图10,AM ∥BN ,BC 是∠ABN 的平分线.(1)过点A 作AD ⊥BC ,垂足为O ,AD 与BN 交于点D . (要求:用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.) (2)求证:AC =BD .24.(13分)如图11.1,在△ABC 中,∠ACB =90°,AC =BC ,CD 为AB 边上的中线,点E 、F 分别在AC 、BC 边上,且ED ⊥DF . (1)求证:△CDE ≌△BDF ;(2)如图11.2,作EG ⊥AB 于G ,FH ⊥AB 于H ,求证:EG +FH =CD .图10A C BMNCABED F图11.1C ABED GHF图11.2图92016—2017学年度第一学期海口市八年级数学科期末检测题参考答案及评分标准一、CBCDD ADBCC CBAA二、15.>16. -5 17. 12 18.30三、19.(1)原式=9x2-12xy+4y2-6x2+4xy…(2分)八年级数学第6页(共6页)八年级数学 第7页(共6页)=3x 2-8xy +4y 2 …(4分)(2)原式= 8a 3-4a 2+2a +4a 2-2a +1 …(2分) =8a 3+1 …(4分)(3)原式=4y 2-x 2-4y 2+4xy -x 2+x 2-2xy …(4分)=-x 2+2xy …(5分)当x =-3,31 y 时,原式=-(-3)2+2×(-3)×31=-11. …(7分)20.(1)原式=3x (4y 2-x 2) …(2分) (2)原式=x 2-6x +9 …(2分)=3x (2y +x )(2y -x ))…(4分) =(x -3)2 …(4分)21.(1)m =70,n =60; …(4分) (2)补全条形统计图如图1; …(6分) (3)108. …(8分)22.(1)5,25; …(2分)(2)如图2,△D 1BC 、△D 2BC 、△D 3BC 即为所求. …(8分) 23.(1)如图3,AD 为所求(作图正确,并有痕迹.) …(2分) (2)∵ AM ∥BN ,∴ ∠ACB =∠CBN .∵ BC 是∠ABN 的平分线, ∴ ∠ABC =∠CBN ,∴ ∠ABC=∠ACB , ∴ AB =AC . …(4分)∵ AD ⊥BC ,∴ ∠1=∠2, …(5分) ∵ AM ∥BN ,∴ ∠2=∠3,∴ ∠1=∠3, …(6分) ∴ AB =BD , …(7分) ∴ AC =BD . …(8分)24.(1)∵ 在△ABC 中,∠ACB =90°,AC =BC ,CD 为AB 上的中线,∴ CD=BD ,∠DCE =∠B =45°,∠CDB =90°. …(3分)∵ ED ⊥DF ,∴ ∠EDF =90°,∴ ∠CDE +∠CDF =∠BDF +∠CDF =90° ∴ ∠CDE =∠BDF .∴ △CDE ≌△BDF (ASA ). …(6分)图1 图2 图3 A C B D OM N12 3 C ABEDFC AB E DGHF213(2)由(1)知,△CDE≌△BDF,∴DE=DF,∠1=∠2.∵EG⊥AB,FH⊥AB,CD⊥AB,且∠A=45°,∴∠EGD=∠DHF=90°, △AEG和△ADC均为等腰直角三角形,EG∥CD,∴∠1=∠3,∴∠3=∠2,∴△DEG≌△FDH(AAS). …(10分)∴DG=FH,EG=DH.∵EG=AG,∴EG+FH=AG+DG=AD.∵AD=CD,∴EG+FH=CD. …(13分) (注:用其它方法求解参照以上标准给分.)八年级数学第8页(共6页)。

20162017学年度上学期期末八年级数学试题含答案

20162017学年度上学期期末八年级数学试题含答案

2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。

【期末试卷】海南省海口市2017-2018学年 八年级数学上册 期末模拟卷8(含答案)

【期末试卷】海南省海口市2017-2018学年 八年级数学上册 期末模拟卷8(含答案)

2017-2018学年八年级数学上册期末模拟卷一、选择题:1.下列说法正确的个数是()①由三条线段组成的图形是三角形②三角形的角平分线是一条射线③连接两边中点的线段是三角形的中线④三角形的高一定在其内部A.0个B.1个C.2个D.3个2.下列运算正确的是()A.a2•a3=a6B.(a2)4=a6C.a4÷a=a3D.(x+y)2=x2+y23.若x、y是有理数,设N=3x2+2y2﹣18x+8y+35,则N()A.一定是负数B.一定不是负数C.一定是正数D.N的取值与x、y的取值有关4.下列运算正确的是( )A.(﹣a3)2=a5 B.(﹣a3)2=﹣a6C.(﹣3a2)2=6a4 D.(﹣3a2)2=9a45.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对6.图中为轴对称图形的是()A.(1 )(2)B.(1)(4)C.(2)(3)D.(3)(4)7.如果分式的值为零,那么x等于()A.1 B.﹣1 C.0 D.±18.下列从左到右的变形中是因式分解的有( )①x2﹣y2﹣1=(x+y)(x﹣y)﹣1;②x3+x=x(x2+1);③(x﹣y)2=x2﹣2xy+y2;④x2﹣9y2=(x+3y)(x﹣3y).A.1个B.2个C.3个D.4个9.已知a是方程x2+x﹣2015=0的一个根,则的值为()A.2014 B.2015 C.D.10.化简的结果是()A.x+1 B.C.x﹣1 D.11.如图,∠BAC=90°,AD⊥BC,则图中互余的角有( )A.2对B.3对C.4对D.5对12.已知Rt△ABC中,∠C=90°,AC=3,BC=4,AD平分∠BAC,则点B到AD的距离是()A.1.5 B.2 C.D.13.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A. =B. =C. =D. =14.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长()A.2 B.3 C.1 D.8二、填空题:15.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为 .16.若分式在实数范围内有意义,则x的取值范围是.17.如图,在△ABC中,AD=DE,AB=BE,∠A=92°,则∠CED= .18.若关于x的分式方程无解,则m的值为.三、解答题:19.因式分解:(1)(x-y)2-9(x+y)2; (2)18a3-2a;20.解分式方程:21.已知x2-2x=2,将下式先化简,再求值:(x-1)2+(x+3)(x-3)+(x-3)(x-1).22.先化简,再求值:,其中a2+3a﹣1=0.23.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.24.列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.25.在△ABC中,AB=AC,∠A=30°,将线段BC绕点B逆时针旋转60°得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.(1)如图1,直接写出∠ABD和∠CFE的度数;(2)图1中:AE和CF有什么数量关系?请说明理由;(3)如图2,连接CE,判断△CEF的形状并加说明理由.参考答案1. A2. C3. B4.D.5. C6. B7. B8. B.9. D10.A11.C.12.C.13.A14.A15.答案为:60°,116.答案是:x≠5.17.答案为:88°.18.答案为:1或±.19.(1)答案为:-4(2x+y)(x+2y).(2)原式=2a(3a+1)(3a-1)20.解:去分母得:4+(x+3)(x+2)=(x﹣1)(x﹣2),去括号得:4+x2+5x+6=x2﹣3x+2,移项合并得:8x=﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解;21.原式=3(x2-2x)-5=3×2-5=1.22.原式=÷=•=,由a2+3a﹣1=0,得到a2+3a=a(a+3)=1,则原式=.23.证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴BC=DE.24.解:设每人每小时的绿化面积x平方米,由题意,得,解得:x=2.5.经检验,x=2.5是原方程的解,且符合题意.答:每人每小时的绿化面积2.5平方米.25.解:(1)∵线段BC逆时针旋转旋转60°得到BD,∴∠CBD=60°,∵AB=AC,∠A=30°,∴∠ABC==75°,∴∠ABD=∠ABC﹣∠DBC=75°﹣60°=15°,∵BD平移得到EF,∴EF∥BD,∴∠AEF=∠ABD=15°,∵∠A=30°,∴∠CFE=∠A+∠AEF=30°+15°=45°;(2)AE=CF.理由:如图1,连结CD、DF,∵线段BC绕点B逆时针旋转60°得到线段BD,∴BD=BC,∠CBD=60°,∴△BCD是等边三角形,∴CD=BD,∵线段BD平移到EF,∴EF∥BD,EF=BD,∴四边形BDFE是平行四边形,EF=CD,∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∴∠ABD=∠ABC﹣∠CBD=15°=∠ACD,∴∠DFE=∠ABD=15°,∠AEF=∠ABD=15°,∴∠AEF=∠ACD=15°,∵∠CFE=∠A+∠AEF=30°+15°=45°,∴∠CFD=∠CFE﹣∠DFE=45°﹣15°=30°,∴∠A=∠CFD=30°,在△AEF和△FCD中∴△AEF≌△FCD(AAS),∴ΑE=CF;(3)△CEF是等腰直角三角,理由如下:如图2,过点E作EG⊥CF于G,∵∠CFE=45°,∴∠FEG=45°,∴EG=FG,∵∠A=30°,∠AGE=90°,∴EG=0.5AE,∵ΑE=CF,∴EG=0.5CF,∴FG=0.5CF,∴G为CF的中点,∴EG为CF的垂直平分线,∴EF=EC,∴∠CEF=2∠FEG=90°,∴△CEF是等腰直角三角形.。

海口市八年级上学期数学期末考试试卷

海口市八年级上学期数学期末考试试卷

海口市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·成都开学考) 下列说法正确的是()A . 169 的平方根是 13B . - 没有立方根C . 正数的两个平方根互为相反数D . -(-13)没有平方根2. (2分)下列运算正确的是()A .B .C .D .3. (2分)如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD 的是()A . AD=AEB . ∠AEB=∠ADCC . BE=CDD . AB=AC4. (2分)(2020·迁安模拟) 通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()A . (a-b)2=a2-2ab+b2B . (a+b)2=a2+2ab+b²C . 2a(a+b)=2a2+2abD . (a+b)(a-b)=a2-b²5. (2分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A .B . 2C . 3D .6. (2分)▱ABCD中,AD=8,∠BAD的平分线交BC于E,∠ADC的平分线交BC于F,且EF=2,则AB的长是()A . 5B . 3C . 3或5D . 2或37. (2分)如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角度数是()A . 36°B . 72°C . 108°D . 180°8. (2分)(2019·五华模拟) 已知如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,则DN+MN的最小值为()A . 9B . 10C . 11D . 129. (2分) (2019七下·下陆期末) 如图,将长方形纸条沿叠后,与交于点,若,则的度数为()A .B .C .D .10. (2分)一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α的度数为…()A . 30°B . 45°C . 60°D . 75°二、填空题 (共6题;共10分)11. (1分) (2015七下·常州期中) 若(x+2)(x﹣n)=x2+mx+8,则mn=________.12. (5分) (2017七下·萧山期中) 计算:3a3•a2﹣2a7÷a2= ________.13. (1分) (2020七下·防城港期末) 某班班主任把本班学生体育期末考试成绩绘制成扇形统计图,已知全班有40名学生,其中体育成绩优秀的有16人,则代表体育成绩优秀的扇形所对应的圆心角度数是________.14. (1分) (2019八下·东昌府期末) 如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是________.15. (1分) (2017九上·召陵期末) 矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.16. (1分)(2020·泰兴模拟) 因式分解:xy3-x3y=________.三、解答题 (共7题;共40分)17. (5分)(2020·深圳) 先化简,再求值:,其中a=2.18. (16分) (2020九上·覃塘期末) 某市为了了解初中学校“高效课堂”的有效程度,并就初中生在课堂上是否具有“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”等学习行为进行评价.为此,该市教研部门开展了一次抽样调查,并将调查结果绘制成尚不完整的条形统计图和扇形统计图(如图所示),请根据图中信息解答下列问题:(1)这次抽样调查的样本容量为________.(2)在扇形统计图中,“主动质疑”对应的圆心角为________度;(3)请补充完整条形统计图;(4)若该市初中学生共有万人,在课堂上具有“独立思考”行为的学生约有多少人?19. (2分) (2020八上·荣县期中) 已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;20. (5分) (2016八上·中堂期中) 已知:如图,AB=AD,BC=DC.求证:∠B=∠D.21. (2分) (2020九上·昆山月考) 如图,已知二次函数的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.(1)求线段BC的长;(2)当0≤y≤3时,请直接写出x的范围;(3)点P是抛物线上位于第一象限的一个动点,连接CP,当∠BCP=90o时,求点P的坐标.22. (7分) (2017八下·滦县期末) 如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求证:PC=PE;(2)图1中与∠EAP相等的角是________和________,则可求∠CPE=________°;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,请直接写出∠CPE=________°.23. (3分) (2018九上·大冶期末)(1)探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能证得EF =BE+DF,请写出推理过程;________②如图2,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系________时,仍有EF=BE+DF;(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2 ,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共10分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共7题;共40分)答案:17-1、考点:解析:答案:18-1、答案:18-2、答案:18-3、答案:18-4、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、考点:解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学 第1页(共6页)2016—2017学年度第一学期海口市八年级数学科期末检测题时间:100分钟 满分:100分 得分:一、选择题(每小题2分,共28分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1. 16的平方根是A .-4B .4C .±4D .±82.下列说法中,正确的是 A .9=±3B . -64的立方根是 -4C . -5的算术平方根是5D . 0.01的平方根是0.13.下列实数中,属于无理数的是A .74B .0C .312 D .0.3131131113 4.下列计算正确的是A .a 2·a 3=a 6B .3a 2-a 2=2C .a 8÷a 2=a 4D .(-2a )3=-8a 35. 计算(2xy )3÷2xy 2的结果是A .2yB .3x 2yC .4xyD .4x 2y6. 下列四个算式,计算结果为x 2-x -12的是A . (x +3)(x -4)B . (x -3)(x +4)C . (x -3)(x -4)D . (x +3)(x +4) 7. 已知x 2+kx +9可以用完全平方公式进行因式分解,则k 的值为A .-6B .3C .6D .±6八年级数学 第2页(共6页)8.若n 为大于0的整数,则(2n +1)2-(2n -1)2一定是A .6的倍数B .8的倍数C .12的倍数D .16的倍数9. 如图1,在△ABC 中,点D 在BC 上,若AD=BD=DC ,则∠BAC 等于A . 60°B . 80°C . 90°D . 100°10.如图2,在△ABC 中,AB=AC=2,∠B =60°,AD 平分∠BAC ,则AD 等于 A .1 B .2 C .3D .1.511.如图3,在△ABC 中,AB =AC ,DE 是AC 的垂直平分线,△BCD 的周长为24,BC =10,则AC 等于A .11B .12C .14D .1612. 如图4,AB ∥DE ,AC ∥DF ,AC =DF ,要使△ABC ≌△DEF 需再补充一个条件,下列条件中,不能..选择的是 A .AB =DE B .BC =EF C .EF ∥BC D .∠B =∠E13. 我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图5所示),若大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,则(a +b )2的值为 A .49 B .25 C .24 D .13 等车时间x /分钟 0<x ≤10 10<x ≤1515<x ≤2020<x ≤2525<x ≤30频数(等车人数)10 911155则旅客的等车时间不超过25分钟的频率为 A .0.9B .0.5C .0.3D .0.1图5 BAC图4FED图3ABCED 图1DABC图2D ABC八年级数学 第3页(共6页)二、填空题(每小题3分,共12分) 15.比较大小:3 .16. 若(m -3)2=4,则m 2-6m = .17. 如图6,在△ABC 中,∠C =90°,AB =10,BC =8,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,则△BED 的周长为 .18.如图7,在△ABC 中,AB =AC ,点D 、E 分别在边BC 、AC 上(均不与点A 、B 、C 重合),且∠1=∠C =40°,若BD =CE ,则∠BAD = 度. 三、解答题(共60分)19.计算(第(1)、(2)小题每题4分,第(3)小题7分,共15分) (1)(3x -2y )2-2x (3x -2y ); (2)(2a +1)(4a 2-2a +1);(3)先化简,再求值:(-x -2y )(x -2y )-(2y -x )2+(2x 3-4x 2y )÷2x ,其 中x =-3,31y .20.把下列多项式分解因式(每小题4分,共8分)(1)12xy 2-3x 3; (2)(x -2)(x -4)+1.图7ABCD E1图6ABCD E八年级数学 第4页(共6页)21.(8分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的统计图表(表1,图8.1,图8.2).根据以上信息完成下列问题:(1)统计表中的m = ,n = ; (2)补全条形统计图;(3)扇形统计图中“E ”类所对应的圆心角是 度.22.(8分)如图9,在6×8的正方形网格中,每个小正方形的边长都为1,△ABC 的顶点在格点上.(1)在△ABC 中,AB 的长为 ,AC 的长为 ;各类别人数分布比例 17% 35% AB CD E 图8.2 类别 正确字数x 人数 A 0≤x <8 16B 8≤x <16 20C 16≤x <24 34D 24≤x <32 mE 32≤x <40n表1 图8.1 0 20 40 60 80 人数 16 20 34八年级数学 第5页(共6页)(2)在网格中,直接画出所有与△ABC 全等的△DBC .23.(8分)如图10,AM ∥BN ,BC 是∠ABN 的平分线.(1)过点A 作AD ⊥BC ,垂足为O ,AD 与BN 交于点D . (要求:用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.) (2)求证:AC =BD .24.(13分)如图11.1,在△ABC 中,∠ACB =90°,AC =BC ,CD 为AB 边上的中线,点E 、F 分别在AC 、BC 边上,且ED ⊥DF . (1)求证:△CDE ≌△BDF ;(2)如图11.2,作EG ⊥AB 于G ,FH ⊥AB 于H ,求证:EG +FH =CD .图10A C BMNCABED F图11.1C ABED GHF图11.2图92016—2017学年度第一学期海口市八年级数学科期末检测题参考答案及评分标准一、CBCDD ADBCC CBAA二、15.>16. -5 17. 12 18.30三、19.(1)原式=9x2-12xy+4y2-6x2+4xy…(2分)八年级数学第6页(共6页)八年级数学 第7页(共6页)=3x 2-8xy +4y 2 …(4分)(2)原式= 8a 3-4a 2+2a +4a 2-2a +1 …(2分) =8a 3+1 …(4分)(3)原式=4y 2-x 2-4y 2+4xy -x 2+x 2-2xy …(4分)=-x 2+2xy …(5分)当x =-3,31 y 时,原式=-(-3)2+2×(-3)×31=-11. …(7分)20.(1)原式=3x (4y 2-x 2) …(2分) (2)原式=x 2-6x +9 …(2分)=3x (2y +x )(2y -x ))…(4分) =(x -3)2 …(4分)21.(1)m =70,n =60; …(4分) (2)补全条形统计图如图1; …(6分) (3)108. …(8分)22.(1)5,25; …(2分)(2)如图2,△D 1BC 、△D 2BC 、△D 3BC 即为所求. …(8分) 23.(1)如图3,AD 为所求(作图正确,并有痕迹.) …(2分) (2)∵ AM ∥BN ,∴ ∠ACB =∠CBN .∵ BC 是∠ABN 的平分线, ∴ ∠ABC =∠CBN ,∴ ∠ABC=∠ACB , ∴ AB =AC . …(4分)∵ AD ⊥BC ,∴ ∠1=∠2, …(5分) ∵ AM ∥BN ,∴ ∠2=∠3,∴ ∠1=∠3, …(6分) ∴ AB =BD , …(7分) ∴ AC =BD . …(8分)24.(1)∵ 在△ABC 中,∠ACB =90°,AC =BC ,CD 为AB 上的中线,∴ CD=BD ,∠DCE =∠B =45°,∠CDB =90°. …(3分)∵ ED ⊥DF ,∴ ∠EDF =90°,∴ ∠CDE +∠CDF =∠BDF +∠CDF =90° ∴ ∠CDE =∠BDF .∴ △CDE ≌△BDF (ASA ). …(6分)图1 图2 图3 A C B D OM N12 3 C ABEDFC AB E DGHF213(2)由(1)知,△CDE≌△BDF,∴DE=DF,∠1=∠2.∵EG⊥AB,FH⊥AB,CD⊥AB,且∠A=45°,∴∠EGD=∠DHF=90°, △AEG和△ADC均为等腰直角三角形,EG∥CD,∴∠1=∠3,∴∠3=∠2,∴△DEG≌△FDH(AAS). …(10分)∴DG=FH,EG=DH.∵EG=AG,∴EG+FH=AG+DG=AD.∵AD=CD,∴EG+FH=CD. …(13分) (注:用其它方法求解参照以上标准给分.)八年级数学第8页(共6页)。

相关文档
最新文档