浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第七章数理统计习题__偶数答案

合集下载

概率论与数理统计答案_浙江大学_张帼奋_主编

概率论与数理统计答案_浙江大学_张帼奋_主编

第一章 概率论的基本概念注意: 这是第一稿(存在一些错误)1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。

所以,(1)试验的样本空间共有9个样本点。

(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A 所包含的样本点为(0,a ),(1,a ),(2,a )。

(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B 所包含的样本点为(0,a ),(0,b ),(0,c )。

2、解 (1)AB BC AC 或ABC ABC ABC ABC ;(2)ABBC AC(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (3)ABC ABC ABC ;(4)AB C 或ABC ;(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生);3(1)错。

依题得()()()()0=-+=B A p B p A p AB p ,但空集≠B A ,故A 、B 可能相容。

(2)错。

举反例 (3)错。

举反例(4)对。

证明:由()6.0=A p ,()7.0=B p 知()()()()()3.03.1>-=-+=B A p B A p B p A p AB p ,即A 和B 交非空,故A 和B 一定相容。

4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-=;(3)A 不发生同时B 发生可表示为:A B ,又因为A B ,不相容,于是()()0.6P A B P B ==;5解:由题知()3.0=BC AC AB p ,()05.0=ABC P .因()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= 得,()()()()4.023.0=+=++ABC p BC p AC p AB p故A,B,C 都不发生的概率为()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1 ()05.04.02.11+--= 15.0=.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; (2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]

概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n
个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 0 , 1 ,..., 100n , 则 nn n
样本空间为
S=
k n
k
=
0,1, 2,⋯,100n
(2)样本空间 S={10,11,…},S 中含有可数无限多个样本点。 (3)设 1 表示正品,0 有示次品,则样本空间为
而 AB= {(1,6),(6,1)}。由条件概率公式,得
P(B
A)
=
P( AB) P( A)
∑200
P(B) = P( A2 ∪ A3 ∪⋯∪, A200)= P( Ai )
i=2
显然,这种解法太麻烦,用对立事件求解就很简单。令事件 B ={恰有 0 个次品或恰有
1 个次品},即 B = A0 ∪ A1 ,而
P(B)
=
P( A0

A1 )
=
P( A0 ) +
P( A1)
=
C 200 1100
{ } S= (x, y) x2 + y2 ≤ 1
------------------------------------------------------------------------------2.设 A,B,C 为三个事件,用 A,B,C 的运算关系表示下列事件。 (1)A 发生,B 与 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 都发生; (5)A,B,C 都不发生; (6)A,B,C 中不多于一个发生; (7)A,B,C 中不多于两个发生; (8)A,B,C 中至少有两个发生。

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答
两种方法如下: ①考虑整个样本空间。随机试验:掷两颗骰子,每颗骰子可能出现的点数都是 6 个,
即样本空间 S={ 62 个基本事件}。事件 AB={两颗骰子点数之间和为 7,且有一颗为 1 点},
两颗骰子点数之和为 7 的可能结果为 6 个,即
A={(1,6),(2,5),(3,4),(6,1),(5,2),(4,3)}
解 利用组合法计数基本事件数。从 10 人中任取 3 人组合数为 C130 ,即样本空间
{ } S= C130 = 120个基本事件 。
(1)令事件 A={最小号码为 5}。最小号码为 5,意味着其余号码是从 6,7,8,9,10 的 5
{ } 个号码中取出的,有 C52 种取法,故 A= C52 = 10个基本事件 ,所求概率为
其中由 P( AB) = P(BC) = 0, 而 ABC ⊂ AB 得 P( ABC) = 0 。
------------------------------------------------------------------------------6.在房间里有 10 个人,分别佩戴从 1 号到 10 号的纪念章,任选 3 人记录其纪念章的号码。 求 (1)最小号码为 5 的概率; (2)最大号码为 5 的概率。
∑200
P(B) = P( A2 ∪ A3 ∪⋯∪, A200)= P( Ai )
i=2
显然,这种解法太麻烦,用对立事件求解就很简单。令事件 B ={恰有 0 个次品或恰有
1 个次品},即 B = A0 ∪ A1 ,而
P(B)
=
P( A0

A1 )
=
P( A0 ) +
P( A1)
=
C 200 1100

概率论与数理统计课后答案(浙江大学版)

概率论与数理统计课后答案(浙江大学版)

P(
A
B),
P(
A
B),
P(
___
AB),
P[(
A
B)(
___
AB)]

解: P(A B) P(A) P(B) P(AB) 0.625,
P(AB) P[(S A)B] P(B) P(AB) 0.375 ,
___
P(AB) 1 P(AB) 0.875 ,
___
P[(A B)(AB)] P[(A B)(S AB)] P(A B) P[(A B)(AB)] 0.625 P(AB) 0.5
每一销售点是等可能的,每一销售点得到的提货单不限,求其中某一
2
概率论与数理统计及其应用习题解答
特定的销售点得到 k(k n) 张提货单的概率。
解:根据题意, n(n M ) 张提货单分发给 M 个销售点的总的可能分法
有 M n 种,某一特定的销售点得到 k(k n) 张提货单的可能分法有
C
k n
6 7 5 4 840 0.0408。
11 12 13 12 20592
9,一只盒子装有 2 只白球,2 只红球,在盒中取球两次,每次任取 一只,做不放回抽样,已知得到的两只球中至少有一只是红球,求另
一只也是红球的概率。
解:设“得到的两只球中至少有一只是红球”记为事件 A ,“另一只
也是红球”记为事件 B 。则事件 A 的概率为
P(N1
|
M)
P( N1 )P(M P(M )
|
N1 )
0.6 0.01 0.025
0.24

P( N 2
|
M)
P(N2 )P(M P(M )
|
N2)

浙江大学概率论与数理统计第七章

浙江大学概率论与数理统计第七章
第一节
点估计
一、点估计问题的提法
二、估计量的求法 三、小结
一、点估计问题的提法
设总体 X 的分布函数形式已知, 但它的一个 或多个参数为未知, 借助于总体 X 的一个样本来 估计总体未知参数的值的问题称为点估计问题. 例1
在某炸药制造厂, 一天中发生着火现象的
次数 X 是一个随机变量 , 假设它服从以 0 为参 数的泊松分布, 参数 为未知, 设有以下的样本值 , 试估计参数 .
n
(二) 取对数
n i 1
ln L( ) ln p( xi ; ) 或 ln L( ) ln f ( xi ; );
i 1
n
d ln L( ) d ln L( ) 对数似 (三) 对 求导 , 并令 0,然方程 d d ˆ. 解方程即得未知参数 的最大似然估计值
a b 2 A1 , 即 2 b a 12( A2 A1 ) .
解方程组得到a, b的矩估计量分别为
3 n 2 ( X X ) , ˆ A1 3( A2 A1 ) X a i n i 1
2
n 3 2 2 ˆ X ( X X ) . b A1 3( A2 A1 ) i n i 1
i 1 n
L( ) L( x1 , x2 ,, xn ; ) f ( xi ; ),
n
L( )称为样本的似然函数 . ˆ ) max L( x1 , x2 , , xn ; ). 若 L( x1 , x2 , , xn ;
i 1
ˆ ( x1 , x2 ,, xn ) 参数 的最大似然估计值 , ˆ ( X 1 , X 2 ,, X n ) 参数 的最大似然估计量 .

《概率论与数理统计》习题及答案 第七章

《概率论与数理统计》习题及答案  第七章

《概率论与数理统计》习题及答案第 七 章1.对某一距离进行5次测量,结果如下:2781,2836,2807,2765,2858(米). 已知测量结果服从2(,)N μσ,求参数μ和2σ的矩估计.解 μ的矩估计为ˆX μ=,2σ的矩估计为22*211ˆ()ni i X X S n σ==-=∑ 1(27812836280727652858)2809.05X =++++=,*215854.01170.845S =⨯=所以2ˆ2809,1170.8μσ== 2.设12,,,n X X X 是来自对数级数分布1(),(01,1,2,)(1)kp P X k p k lu p k==-<<=-的一个样本,求p 的矩估计.解 111111ln(1)ln(1)ln(1)1k kk k p p p p p p p μ∞∞==-==-=-⋅----∑∑ (1) 因为p 很难解出来,所以再求总体的二阶原点矩121111ln(1)ln(1)ln(1)kk k x pk k k p p kp kp x p p p μ∞∞∞-===='-⎛⎫==-=- ⎪---⎝⎭∑∑∑ 21ln(1)1ln(1)(1)x pp x p p x p p ='⎡⎤=-=-⋅⎢⎥----⎣⎦ (2) (1)÷(2)得 121p μμ=- 所以 212p μμμ-= 所以得p 的矩估计21221111n i i n i i X X X n p X n α==-==-∑∑3.设总体X 服从参数为N 和p 的二项分布,12,,,n X X X 为取自X 的样本,试求参数N 和p 的矩估计 解 122,(1)()Np Np p Np μμ⎧=⎪⎨=-+⎪⎩ 解之得1/N p μ=, 21(1)p Np μμ-+=, 即1N pμ=,22111p μμμ-=-,所以 N 和p 的矩估计为ˆX N p=,*21S p X =-. 4.设总体X 具有密度11(1)1,,(;)0,.Cx x C f x θθθθ-+⎧>⎪=⎨⎪⎩其他其中参数01,C θ<<为已知常数,且0C >,从中抽得一个样本,12,,,n X X X ,求θ的矩估计解11111111111CCEX C x dx C xθθθθμθθθ+∞--+∞===-⎰111()11C C C C θθθθ-=-⋅=--, 解出θ得11,Cθμ=-92 于是θ的矩估计为 1C Xθ=-. 5.设总体的密度为(1),01,(;)0,.x x f x ααα⎧+<<⎪=⎨⎪⎩其他试用样本12,,,n X X X 求参数α的矩估计和极大似然估计.解 先求矩估计:111210011(1),22EX x dx x ααααμααα++++==+==++⎰解出α得 1112,1μαμ-=- 所以α的矩估计为 121XX α-=-. 再求极大似然估计: 1121(,,;)(1)(1)()nn n i n i L X X x x x x ααααα==+=+∏,1ln ln(1)ln nii L n xαα==++∑,1ln ln 01nii d L nx d αα==++∑,解得α的极大似然估计: 1(1)ln nii nxα==-+∑.6.已知总体X 在12[,]θθ上服从均匀分布,1n X X 是取自X 的样本,求12,θθ的矩估计和极大似然估计.解 先求矩估计: 1212EX θθμ+==,22222211211222()()1243EX θθθθθθθθμ-+++==+=解方程组121221122223θθμθθθθμ⎧+=⎪⎪⎨++⎪=⎪⎩得11θμ=±2123(θμμμ=-注意到12θθ<,得12,θθ的矩估计为*1X θ=-,*2X θ=.再求极大似然估计 1121212111(,,;,)()nn ni L X X θθθθθθ===--∏,1122,,,n x x x θθ≤≤,由极大似然估计的定义知,12,θθ的极大似然估计为11(1)min(,,)n X X X θ==;21()max(,,)n n X X X θ==.7.设总体的密度函数如下,试利用样本12,,,n x x x ,求参数θ的极大似然估计.(1)1(),0,(;)0,.x x e x f x αθαθαθα--⎧>⎪=⎨⎪⎩其它;已知(2)||1(;),,2x f x e x θθθ--=-∞<<+∞-∞<<+∞. 解 (1)111111(,,;)()()ni i i nx x n nn i n i L X X x ex x eααθθααθθαθα=----=∑==∏111ln (;)ln ln (1)ln nnn i i i i L X X n n x x αθθααθ===++--∑∑1ln 0ni i d L nx d αθθ==-∑解似然方程1ni i nx αθ==∑,得θ的极大似然估计94 1.ni i nx αθ==∑(2)1||||1111(;)22ni i i n x x n n i L X X e eθθθ=----=∑==∏由极大似然估计的定义得θ的极大似然估计为样本中位数,即1()2()(1)22,1(),.2n n n X n X X n θ++⎧⎪⎪=⎨⎪+⎪⎩为奇数,为偶数8.设总体X 服从指数分布(),,(;)0,.x ex f x θθθ--⎧≥⎪=⎨⎪⎩其他试利用样本12,,,n X X X 求参数θ的极大似然估计.解 1()11(,,;),,1,2,,.ni i i nx n x n i i L X X eex i n θθθθ=-+--=∑==≥=∏1ln nii L n Xθ==-∑ln 0d Ln d θ=≠ 由极大似然估计的定义,θ的极大似然估计为(1)x θ= 9.设12,,,n X X X 来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,试求未知参数p 的极大似然估计. 解 1111(,,;)(1)(1)ni i i nx nx n n i L x x p p p p p =--=∑=-=-∏,1ln ln ()ln(1),nii L n p Xn p ==+--∑1ln 0,1ni i X nd L n dp p p=-=--∑解似然方程11nii n X n p p=-+=-∑, 得p 的极大似然估计1p X=。

概率论与数理统计教程第七章答案

概率论与数理统计教程第七章答案

.第七章假设检验7.1设总体J〜N(4Q2),其中参数4, /为未知,试指出下面统计假设中哪些是简洁假设,哪些是复合假设:(1) W o: // = 0, σ = 1 ;(2) W o√∕ = O, σ>l5(3) ∕70:// <3, σ = 1 ;(4) % :0< 〃 <3 ;(5)W o :// = 0.解:(1)是简洁假设,其余位复合假设7.2设配么,…,25取自正态总体息(19),其中参数〃未知,无是子样均值,如对检验问题“0 :〃 = 〃o, M :4工从)取检验的拒绝域:c = {(x1,x2,∙∙∙,x25)r∣x-χ∕0∖≥c},试打算常数c ,使检验的显著性水平为0. 05_ Q解:由于J〜N(〃,9),故J~N(",二)在打。

成立的条件下,一/3 5cP o(∖ξ-^∖≥c) = P(∖ξ-μJ^∖≥-)=2 1-Φ(y) =0.05Φ(-) = 0.975,-= 1.96,所以c=L176°3 37. 3 设子样。

,乙,…,25取自正态总体,cr:已知,对假设检验%邛=μ0, H2> /J。

,取临界域c = {(X[,w,…,4):片>9)},(1)求此检验犯第一类错误概率为α时,犯其次类错误的概率夕,并争论它们之间的关系;(2)设〃o=0∙05, σ~=0. 004, a =0.05, n=9,求"=0.65 时不犯其次类错误的概率。

解:(1)在儿成立的条件下,F~N(∕o,军),此时a = P^ξ≥c^ = P0< σo σo )所以,包二为册=4_,,由此式解出c°=窄4f+为% ∖∣n在H∣成立的条件下,W ~ N",啊 ,此时nS = %<c°) = AI。

气L =①(^^~品)二①匹%=①(2δξ^历σoA∣-σ+A)-A-------------- y∕n)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l
,
,
3
2
3 1
3 1
0,
解得 0.
ˆ ˆ
3, 8 即为所求。 1. 4
6
解:(1) EX
1 0
x
1 xdx
1 2


ˆ 1 ˆ 2
X
得ˆ
2X 1
1 X

的矩估计量。
L ,
n
i 1
f
xi,
1n
n
i 1
0,
xi ,
0 x 1, 其他。
l
,
ln
L
,
n
ln
注意: 这是第一稿(存在一些错误) 第七章数理统计习题__偶数.doc
4 解:矩估计:
1 0 1 2 1 2 2 ,
2 2 2 2 2 12 2 2 1 ,
A1 1,
B2
3 4
,

2 2ˆ ˆ
2 ˆ
2 2ˆ ˆ 1, 2ˆ ˆ 1 2 ˆ 2ˆ ˆ 2
故ˆ
3 2
X

的矩估计量,且为无偏估计。
L
n
i 1
f
xi ,
22nn
n
i 1
xi ,
0,
0 x , 其他。
显然 L 关于 单调递减。故 取最小值时 L 最大。
又 不小于 max X1,, X n ,故ˆ2 Xn max X1,, X n 为 的极大似然估计。

f Xn
x,
22nn
1
n i 1
xi
,
x ,
0,
其他。
n
令 l n
xi
i 1
2
0 得ˆ 1 n
n i 1
xi
为 的极大似然估计。
8(1)
X
,E
1 n
n i 1
Xi
2
1 n
n i 1
E
Xi
2
1 n
n i 1
EX i 2 2EX i 2
2
n1
(2) E k i1
X i1 X i
2
k
n i 1
E
X i1 X i
n
2 k
i 1
EX i1 2 2EX i1EX i EX i 2
2 n 1 k 2

k
2
1
n 1
即为所求。
10(1)依题,
Xi ,Yj
与 Zl
相互独立, ET
aES12
bES
2 2
cES
2 3
a
b c 2
故T 是 2 的无偏估计的充要条件为 a b c 1
取 X (1) 为关于 的区间估计问题的枢轴量。
(2)设常数 a b ,满足 P a X (1) b 1 ,即 P X (1) b X (1) a 1
此时,区间的平均长度为
L
b
a
,易知,取
a
1 n
ln
1
2

b
1 n
ln
2
时,
区间的长度最短,从而 的置信水平为1 的置信区间为
L a2 b2 c2 a b c 1

23

L a
2a
0,
L b
b
0,
L 2c 0, c 3
a b c 1.

a b c
1 6 1 3 1 2
, , .
即为所求。
12
f
x,
2
x
2
,
0 x , , 0,
0, 其他。
EX
xf
x, dx
2 3
100
xf
x, dx
100
,令 100 ˆ
X
得ˆ
2X
100 为
的矩估计量。
2
2
L
n
i 1
f
xi ,
1
100
n
,因 0
100
,要使
L
最大,则
应取最大。
又 不能大于 min x1,, xn ,故 的极大似然估计为ˆ min X1,, X n
(5) EX xf x, dx 0 ,故 X 0 。
的置信水平为
99%的置信区间为
n 1 S 2
2 0.005
n 1
,
n
2 0.095
1S 2 n 1

n
16

S
2.2

2 0.005
15

2 0.095
15
的值代人得
2 的置信水平为 99%的置信区间为 2.213,15.779 。
24
已知 n1 12 , X
13.8 , S1 1.2 , n2
又 不大于 min X1,, X n ,故 ˆ1 X1 min X1,, X n 为 的极大似然估计。
因 F x, x etdt 1 ex
易知 f X1
xi ,
nen
x
,
0,
x , 其他。
所以 Eˆ1 EX 1
xf X1
xi ,
dx
1 n
,即 ˆ1 是
的有偏估计。
9 DX 4n
2 8n
故 P
ˆ1
1
D ˆ1 2
1
2 8n
1
,故ˆ1

的相合估计。
(2)
L
n
i 1
f
xi ,
2n 2n
n
i 1
xi
易知 L 为 的单调递减函数,故 取最小值时, L 取最大值。
又 不小于 max X1,, X n ,故ˆ2 Xn max X1,, X n 为 的极大似然估计。
15 ,Y
12.9 , S2
1.5 , 2 1
2 2
(1) 1
2
的置信水平为
95%的置信区间为
X
Y
t0.025
n1
n2
1S w
1 n1
1 n2
其中
Sw2
n1
1 S12 n2 1S22
n1 n2 2
,查
EXCEL
表得 t0.025
26 的值,将各值代人得
1 2 的置信水平为 95%的置信区间为 0.198,1.998
b
b2 4ac , 1 b 2a
b2 4ac
由已知资料计算得
a
n
z2 0.025
60 1.962
63.8416

b
2nx
z2 0.025
2 60
20 60
1.96 2
43.8416

c
nx
2
60
20 60
2
6.67
,故所求的置信区间为 0.227, 0.459

f Xn
x,
22nn x2n1, 0,
0 x , 其他。

Eˆ2
EX n
2n 2n 1
,故ˆ2

的有偏估计。
Dˆ2
DX n
EX
n
2
EX n
2
n
n 2
1 2n
12
所以 P
ˆ2
1
D ˆ2 2
1
n
n 2
12n 12
2
1
故ˆ2 为 的相合估计。
18(1)因 FX(1) x P X (1) x P X (1) x 1 e nx 与参数 无关,故可
ˆ1*
1
D
ˆ
* 1
2
1
1 n2
2
1
P ˆ2
1
D ˆ2
2
1
1 n 2
1
故 ˆ1* 与 ˆ2 为 的相合估计。
16(1) EX
0
x
2
x
2
dx
2 3
,故 ˆ1
3 2
X

的矩估计量,且为无偏估计。
DX EX 2 EX 2
0
x2
2x 2
dx
2 3
2
2 18
Dˆ1
9 DX 4ຫໍສະໝຸດ X得ˆ2X X

的矩估计量。
L
n
f i 1
xi ,
n 2n
n
i 1
xi 1,
0,
0 x 2, 其他。
l
ln
L
n
ln
n
ln
2
1
n
ln
i 1
x
i,
0 x 2,
0,
其他。

l
n
n
ln
2
n
ln xi 0 得,ˆ
i 1
n
n
n ln 2
ln xi
为 的极大似然估计。
i 1
(4) EX
var X EX 2 2 2 ,
由 2ˆ2 1 n n i1
Xi X
2
1 n
n i 1
X
2 i

0得
n
Xi2
ˆ i1 为 的矩估计量。 2n
L
n
f i 1
xi ,
1 n 2n
n
Xi
i1
e
,
0,
x , 其他。

l
ln L
n ln 2 n ln
F0.975 15,19
查 EXCEL 表得 F0.025 15,19 和 F0.975 15,19 的值,将各值代人得
相关文档
最新文档