大学物理上答案浙江大学出版社第八章

合集下载

大学物理第五版上册习题集答案

大学物理第五版上册习题集答案

当t = 3s时:v = 2.7 m s
由牛顿第二定律有:因为a = 0.3 + 0.4 x = v dv dx
所以:(0.3 + 0.4x)dx = v ⋅ dv
x
v
∫ (0.3 + 0.4x)dx = ∫ v ⋅ dv
0
0
得: v = 0.6x + 0.4x2 ⇒ v = 5 m s
10、答:(1) 设 A 射入 B 内,A 与 B 一起运动的初速率为v 0 ,则由动量守恒
∫ ∫ ∫ ∫ V=
R
r E1 ⋅ dr +

R E2 ⋅ dr =
R Qr dr + r 4πε 0 R3
∞ Q ⋅ dr = Q(3R 2 − r 2 )
R 4πε 0r 2
8πε 0 R3
12、(1)解答:建立以 A 作为坐标原点,AB 作为 x 轴的坐标系,则由点电荷叠加原理
v dE
=
k
dq r2
2、[解答]圆盘对水平面的压力为 N = mg ,
压在水平面上的面积为 S = πR 2 ,压强为 p = N S = mg πR 2 .当圆盘滑动时,在盘上取 一 半 径 为 r 、 对 应 角 为 dθ 面 积 元 , 其 面 积 为 dS = rdθdr , 对 水 平 面 的 压 力 为 dN = pdS = prdrdθ ,所受的摩擦力为 df = μdN = μprdrdθ ,其方向与半径垂直,摩擦
ω = 6mv0 (M + 3m)l
4
9、[解答]子弹射入后系统的转动惯量为: J = 1 Ml 2 + m( 3 l)2 = 0.054
3
4
( 1 ) 子 弹 摄 入 过 程 中 系 统 角 动 量 守 恒 , 有 : mv( 3 l) = Jω 4

大学物理(上)课后习题答案

大学物理(上)课后习题答案

第1章 质点运动学 P211.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计。

⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1)j t t i t r)4321()53(2-+++=m⑵ 1=t s,2=t s 时,j i r5.081-= m ;2114r i j =+m∴ 213 4.5r r r i j ∆=-=+m⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404r r r i j i j t --∆+====+⋅∆-v ⑷ 1d 3(3)m s d ri t j t-==++⋅v ,则:437i j =+v 1s m -⋅ (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44ja j t --∆====⋅∆v v v (6) 2d 1 m s d a j t-==⋅v这说明该点只有y 方向的加速度,且为恒量。

1.9 质点沿x 轴运动,其加速度和位置的关系为226a x =+,a 的单位为m/s 2,x 的单位为m 。

质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。

解:由d d d d d d d d x a t x t x===v v v v 得:2d d (26)d a x x x ==+v v 两边积分210d (26)d xx x =+⎰⎰vv v 得:2322250x x =++v∴ 1m s -=⋅v1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度的方向和半径成45°角时,其角位移是多少?解: t tt t 18d d ,9d d 2====ωβθω ⑴ s 2=t 时,2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ︒==即:βωR R =2,亦即t t 18)9(22=,解得:923=t 则角位移为:322323 2.67rad 9t θ=+=+⨯= 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。

大学物理课后习题答案(上册)

大学物理课后习题答案(上册)
解:假设墙壁对小球的压力为N1,木板对小球的压力为N2。
由受力分析图可知:
所以当所以 增大,小球对木板的压力为N2将减小;
同时:
所以 增大,小球对墙壁的压力 也减小。
2-2. 质量分别为m1和m2的两滑块A和B通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度aA和aB分别为多少?
解:(1)轨道方程为
这是一条空间螺旋线。
在O 平面上的投影为圆心在原点,半径为R的圆,螺距为h
(2)
(3)
思考题1
1-1. 质点作曲线运动,其瞬时速度为 ,瞬时速率为 ,平均速度为 ,平均速率为 ,则它们之间的下列四种关系中哪一种是正确的?
(1) ;(2) ;(3) ;(4)
答: (3)
1-2. 质点的 关系如图,图中 , , 三条线表示三个速度不同的运动.问它们属于什么类型的运动?哪一个速度大?哪一个速度小?
解:在绳子中距离转轴为r处取一小段绳子,假设其质量为dm,可知: ,分析这dm的绳子的受力情况,因为它做的是圆周运动,所以我们可列出: 。
距转轴为r处绳中的张力T(r)将提供的是r以外的绳子转动的向心力,所以两边积分:
2-3. 已知一质量为 的质点在 轴上运动,质点只受到指向原点的引力作用,引力大小与质点离原点的距离 的平方成反比,即 , 是比例常数.设质点在 时的速度为零,求质点在 处的速度的大小。
解:由题意和牛顿第二定律可得:
再采取分离变量法可得: ,
两边同时取积分,则:
所以:
2-4. 一质量为 的质点,在 平面上运动,受到外力 (SI)的作用, 时,它的初速度为 (SI),求 时质点的速度及受到的法向力 .

大学物理学第版修订版邮电大学出版社上册第八章习题答案

大学物理学第版修订版邮电大学出版社上册第八章习题答案

大学物理学第版修订版邮电大学出版社上册第八章习题答案集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]习题8 选择题(1) 关于可逆过程和不可逆过程有以下几种说法:① 可逆过程一定是准静态过程.② 准静态过程一定是可逆过程.③ 不可逆过程发生后一定找不到另一过程使系统和外界同时复原.④ 非静态过程一定是不可逆过程.以上说法,正确的是:[](A) ①、②、③、④. (B) ①、②、③.(C) ②、③、④. (D) ①、③、④.[答案:D. 准静态过程不一定是可逆过程.因准静态过程中可能存在耗散效应,如摩擦、粘滞性、电阻等。

](2) 热力学第一定律表明:[](A) 系统对外做的功不可能大于系统从外界吸收的热量.(B) 系统内能的增量等于系统从外界吸收的热量.(C) 不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量.(D) 热机的效率不可能等于1.[答案:C 。

热力学第一定律描述个热力学过程中的能量守恒定性质。

](3) 如题图所示,bca 为理想气体绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是: [ ](A) b 1a 过程放热,做负功;b 2a 过程放热,做负功.(B) b 1a 过程吸热,做负功;b 2a 过程放热,做负功.(C) b 1a 过程吸热,做正功;b 2a 过程吸热,做负功.(D) b 1a 过程放热,做正功;b 2a 过程吸热,做正功.[答案:B 。

b 1acb 构成正循环,ΔE = 0,A 净 > 0,Q = Q b 1a + Q acb = A 净 >0,但 Q acb = 0,∴ Q b 1a >0 吸热; b 1a 压缩,做负功b 2a cb 构成逆循环,ΔE = 0,A 净 < 0,Q = Q b 2a + Q acb = A 净 <0,p但Q acb= 0,∴ Q b2a <0 放热 ; b2a压缩,做负功](4) 根据热力学第二定律判断下列哪种说法是正确的.[](A) 功可以全部变为热,但热不能全部变为功.(B) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体.(C) 气体能够自由膨胀,但不能自动收缩.(D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量.[答案:C. 热力学第二定律描述自然热力学过程进行的条件和方向性。

大学物理上册习题答案

大学物理上册习题答案

大学物理上册习题答案大学物理上册习题答案大学物理是一门重要的基础课程,涵盖了广泛的知识领域,从力学到热学,从电磁学到光学。

学生们通过学习这门课程,可以掌握自然界中的物质和运动规律,培养逻辑思维和问题解决能力。

然而,对于初学者来说,物理习题往往是一个难题。

因此,在这篇文章中,我将给出一些大学物理上册习题的答案,希望能够帮助学生们更好地理解和掌握物理知识。

1. 问题:一个质点以初速度v0匀速沿水平方向运动,经过一段时间t后,它的速度变为v。

求加速度a。

答案:根据匀加速直线运动的公式v = v0 + at,将题目中的数据代入,得到v = v0 + at。

解方程得到a = (v - v0) / t。

2. 问题:一个质点以初速度v0匀速沿水平方向运动,经过一段时间t后,它的位移变为s。

求加速度a。

答案:根据匀加速直线运动的公式s = v0t + (1/2)at^2,将题目中的数据代入,得到s = v0t + (1/2)at^2。

解方程得到a = 2(s - v0t) / t^2。

3. 问题:一个质点以初速度v0匀速沿斜面下滑,经过一段时间t后,它的速度变为v。

求加速度a。

答案:根据斜面下滑运动的公式v = v0 + gt,将题目中的数据代入,得到v = v0 + gt。

解方程得到a = (v - v0) / t。

4. 问题:一个质点以初速度v0自由落体运动,经过一段时间t后,它的位移变为s。

求加速度a。

答案:根据自由落体运动的公式s = v0t + (1/2)gt^2,将题目中的数据代入,得到s = v0t + (1/2)gt^2。

解方程得到a = 2(s - v0t) / t^2。

5. 问题:一个质点以初速度v0匀速沿水平方向运动,经过一段时间t后,它的速度变为v。

如果加速度为a,求位移s。

答案:根据匀加速直线运动的公式v = v0 + at,将题目中的数据代入,得到v = v0 + at。

解方程得到s = v0t + (1/2)at^2。

大学物理教程 上课后习题 答案

大学物理教程 上课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让瞧的题)27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1) 质点的运动轨迹;(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度与加速度。

解:(1)由运动方程消去时间t 可得轨迹方程,将t =,有21)y =或 1=(2)将1t s =与2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小 231r =+=(3) 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt==, 2y y dv a dt == 22a i j =+当2t s =时,速度与加速度分别为42/v i j m s =+22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。

求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为sin cos d rv R ti R t j dtωωωω==-+ (2)质点的速率为v R ω==速率的变化率为0dvdt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。

求质点在t 时刻的法向加速度n a 的大小与角加速度β的大小。

解 由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。

大学物理学上册习题解答完整版

大学物理学上册习题解答HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1)位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等(2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么(4)质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) (6)r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt=各代表什么运动? (7)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a = 你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9)(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

大学物理浙江大学答案

大学物理浙江大学答案【篇一:1992-2016年浙江大学820普通物理考研真题及答案解析汇编】我们是布丁考研网浙大考研团队,是在读学长。

我们亲身经历过浙大考研,录取后把自己当年考研时用过的资料重新整理,从本校的研招办拿到了最新的真题,同时新添加很多高参考价值的内部复习资料,保证资料的真实性,希望能帮助大家成功考入浙大。

此外,我们还提供学长一对一个性化辅导服务,适合二战、在职、基础或本科不好的同学,可在短时间内快速把握重点和考点。

有任何考浙大相关的疑问,也可以咨询我们,学长会提供免费的解答。

更多信息,请关注布丁考研网。

以下为本科目的资料清单(有实物图及预览,货真价实): 2017年浙江大学《普通物理》全套资料包含:一、浙江大学《普通物理》历年考研真题及答案 2016年浙江大学《普通物理》考研真题(含答案解析)2014年浙江大学《普通物理》考研真题 2012年浙江大学《普通物理》考研真题(含答案解析)2011年浙江大学《普通物理》考研真题(含答案解析) 2010年浙江大学《普通物理》考研真题(含答案解析) 2009年浙江大学《普通物理》考研真题(含答案解析) 2008年浙江大学《普通物理》考研真题(含答案解析) 2007年浙江大学《普通物理》考研真题(含答案解析) 2006年浙江大学《普通物理》考研真题(含答案解析)2005年浙江大学《普通物理》考研真题(含答案解析) 2004年浙江大学《普通物理》考研真题(含答案解析)2003年浙江大学《普通物理》考研真题(含答案解析)2002年浙江大学《普通物理》考研真题(含答案解析)2001年浙江大学《普通物理》考研真题(含答案解析)2000年浙江大学《普通物理》考研真题1999年浙江大学《普通物理》考研真题1998年浙江大学《普通物理》考研真题1997年浙江大学《普通物理》考研真题1996年浙江大学《普通物理》考研真题1995年浙江大学《普通物理》考研真题1994年浙江大学《普通物理》考研真题1993年浙江大学《普通物理》考研真题1992年浙江大学《普通物理》考研真题二、浙江大学《大学物理及实验》期中期末试题汇编三、浙江大学《普通物理》复习笔记1、浙江大学《普通物理》考研笔记此笔记是刚考上的2016届研究生在对浙大的普物课本仔细研读和对课后习题以及真题认真分析解答的基础上整理而成的公式定律总结和部分解题技巧。

浙江大学大学物理答案

浙江大学大学物理答案【篇一:11-12-2大学物理乙期末试题b】《大学物理乙(上)》课程期末考试试卷 (b)开课分院:基础部,考试形式:闭卷,允许带非存储计算器入场考试日期:2012年月日,考试所需时间: 120 分钟考生姓名学号考生所在分院:专业班级: .一、填空题(每空2分,共50分):1、一个0.1kg的质点做简谐振动,运动方程为x(t)?0.2cos3t m,则该质点的最大加速度amax,质点受到的合力随时间变化的方程f(t。

2、一质点作简谐振动,振幅为a,初始时具有振动能量2.4j。

当质点运动到a/2处时,质点的总能量为 j,其中动能为j。

3、在宁静的池水边,你用手指以2hz的频率轻叩池面,在池面上荡起水波,波速为2m/s,则这些波的波长为 m。

4、两列波在空间相遇时能够产生干涉现象的三个条件为:,振动方向相同,初相位差恒定。

5、如图所示,在均匀介质中,相干波源a和b相距3m,它们所发出的简谐波在ab连线上的振幅均为0.4m,波长均为2m,且a为波峰时b恰好为波谷,那么ab连线中点的振幅为 m,在ba延长线上,a点外侧任一点的振幅为m。

6、已知空气中的声速340m/s,一辆汽车以40m/s的速度驶近一静止的观察者,汽车喇叭的固有频率为555hz,则观察者听到喇叭的音调会更________(填“高”或“低”),其频率为____________ hz。

(请保留三位有效数字)......7、已知800k时某气体分子的方均根速率为500m/s,当该气体降温至200k时,其方均根速率为__________m/s。

8、体积为2?10?3m3的理想气体,气体分子总数为5.4?1022个,其温度为362k,则气体的压强为_________________pa。

9、麦克斯韦速率分布曲线下的面积恒等于_________。

10、一定量氢气在500k的温度下,分子的平均平动动能为______________________j,分子的平均转动动能为________________________j。

大学物理习题答案解析第八章

第八章 电磁感应 电磁场8 -1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( ) (A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向 (C ) 线圈中感应电流为逆时针方向 (D ) 线圈中感应电流方向无法确定分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).8 -2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流 (B ) 铜环中有感应电流,木环中有感应电流 (C ) 铜环中感应电动势大,木环中感应电动势小 (D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2的变化电流且,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A ) , (B ) , (C ),ti t i d d d d 21<2112M M =1221εε=2112M M ≠1221εε≠2112M M =1221εε<(D ) ,分析与解 教材中已经证明M21 =M12 ,电磁感应定律;.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ). 8 -5 下列概念正确的是( ) (A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) ,因而线圈的自感系数与回路的电流成反比 (D ) ,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为,求在时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成,其中称为磁链. 解 线圈中总的感应电动势当 时,.8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.2112M M =1221εε<t i M εd d 12121=tiM εd d 21212=LI Φm =LI Φm =()Wb π100sin 100.85t Φ⨯=s 100.12-⨯=t tψt ΦN ξd d d d -=-=ΦN ψ=()()t tΦNξπ100cos 51.2d d =-=s 100.12-⨯=t V 51.2=ξtId d分析 本题仍可用法拉第电磁感应定律来求解.由于回路处在非均匀磁场中,磁通量就需用来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则,所以,总磁通量可通过线积分求得(若取面元,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式求解.解1 穿过面元dS 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为tΦξd d -=⎰⋅=SΦS B d ()B B x =x d S d d =y x S d d d =tl ME M d d -=()x d xIμx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B ()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd=-+==⎰⎰⎰tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-=43ln π20dI μΦ=43ln π20d μI ΦM ==当电流以变化时,线圈中的互感电动势为 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢?此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量,它表现为变量I 和ξ的二元函数,将Φ代入 即可求解,求解时应按复合函数求导,注意,其中,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值.问此均匀磁场的磁感强度B 的值为多少? 分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为因此,流过导体截面的电量为则 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.tld d tI d μt I ME d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-=()ξf ΦS,1d =⋅=⎰S B tΦE d d -=v =tξd d 54.010C q -=⨯NBS NBS ΦΦΦ=-=-=0Δ12ii R R NBSR R Φq +=+=Δ()T 050.0=+=NSR R q B i分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用来计算线圈在始、末两个位置的磁链. 解 (1) 在始、末状态,通过线圈的磁链分别为, 则线圈中的平均感应电动势为电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?NBS ψ=1011π2r IS μN S NB ψ==2022π2r ISμN S NB ψ==V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS μN t ΦE tΦE d d -=分析 本题及后面几题中的电动势均为动生电动势,除仍可由求解外(必须设法构造一个闭合回路),还可直接用公式求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势.在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或 端点P 距 形导轨左侧距离为x ,则即由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量常数.由法拉第电磁感应定律可知,E =0 又因 E =E OP +E PO 即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法. 8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.tΦE d d -=()l B d ⋅⨯=⎰lE v ()l B d d ⋅⨯=v E B R Rx Φ⎪⎭⎫⎝⎛+=2π212B R txRB t ΦE v 2d d 2d d -=-=-=()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B v B R θθBR E v v 2d cos d E π/2π/2===⎰⎰-==BS ΦtΦE d d -=分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果. 解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则因此棒两端的电势差为当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中, 则8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.()()r L lB ωl lB ωE L-rr ABAB 221d d --=-=⋅⨯=⎰⎰-l B v ()r L lB ωE U AB AB 221--==221r ωB E OA =()221r L B ωE OB -=()r L BL ωE E E OB OA AB 221--=-=分析 如前所述,本题既可以用法拉第电磁感应定律 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的. 解1 由上分析,得由矢量的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿 过回路的磁通量Φ为零,则回路的总电动势显然,E QO =0,所以由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况. 8 -13 如图(a)所示,金属杆AB 以匀速平行于一长直导线移动,此导线通有电流I =40A.求tΦE d d -=()l B d ⋅⨯=⎰lE v ()l B d ⋅⨯=⎰OPOP E v l αB lo d cos 90sin ⎰=v ()()l θB θωlo d 90cos sin ⎰-=l ()⎰==L θL B ωl l θB ω022sin 21d sin B ⨯v QO PQ OP E E E tΦE ++==-=0d d ()221PQ B ωE E E QO PQ OP ==-=12.0m s -=⋅v杆中的感应电动势,杆的哪一端电势较高?分析 本题可用两种方法求解.(1) 用公式求解,建立图(a )所示的坐标系,所取导体元,该处的磁感强度.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式求得穿过该回路的磁通量,再代入公式,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为穿过回路的磁通量为回路的电动势为由于静止的形导轨上电动势为零,所以()l B d ⋅⨯=⎰lE v x l d d =xIμB π20=⎰⋅=SΦS B d tΦE d d -=()V 1084.311ln 2πd 2πd d 50m1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰vv v I μx x μxl E ABAB l B x y xIμΦd 2πd d 0=⋅=S B 11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===SIyμx y x I μΦΦV 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iyμt y x I μt ΦE式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高. 8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足],因而线框中的总电动势为其等效电路如图(b)所示.2.用公式求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有.在求得线框在任意位置处的电动势E(ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势. 解1 根据分析,线框中的电动势为由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为相应电动势为V 1084.35-⨯-==E EAB ()0l B =⋅⨯d v ()()()()hg ef hgefghefE E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v tΦE d d -=v =tξd d hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgefl B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μvv ()1202πl d I I μ+=1vI ()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰令ξ=d ,得线框在图示位置处的电动势为由E >0 可知,线框中电动势方向为顺时针方向.*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即.根据牛顿运动定律,此时线框的运动微分方程为,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式.解 (1) 根据分析,在时间内,线框为自由落体运动,于是其中时,()()1120π2d d l ξξl l I μt ΦξE +=-=v ()1120π2l d d l l I μE +=v ()A A F F =v ()tvv d d mF mg A =-1t t ≤()11t t gt ≤=v 1t t =gh 2101==v v(2) 线框进入磁场后,受到向上的安培力为根据牛顿运动定律,可得线框运动的微分方程令,整理上式并分离变量积分,有积分后将代入,可得(3) 线框全部进入磁场后(t >t 2),作初速为v 20 的落体运动,故有8 -16 有一磁感强度为B 的均匀磁场,以恒定的变化率在变化.把一块质量为m 的铜,拉成截面半径为r 的导线,并用它做成一个半径为R 的圆形回路.圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为式中ρ 为铜的电阻率,d 为铜的密度.解 圆形回路导线长为,导线截面积为,其电阻R ′为在均匀磁场中,穿过该回路的磁通量为,由法拉第电磁感应定律可得回路中的感应电流为而,即,代入上式可得v Rl B IlB F A 22==tv m v d d 22=-R l B mg mRl B K 22=⎰⎰=-t t t g 110d d vv Kv vgh 210=v ()()[]1212t t K e gh K g g K----=v ()()()[]()222031221t t g e gh K g g Kt t g t t K -+--=-+=--v v td d Btd d π4Bd ρm I =πR 22πr 22rR ρS l ρR =='BS Φ=tt t d d 2πd d π1d d 122B ρRr B R R ΦR R E I ='='='=2ππ2r R d m =dmRr π2π2=td d π4Bd ρm I =8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率等)密切相关,即.在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆.同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当时,电场线绕向与B 方向满足右螺旋关系;当 时,电场线绕向与前者相反.解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向. (1) r <R ,r >R ,td d B1s T 010.0d d -⋅=tBtd d B S Bl E d d ⋅∂∂-=⎰⎰S S k t 0d d <t B 0d d >tBtB r t r E E k lk d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tBr E k d d 2-=tB R t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tBr R E k d d 22-=由于,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此将r 、R 、的数值代入,可得,式中负号表示E k 的方向是逆时针的. 8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l的金属棒放在磁场中,设B 随时间的变化率为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势. 证1 由法拉第电磁感应定律,有证2 由题8 -17可知,在r <R 区域,感生电场强度的大小 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为0d d >tBtB r R E k d d 22-=tB d d 15m V 100.4--⋅⨯-=k E tBdd ⎰⋅=lk E l E d 0d =⋅l E k 22Δ22d d d d d d ⎪⎭⎫⎝⎛-==-==l R l t B t B S t ΦE E PQtBr E k d d 2=讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式计算L .式中E L 和都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为则若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r x θE E lk k PQ -=-==⋅=⎰⎰x E IΦL =tI E L Ld /d =t I d d xNIμB π20=12200lnπ2d π2d 21R R hI N μx h x NI μN N ψSR R ==⋅=⎰⎰S B 1220lnπ2R R h N μI ψL =8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果. 解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为, 通过N 匝回路的磁链为则自感8 -21 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l 的一对导线的自感(导线内部的磁通量可略去不计).I L N μnl μB 111==I LN μnl μB 222==221121S NB S NB ΨΨΨ+=+=2211221S μS μlN I ψL L L +==+=分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为穿过图中阴影部分的磁通量为则长为l 的一对导线的自感为如导线内部磁通量不能忽略,则一对导线的自感为.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感,有兴趣的读者可自行求解. 8 -22 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为,()r d Iμr I μB -+=π2π200aa d l μr Bl ΦSad a-==⋅=⎰⎰-ln πd d 0S B aad l μI ΦL -==ln π0212L L L +=8π02lμL=0221=-=ΦΦΦΦΦΦΦ4222=+=故. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.8 -23 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则 . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径. 解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度穿过小线圈A 的磁链近似为 则两线圈的互感为(2) 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?L IΦI ΦL 4422===21212I ΦM M ==RIμN B B200=A BA A A A S RIμN N S B N ψ200==H 1028.6260-⨯===RSμN N I ψM A B A A V 1014.3d d 4-⨯=-=tIME A解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁 感强度近似为穿过线圈C 的磁通为则两线圈的互感为若线圈C 的匝数为N 匝,则互感为上述值的N 倍.8 -25 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10-3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .分析 本题与题8 -8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的.()2/322202dR IR μB +=()22/32220π2r dR IR μBS ψC +==()2/3222202πd R R r μI ψM +==解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度则通过线圈C 的磁链为设断开电源过程中,通过C 的感应电荷为q C ,则有由此得相对磁导率8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即,式中为磁场能量密度,积分遍及磁场存在的空间.由于,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用求解L .解 (1) 密绕长直螺线管在忽略端部效应时,其自感,电流稳定后,线圈中电流,则线圈中所储存的磁能为在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度 处处相等, 110I n μμB r =S I n μμN BS N ψr c 11022==()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-=T 10.02110===SN RqcI n μμB r 1991102==I n μS N Rqcμr 221LI W m =V w W Vmm d ⎰=mwμB w m 22=V w LI V m d 212⎰=l S N L 2=REI =J 1028.3221522202-⨯===lRSE N μLI W m m w 3m J 17.4-⋅==SLW w mm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档