555时基电路的基本特性和用法
555时基电路工作原理

555时基电路工作原理一、引言555时基电路是一种常用的集成电路,广泛应用于定时、脉冲发生、频率分频、模拟电路等领域。
本文将详细介绍555时基电路的工作原理及其相关特性。
二、555时基电路的基本结构555时基电路由比较器、RS触发器、RS锁存器和电压比较器组成。
其中,比较器用于比较电压,RS触发器用于存储电平状态,RS锁存器用于锁存电平状态,电压比较器用于产生输出信号。
三、555时基电路的工作原理1. 稳态工作原理:当电源接通时,电容C1开始充电。
当电容电压达到2/3的电源电压时,比较器会输出高电平,导致RS触发器的Q端输出低电平,RS锁存器的S端输出高电平,电压比较器输出低电平。
此时,555时基电路处于稳态工作状态。
2. 充电过程:在稳态工作状态下,电容C1开始充电,电压逐渐上升。
当电容电压达到1/3的电源电压时,比较器会输出低电平,导致RS触发器的Q端输出高电平,RS锁存器的S端输出低电平,电压比较器输出高电平。
此时,555时基电路进入充电过程。
3. 放电过程:在充电过程中,电容C1的电压继续上升,直到达到2/3的电源电压。
此时,比较器输出高电平,RS触发器的Q端输出低电平,RS锁存器的S端输出高电平,电压比较器输出低电平。
555时基电路进入放电过程。
4. 循环工作:充电过程和放电过程交替进行,形成一个连续的循环工作状态。
通过调整电容C1和电阻R1、R2的数值,可以控制充放电时间的长短,从而实现不同的定时功能。
四、555时基电路的应用1. 定时器:通过调整电容和电阻的数值,可以实现不同的定时功能,如延时触发、定时报警等。
2. 脉冲发生器:通过调整电容和电阻的数值,可以产生不同频率和占空比的脉冲信号。
3. 频率分频器:通过将555时基电路与其他逻辑电路结合,可以实现频率的分频操作。
4. 模拟电路:555时基电路可以用作模拟信号的发生器,产生各种波形信号。
五、555时基电路的特性1. 稳定性:555时基电路具有较高的稳定性,可以在不同温度和电源变化的环境下正常工作。
实验八555时基电路及其应用

实验⼋555时基电路及其应⽤实验⼋555时基电路及其应⽤⼀、实验⽬的1、熟悉555定时电路的结构、⼯作原理及其特点;2、掌握使⽤555定时器组成单稳态电路、多谐振荡电路和施密特电路;⼆、实验原理参考董宏伟编《数字电⼦技术实验指导书》P61。
555电路的功能表如表8—1所⽰。
表8—1 555电路的功能表555定时器主要是与电阻、电容构成充放电电路,并由两个⽐较器来检测电容器上的电压,以确定输出电平的⾼低和放电开关管的通断。
这就可以构成从⼏微秒到数⼗分钟的延时电路,⽅便地构成单稳态触发器,多谐振荡器,施密特触发器等脉冲产⽣或波形变换电路。
三、实验设备与器件 l 、万⽤表⼀只2、双踪⽰波器⼀台3、555时基IC ⼀⽚,电阻器100k Ω×1(实验箱上已配置)、可变电阻器10k Ω×1(实验箱上已配置),电阻5.1k Ω×2,电容器0.01µF ×2、100µF ×1。
四、555定时器的实验内容1、⽤555集成电路构成单稳态触发器(详细⼯作过程参考相关教材)图8—2是由555定时器和外接定时元件R 、C 构成的单稳态触发器,暂稳态的持续时间t w (即为延时时间,如图8—3所⽰)决定于外接元件R 、C 值的⼤⼩,其理论值由下式决定图8—1 555定时器引脚排列 GND ?R Dv Ov I2t W =1.1RC通过改变R 、C 的⼤⼩,可使延时时间在⼏个微秒到⼏⼗分钟之间变化。
实验步骤如下:(1)按照图8—2在图8—4中模拟连接好电路。
(2)按图8—4接好实物电路图,输⼊端v I (2脚)接实验箱的单次负脉冲发⽣源(接好后先不要按动此按钮),检查电路⽆误后,通电,⽤万⽤表测量v O (3脚)端的电压值,这是稳态时的电压,做好记录,填在表8—2中。
万⽤表继续保留图8—3单稳态电路的延迟时间vv(2/3)V图8—2单稳态触发器单次脉冲源 -5V +5V地 100µ0.01µ图8—4单稳态电路实物连接图在此位置上不要撤出。
555时基电路及其应用实验报告

555时基电路及其应用实验报告一、导言555时基电路是一种常用的集成电路,广泛应用于各种电子设备中。
本实验旨在通过对555时基电路的实验搭建和应用实验,探索其工作原理和应用特点。
二、实验设备和材料1. 555时基电路芯片2. 电阻、电容和电感元件3. 电源、示波器和信号发生器等实验仪器4. 连接线等实验辅助材料三、实验步骤1. 555时基电路搭建实验根据555时基电路的原理图,将实验设备和材料连接起来。
按照标准的接线顺序,将电源、电阻、电容和555芯片等元件逐一连接。
注意检查接线是否正确,以确保电路能够正常工作。
2. 555时基电路测试接下来,将示波器连接到555芯片的输出引脚上,调节示波器的参数,观察波形的变化。
通过改变电阻和电容的数值,可以调节输出波形的频率和占空比。
记录下不同参数下的波形特征,并进行分析和比较。
3. 555时基电路应用实验在实验中,可以将555时基电路应用于脉冲发生器、定时器、频率计等实际电子电路中。
通过改变电路的连接方式和参数设置,可以实现不同的应用功能。
例如,可以将555时基电路连接到脉冲发生器电路中,生成稳定的脉冲信号;也可以将555时基电路作为定时器,控制电路的工作时间。
四、实验结果与分析1. 555时基电路工作特点通过实验观察,我们发现555时基电路可以产生稳定的方波信号。
在输入电压为5V的情况下,根据电路参数的不同设置,可以得到不同频率和占空比的输出波形。
通过改变电阻和电容的数值,可以调节频率的范围。
而通过改变电路的连接方式,如添加电感元件,可以实现更丰富的波形变化。
2. 555时基电路的应用实验结果通过将555时基电路应用于脉冲发生器和定时器电路中,我们成功实现了不同功能的电路设计。
脉冲发生器可以产生稳定的脉冲信号,其频率和占空比可以通过调节电路参数来控制。
定时器电路可以在预设的时间段内控制其他电路的工作状态。
五、实验结论通过本次实验,我们了解了555时基电路的工作原理和应用特点。
555时基电路工作原理

555时基电路工作原理概述:555时基电路是一种经典的集成电路,常用于产生精确的时间延迟、频率调制和脉冲宽度调制等应用。
本文将详细介绍555时基电路的工作原理及其相关参数。
一、555时基电路的组成555时基电路由比较器、RS触发器、RS锁存器和输出驱动器等组成。
其中比较器用于比较电压,RS触发器用于产生输出脉冲,RS锁存器用于保持输出状态,输出驱动器用于放大输出信号。
二、555时基电路的工作原理555时基电路有两种基本工作模式:单稳态和多稳态。
1. 单稳态模式在单稳态模式下,当触发器端(TRIG)输入一个低电平脉冲时,输出端(OUT)会产生一个高电平脉冲,并持续一段预定的时间。
当触发器端收到高电平脉冲时,输出端将保持低电平状态。
单稳态模式的时间由外部电容和电阻决定。
2. 多稳态模式在多稳态模式下,555时基电路可以作为一个自由运行的振荡器。
通过控制外部电容和电阻的数值,可以调节输出信号的频率和占空比。
当触发器端(TRIG)接收到低电平脉冲时,输出端(OUT)会产生一个高电平脉冲,持续一段时间;当复位端(RESET)接收到低电平脉冲时,输出端将产生一个低电平脉冲。
多稳态模式的时间由外部电容和电阻决定。
三、555时基电路的参数1. 电源电压(Vcc):555时基电路的工作电压范围通常为4.5V至18V。
2. 高电平输出电压(VOH):555时基电路的输出高电平电压范围通常为Vcc-1.5V至Vcc。
3. 低电平输出电压(VOL):555时基电路的输出低电平电压范围通常为0V 至0.4V。
4. 触发器输入电压(VTRIG):555时基电路的触发器输入电压范围通常为0V 至2/3Vcc。
5. 复位输入电压(VRESET):555时基电路的复位输入电压范围通常为0V至1/3Vcc。
6. 高电平触发电压(VTH):555时基电路的高电平触发电压范围通常为2/3Vcc。
7. 低电平触发电压(VTL):555时基电路的低电平触发电压范围通常为1/3Vcc。
555时基电路及其应用实验报告总结

555时基电路及其应用实验报告总结引言555时基电路是一种广泛应用于电子系统中的定时器电路,其简单可靠的特点使得其成为电子工程师们经常使用的电路之一。
在本次实验中,我们将学习555时基电路的基本原理和应用,并利用实验的方法来进一步了解其特性和应用。
实验目的1. 了解555时基电路的基本原理和特点;2. 学习555时基电路的应用;3. 掌握555时基电路的实际电路设计和调试能力。
实验原理555时基电路是一种基于电容充放电周期的定时器电路,由控制电压,比较电压和输出电压三个部分组成。
在充电过程中,电容通过R1和R2两个电阻器来充电,当电容电压达到比较电压时,输出从高电平变为低电平,此时电容通过R2和输出端的电阻放电。
当电容电压低于比较电压时,输出从低电平变为高电平,电容重新开始充电,这样就形成了一个基于电容充放电周期的定时器电路。
实验材料1. 555时基电路芯片2. 电阻器3. 电容器4. LED灯5. 面包板等实验工具实验步骤1. 将555时基电路芯片插入面包板上;2. 连接电阻器和电容器,并将它们与555时基电路芯片的引脚相连;3. 将LED灯连接到555时基电路芯片的输出端;4. 通过调节电阻器和电容器来改变555时基电路的输出频率和占空比。
实验结果通过实验,我们成功地设计和调试了一个基于555时基电路的LED 闪烁电路,其输出频率和占空比可以通过调节电阻器和电容器来进行调整。
此外,我们还完成了一些其他应用的实验,例如555时基脉冲发生器,555时基呼吸灯等。
结论本次实验通过学习555时基电路的基本原理和应用,掌握了555时基电路的实际电路设计和调试能力。
我们成功地设计和调试了一个基于555时基电路的LED闪烁电路,并完成了其他应用实验。
555时基电路的优点在于其简单可靠,广泛应用于电子系统中,为电子工程师们提供了强大的工具。
555时基电路工作原理

555时基电路工作原理555时基电路是一种常用的集成电路,广泛应用于各种电子设备中。
它具有稳定可靠、简单易用的特点,因此备受工程师和爱好者的青睐。
本文将详细介绍555时基电路的工作原理。
一、555时基电路的基本概念1.1 555时基电路的定义555时基电路是一种集成电路,由几个传统的摹拟电路组成。
它能够产生稳定的方波信号,被广泛应用于定时、频率测量、脉冲调制等领域。
1.2 555时基电路的主要组成部份555时基电路主要由电压比较器、RS触发器、RS锁存器、放大器和输出级组成。
其中,电压比较器用于检测输入电压与参考电压的大小关系,RS触发器用于控制输出信号的状态,RS锁存器用于存储输入信号的状态,放大器用于放大电压信号,输出级用于产生方波信号。
1.3 555时基电路的工作原理555时基电路的工作原理可以简单概括为:根据输入电压与参考电压的大小关系,电压比较器控制RS触发器的状态,进而控制RS锁存器的状态,最终通过放大器和输出级产生稳定的方波信号。
二、555时基电路的工作模式2.1 单稳态模式单稳态模式是555时基电路最常用的工作模式之一。
在该模式下,输入一个触发信号,555电路会输出一个固定的脉冲宽度的方波信号,然后返回到稳定状态。
2.2 多稳态模式多稳态模式是555时基电路的另一种常见工作模式。
在该模式下,输入一个触发信号后,555电路会产生一个连续的方波信号,直到再次输入触发信号。
2.3 等占空比模式等占空比模式是555时基电路的一种特殊工作模式。
在该模式下,输入一个触发信号后,555电路会产生一个占空比为50%的方波信号。
三、555时基电路的应用领域3.1 定时器555时基电路可以作为定时器使用,用于控制设备的开关时间,如LED灯的闪烁频率控制、机电的启停控制等。
3.2 脉冲调制555时基电路可以用于脉冲调制,将摹拟信号转换为数字信号,广泛应用于通信领域中的调制解调器、遥控器等设备。
3.3 频率测量555时基电路可以用于频率测量,通过测量方波信号的周期来计算频率,常用于仪器仪表、无线电等领域。
555时基集成电路原理及应用

555时基集成电路原理及应用1 555时基电路的特点555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。
但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。
此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。
由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。
555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。
其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。
图2 555集成电路封装图我们也可以把555电路等效成一个带放电开关的R-S触发器,如图3(A)所示,这个特殊的触发器有两个输入端:阈值端(TH)可看成是置零端R,要求高电平,触发端(TR)可看成是置位端S,要求低电平,有一个输出端Vo,Vo可等效成触发器的Q端,放电端(DIS)可看成是由内部放电开关控制的一个接点,由触发器的Q端控制:Q=1时DIS端接地,Q=0时DIS端悬空。
另外还有复位端MR,控制电压端Vc,电源端VDD和地端GND。
这个特殊的触发器有两个特点:(1)两个输入端的触发电平要求一高一低,置零端R即阈值端(TH)要求高电平,而置位端s即触发端(TR)则要求低电乎;(2)两个输入端的触发电平使输出发生翻转的阈值电压值也不同,当V c端不接控制电压时,对TH(R)端来讲,>2/3VDD是高电平1,<2/3VDD是低电平0:而对TR(S)端来讲,>1/3VDD是高电平1,<1/3VDD是低电平0。
555时基电路工作原理

555时基电路工作原理概述:555时基电路是一种常用的集成电路,广泛应用于定时、脉冲、频率和波形发生等电子电路中。
本文将详细介绍555时基电路的工作原理及其应用。
一、555时基电路的基本结构和引脚功能:555时基电路由比较器、RS触发器、电压比较器、输出级以及电压稳定器等组成。
它具有8个引脚,分别是VCC、GND、TRIG、THRES、OUT、RESET、CTRL和DIS。
1. VCC和GND:分别是电路的供电正负极。
2. TRIG(触发器输入):当该引脚电压低于1/3 VCC时,触发器将被置位。
3. THRES(阈值器输入):当该引脚电压高于2/3 VCC时,触发器将被复位。
4. OUT(输出):输出引脚,可以连接到其他电路。
5. RESET(复位):当该引脚电压低于1/3 VCC时,触发器将被复位。
6. CTRL(控制电压):该引脚用于控制电路的工作方式。
7. DIS(禁止):当该引脚电压高于2/3 VCC时,禁止输出。
二、555时基电路的工作原理:555时基电路可以分为单稳态(单脉冲)模式和多稳态(多脉冲)模式两种工作方式。
1. 单稳态模式:在单稳态模式下,555时基电路可以产生一个持续时间可调的单脉冲信号。
当TRIG引脚电压低于1/3 VCC时,触发器被置位,输出高电平;同时,电容C开始充电。
当电容充电至2/3 VCC时,阈值器被复位,触发器输出低电平,脉冲信号结束。
单脉冲信号的持续时间由电容充电时间决定,可以通过改变电容或电阻值来调节。
2. 多稳态模式:在多稳态模式下,555时基电路可以产生连续的方波信号或频率可调的脉冲信号。
通过控制CTRL引脚电压,可以选择不同的工作方式。
- 电压比较模式(电平触发模式):当CTRL引脚电压小于1/3 VCC时,电路工作在电压比较模式下。
此时,TRIG引脚的电压低于THRES引脚的电压,触发器被置位,输出高电平;当TRIG引脚电压高于THRES引脚电压时,触发器被复位,输出低电平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
555时基电路的基本特性和用法我们在使用555时基电路之前应该先了解它的基本特性。
按照集成电路的分类方法,数字集成电路以外的集成电路都归入模拟集成电路中,因此关于555时基电路的特性可以从非线性模拟集成电路手册中查找。
一、555电路的型号、封装和引脚1.型号我国目前广泛使用的555时基电路的统一型号是:双极型为CB555,CMOS型为CB7555。
这两种电路每个集成片内只有一个时基电路,称为单时基电路。
此外还有一种双时基电路,在一个集成片内包含有两个完全相同、又各自独立的时基电路。
它们的型号分别是CB556和CB7556。
表1列出它们的型号和与之对应的国内、国外常用的型号。
2.封装和引脚555单时基电路的封装有8脚圆形和8脚双列直插型两种。
圆形集成电路引脚的编号方法是把引脚朝下,带标志的引脚置于上倒,从带标志的引脚左边开始按逆时针方向顺序编号,见图1(a)。
双列直插型单时基电路的引脚编号方法是把集成片平放,从带标志的引脚开始按逆时针方向顺序编号,见图1(b)。
556双时基电路的封装只有14脚双列直插型一种。
引脚按双列直插型集成电路的统一方法编号,见图1(C)。
CB555(CB7555)单时基电路各引脚的作用见图1(a)、(b)和图2。
6脚是阈值输入端TH,2脚是触发输人端,5脚是控制端VC,4脚是主复位端,8脚是电源正极Vcc或VDD。
3脚是输出端VO,7脚是放电端DIS,1 脚是公共地端 GND或VSS。
对双时基电路CB556(CB7556)来讲,两个时基电路共用一个电源端(14)一个地端(7),其余12个脚按左右分开,各为一个独立的时基电路,见图1(c)。
为了便于应用,在图2上,用圆圈内的数码表示出单时基电路的引脚号。
在小方框内用斜线隔开的2个数码表示出双时基电路左右两个时基电路的引脚号。
例如 5/9表示左边时基电路输出端V01的引脚号是5,右边时基电路输出端V02的引脚号是9。
双极型和CMOS型555电路的内部电路和参数虽然不同,但它们的引脚编号和功能是完全相同的。
二、555时基电路的主要参数为了正确使用555时基电路,必须对它的基本特性有所了解。
双极型和CMOS型时基电路在电特性上是有差别的,应该分别给出。
至于双时基电路和单时基电路,除了静态电流,双时基电路应该是单时基电路的一倍以外,其余参数是完全相同的。
所以只要列出 CB 555和 CB 7555的主要参数并予以说明就可以了。
1.电源电压和静态电流CB 555使用的电源电压是 4.5~16伏,CB 7555的电压范围比较宽,可以从3~18伏。
静态电流也叫电源电流,是空载时消耗的电流。
在电源电压是15伏是,CB 555的静态电流典型值是 10 mA,CB 7555是0.12mA。
电源电压和静态电流的乘积就是静态功耗。
可见CMOS型时基电路的静态功耗远小于双极型时基电路。
2.定时精度555电路在作定时器使用时,CB555和CB7555的定时精度分别是l%和2%。
3.阈值电压和阈值电流当555电路阈值输入端所加的电压>=2/3Vcc(或*VDD)时,能使它的输出从高电平1翻转成低电平0。
电压值2/3VCC就是它的阈值电压VTH。
促使它翻转所需的电流称为阈值电流ITH。
CB555的ITH值约为0.1mA;而 CB 7555的ITH值只需50pA(1pA=10-6mA)。
4.触发电压触发电流当555电路触发输入端所加的电压<=1/3Vcc(或VDD)时,能使它的输出从0 翻转成1。
电压值1/3Vcc 就是它的触发电压VTR。
促使它翻转所需的电流称为触发电流ITR。
CB555的ITR值约为0.5mA;而CB7555的ITR值只需50pA。
5.复位电压和复位电流在555电路的主复使端上加低电平可以使输出复位,即 V0=0。
所加的复位电压VMR应低于1伏。
复位端所需的电流称为复位电流IMR。
CB555的IMR约为400mA;而CB7555的IMR只需0.1mA。
6.放电电流555电路在作定时器或多谐振荡器使用时,常常利用放电端给外接电容一个接地放电的通路。
从图2看到,放电电流要通过放电管VT1,因此它的电流要受到限制,电流太大会把放电管烧坏。
规定 CB 555的放电电流IDIS不大于200mA。
CB7555因为受MOS管几何尺寸的限制,放电电流IDIS的值比较小,约在10 ~ 50mA之间,而且是随电源电压VDD的数值变化的;使用的电源电压越高,放电电流值越大。
7.驱动电流驱动电流是指555电路向负载提供的电流,也叫负载电流IL。
根据555电路的输出状态和负载的接法可以分成拉出电流和吸入电流两种。
当输出是高电平而负载的一端接地时,负载电流从555电路内部流出经过负载入地,因此称为拉出电流,见图3(b)。
当输出是低电平而负载的一端接在电源正极时,负载电流从电源正极通过负载流入555内部后入地,因此称为吸入电流,见图4(C)。
这两种电流都起到驱动负载的作用,因此统称为负载电流或驱动电流。
对 CB 555来讲,这两种电流的最大值都是 200mA。
对CB 7555来讲,吸入电流稍大,大约是5~20mA;拉出电流较小,约是1~5mA。
而且它们的数值也是随着电源电压的提高而增大的。
8.最高工作频率555电路在作振荡器使用时,输出脉冲的最高频率可达500千赫。
555电路的主要参数见表2。
三、使用555电路时的注意事项。
1.负载的接法555电路的输出有高电平和低电平两种状态,好象它内部有一个控制开关能自动动作。
当输出是高电平时开关向上,输出端VO通过输出内阻R01接到电源正端。
见图3(b)和图4(b)。
当输出是低电平时开关向下,输出端VO通过输出内阻R02接到公共地端,见图3(C)和图 4(c)。
CB 555的两个输出内阻都是十几欧。
CB7555的R01值较大,约为几百欧;R02值较小,只有几十欧。
由于555电路有两种输出状态,所以负载的接法有两种。
第一种接法是把负载接在555电路输出端VO和地之间,这是最常用的接法,(a)。
在这种接法下.当输出是高电平(VO=1)时,内部开关接到R01上,见图3(b)。
这时电流从电源正端经过内阻R01流入负载RL后入地,是从555电路向外流进负载的,所以称为拉出电流或输出电流。
当输出是低电子(V0=0)时,内部开关接到R02上,见图3(C)。
这时负载中没有电流。
第二种接法是把负载接在电源正端和555电路输出端Vo之间,如图4(a)。
在这种接法下,当输出是高电平(Vo=1)时,内部开关接到R01上,见图4(b)。
这时负载中没有电流。
只有当输出是低电平(VO=0)时,内部开关接到R02上,如图4(C)时负载中才有电流流通。
这时电流是从电源正端经负载RL和内阻R02后入地的,是从外面流进555电路的,所以称为吸入电流或灌入电流。
由于有两种接法,所以在连接负载时应该根据555电路的输出状态和负载的要求来决定负载的连接方法。
例如在使用CB7555时为了取得较大的驱动电流,可以选择第二种接法。
如果负载是继电器,则因为继电器有常开接点和常闭接点两种不同的接点可供选择,因此使得555电路更加变化多端,灵活方便。
2.负载能力的扩大从驱动电流这个参数来看, CB 555的驱动能力较大,可以直接带动小型继电器、微电机和低阻抗扬声器。
CB7555的驱动能力较小,只能使用LED指示灯、压电陶瓷蜂鸣器等负载。
要想使CB7555有更大的驱动能力,可以在输出端加一级驱动放大器。
即把555电路输出端VO接到晶体管VT1的基极,把负载RL 接到晶体管的集电极或发射极回路中,如图5。
这样就可把负载电流扩大到100mA上下,足以带动继电器、微电机等负载。
3.CB555与CB7555的性能比较和选用从以上介绍看到, CB 556的突出优点是驱动能力强,而CB 7555的突出优点是电源电压范围宽、输入阻抗高、功耗低。
因此在实际应用中,在负载轻、要求功耗低和使用较低电源电压以及定时要求长(定时电阻>10兆欧)的场合,应核选用CB7555或CB7556。
而在负载较重的场合则应选用 CB 555或 CB556。
4. 注意特殊型号和特殊封装在使用中有时会遇到一些特殊型号和特殊封装,这时首先应核查阅资料,弄清它们的型号、封装和引脚以及电特性。
例如日本三菱公司的M51841是时基电路;而美国国家半导体公司的MM555是模拟门开关电路。
555时基电路的单稳态工作方式和应用555电路有单稳态、双稳态和无稳态3种基本工作方式。
用这3种方式中的1种或多种组合起来可以组成各种实用的电子电路,如定时器、分频器、脉冲信号发生器、元件参数和电路检测电路、玩具游戏机电路、音响告警电路、电源交换电路、频率变换电路、自动控制电路等等。
让我们先从555的单稳电路开始。
一、什么是单稳电路所谓单稳电路就好象是一扇弹簧门。
平时老是保持着关闭的状态,只有在外力推动时它才会打开;但在开了一会儿之后它又会自动关闭。
我们把关闭状态叫做“稳态”,而把从推开门到恢复到关闭这一段时间的状态叫做“暂稳态”。
555的单稳电路由 555电路本身和一个RC定时电路两大部分组成。
555电路的输入端就接在定时电路中的定时电容CT上。
在第1讲中已介绍过:可以把555电路看成是一个特殊的R-S触发器,它的两个输人端的触发电平要求不同,阈值要求也不同。
因此,555单稳电路的工作过程大致是:先取这个特殊触发器两种状态中的一种作为单稳电路的稳态。
然后用输入脉冲或人工板动开关等方法去启动这个电路,使它从原来的稳态转到另一种状态,即进人暂稳态。
与此同时,开始给定时电容CT 充电,等CT 上的电压达到阈值电压时,这个特殊的触发器就会从暂稳态又翻转回到原来的稳态。
从暂稳态开始到完全恢复成稳态的这段时间就是暂稳态的时间。
假定翻转的时间小到可以忽略不计,显然,暂稳态持续的时间只和定时电路中电阻电容的数值有关而和555电路以及触发脉冲天关。
触发脉冲在这里只是起着启动或开关的作用。
至于稳态和暂稳态究竟是高电平还是低电平,根据电路的要求决定。
可见555单稳电路中的两大部分的分工是:555时甚电路本身好比是一扇门,它只管开或关;定时电路则是控制开门的时间长短。
这两大部分是必不可少的。
二、两种555单稳电路常用的555单稳电路有2种:第1种是把2个输入端都接到定时电容CT上,用开关人工启动的电路。
第2种是把阈值端TH和放电端DIS接到定时电容CT上,用脉冲从触发端输入启动的电路。
第1种电路常用作定时控制,第2种电路的用途比较广,除定时控制外,还可作分频器、脉冲信号发生器、元件参数检测、脉冲失落检测、脉冲宽度检测以及玩具游戏机电路等。
1.人工启动式这种单稳电路是把阈值端TH(6)和触发端(2)同时接在定时电容CT上,在定时电容两端并联一个按钮开关SB,用人工按动开关的方法来启动这个电路。