555时基电路及其应用
实验八555时基电路及其应用

实验⼋555时基电路及其应⽤实验⼋555时基电路及其应⽤⼀、实验⽬的1、熟悉555定时电路的结构、⼯作原理及其特点;2、掌握使⽤555定时器组成单稳态电路、多谐振荡电路和施密特电路;⼆、实验原理参考董宏伟编《数字电⼦技术实验指导书》P61。
555电路的功能表如表8—1所⽰。
表8—1 555电路的功能表555定时器主要是与电阻、电容构成充放电电路,并由两个⽐较器来检测电容器上的电压,以确定输出电平的⾼低和放电开关管的通断。
这就可以构成从⼏微秒到数⼗分钟的延时电路,⽅便地构成单稳态触发器,多谐振荡器,施密特触发器等脉冲产⽣或波形变换电路。
三、实验设备与器件 l 、万⽤表⼀只2、双踪⽰波器⼀台3、555时基IC ⼀⽚,电阻器100k Ω×1(实验箱上已配置)、可变电阻器10k Ω×1(实验箱上已配置),电阻5.1k Ω×2,电容器0.01µF ×2、100µF ×1。
四、555定时器的实验内容1、⽤555集成电路构成单稳态触发器(详细⼯作过程参考相关教材)图8—2是由555定时器和外接定时元件R 、C 构成的单稳态触发器,暂稳态的持续时间t w (即为延时时间,如图8—3所⽰)决定于外接元件R 、C 值的⼤⼩,其理论值由下式决定图8—1 555定时器引脚排列 GND ?R Dv Ov I2t W =1.1RC通过改变R 、C 的⼤⼩,可使延时时间在⼏个微秒到⼏⼗分钟之间变化。
实验步骤如下:(1)按照图8—2在图8—4中模拟连接好电路。
(2)按图8—4接好实物电路图,输⼊端v I (2脚)接实验箱的单次负脉冲发⽣源(接好后先不要按动此按钮),检查电路⽆误后,通电,⽤万⽤表测量v O (3脚)端的电压值,这是稳态时的电压,做好记录,填在表8—2中。
万⽤表继续保留图8—3单稳态电路的延迟时间vv(2/3)V图8—2单稳态触发器单次脉冲源 -5V +5V地 100µ0.01µ图8—4单稳态电路实物连接图在此位置上不要撤出。
555时基电路及其应用实验报告

555时基电路及其应用实验报告一、导言555时基电路是一种常用的集成电路,广泛应用于各种电子设备中。
本实验旨在通过对555时基电路的实验搭建和应用实验,探索其工作原理和应用特点。
二、实验设备和材料1. 555时基电路芯片2. 电阻、电容和电感元件3. 电源、示波器和信号发生器等实验仪器4. 连接线等实验辅助材料三、实验步骤1. 555时基电路搭建实验根据555时基电路的原理图,将实验设备和材料连接起来。
按照标准的接线顺序,将电源、电阻、电容和555芯片等元件逐一连接。
注意检查接线是否正确,以确保电路能够正常工作。
2. 555时基电路测试接下来,将示波器连接到555芯片的输出引脚上,调节示波器的参数,观察波形的变化。
通过改变电阻和电容的数值,可以调节输出波形的频率和占空比。
记录下不同参数下的波形特征,并进行分析和比较。
3. 555时基电路应用实验在实验中,可以将555时基电路应用于脉冲发生器、定时器、频率计等实际电子电路中。
通过改变电路的连接方式和参数设置,可以实现不同的应用功能。
例如,可以将555时基电路连接到脉冲发生器电路中,生成稳定的脉冲信号;也可以将555时基电路作为定时器,控制电路的工作时间。
四、实验结果与分析1. 555时基电路工作特点通过实验观察,我们发现555时基电路可以产生稳定的方波信号。
在输入电压为5V的情况下,根据电路参数的不同设置,可以得到不同频率和占空比的输出波形。
通过改变电阻和电容的数值,可以调节频率的范围。
而通过改变电路的连接方式,如添加电感元件,可以实现更丰富的波形变化。
2. 555时基电路的应用实验结果通过将555时基电路应用于脉冲发生器和定时器电路中,我们成功实现了不同功能的电路设计。
脉冲发生器可以产生稳定的脉冲信号,其频率和占空比可以通过调节电路参数来控制。
定时器电路可以在预设的时间段内控制其他电路的工作状态。
五、实验结论通过本次实验,我们了解了555时基电路的工作原理和应用特点。
时基电路及其应用实验报告

时基电路及其应用实验报告一、实验目的本次实验旨在深入了解时基电路的工作原理、特性以及其在实际应用中的多种功能。
通过实验操作和数据分析,掌握时基电路的使用方法,培养实际动手能力和电路分析能力。
二、实验原理1、时基电路概述时基电路是一种能够产生精确时间间隔的集成电路,最常见的时基电路是 555 定时器。
它由分压器、比较器、RS 触发器和输出级等部分组成。
2、 555 定时器的工作原理555 定时器的工作电压范围较宽,在 45V 18V 之间。
其内部的两个比较器将电源电压进行分压,分别与外部输入的控制电压进行比较,从而决定 RS 触发器的状态,进而控制输出端的电平。
3、时基电路的基本工作模式单稳态模式:在触发信号作用下,输出一个固定宽度的脉冲。
多谐振荡器模式:产生一定频率的方波信号。
施密特触发器模式:对输入信号进行整形和变换。
三、实验器材1、 555 定时器芯片2、电阻、电容若干3、示波器4、电源5、面包板6、导线若干四、实验步骤1、单稳态电路实验按照电路图在面包板上搭建单稳态电路,选择合适的电阻和电容值。
给触发端施加一个触发信号,用示波器观察输出端的脉冲宽度。
改变电阻或电容的值,观察脉冲宽度的变化,并记录相关数据。
2、多谐振荡器实验搭建多谐振荡器电路,选择合适的电阻和电容值。
用示波器观察输出端的方波信号,测量其频率和占空比。
调整电阻或电容的值,研究频率和占空比的变化规律。
3、施密特触发器实验构建施密特触发器电路,输入不同幅度和形状的信号。
用示波器观察输入和输出信号的波形,分析施密特触发器的整形效果。
五、实验数据及分析1、单稳态电路当电阻 R =10kΩ,电容 C =01μF 时,触发后输出脉冲宽度约为11ms。
增大电阻值,脉冲宽度增加;减小电容值,脉冲宽度减小。
2、多谐振荡器R1 =10kΩ,R2 =100kΩ,C =001μF 时,输出方波频率约为5kHz。
增大电容值,频率降低;改变电阻比值,频率和占空比均发生变化。
555时基电路的研究与应用

555时基电路的研究与应用
555时基电路的研究主要包括对其工作原理、特性以及参数的深入研究。
首先,555时基电路是基于固定的RC元件,通过电压比较和开关控
制来实现定时功能。
当输入触发信号达到一定阈值时,555定时器的输出
反转,从而开始计时。
当计时达到设定时间后,输出再次反转。
其次,
555时基电路具有多种工作模式,包括单稳态、连续运行、单拍模式等,
通过调节电阻、电容和电源电压等参数,可以实现不同的功能。
1.脉冲发生器:555时基电路可以用来产生方波、脉冲、震荡信号等。
通过调节电容和电阻的参数,可以控制输出信号的频率、占空比等。
2.延时电路:555时基电路可以用来实现延时功能,比如延时开关、
延时报警器等。
通过调节电容和电阻的数值,可以实现不同的延时时间。
3.频率测量器:通过接收外部信号,并利用555时基电路的频率计数
功能,可以用来测量外部信号的频率。
4.电压稳定器:555时基电路可以实现电压稳定器功能,在一定条件下,通过调节电阻和电容,稳定输出电压。
5.温度计:利用555时基电路的特性,通过测量温度传感器输出的电
压信号,可以实现温度测量。
需要注意的是,555时基电路虽然功能强大,但其精度相对较低。
因此,在实际应用中,需要根据具体需求进行适当的校准和调试。
总体来说,555时基电路是一种非常实用的电路设计工具,其研究和
应用涉及到电路设计、信号调节、数字计时等众多领域。
随着科技的发展
和应用的推广,555时基电路在各行各业都有着广泛的应用前景。
实验五555时基电路和其应用PPT课件

3、竞赛开始后,先按动按钮者所对应的发光二极管点亮,此后其 它3人
1.设计任务
再按动按钮对电路不起作用
2.原理框图
抢答按钮 主持人按钮
主逻辑电路
显示电路
工作脉冲信号
抢答电. 路框图
9
实验七 触发器与555电路应用
3
.
四人抢答逻辑电路设计与
分析
实验七 3/10
接VCC
工作时钟脉冲
.
10
根据设计的初步设计电路和实验设备及元件等确定
输出信号的时间参数是:
T=tw1+tw2, tw1=0.7(R1+R2)C, tw2=0.7R2C 555电路要求R1 与R2 均应≥1KΩ ,但R1+R2≤3.3MΩ。
外部元件的稳定性决定了多谐振荡器的稳定性,555定时器配以少量的元件 即可获得较高精度的振荡频率和具有较强的功率输出能力。因此这种形式的多谐 振荡器应用很广。
TH:比较器C1的输入端 TL:比较器C2的输入端 CT:放电管的集电极,提供放电通路。
当(6脚)高电平触发输入信号VI1超过参考电平2/3 VCC时,触发器复位,555输出
端3脚输出低电平,同时放电开关管导通;
当(2脚)低电平触发输入信号VI2低于1/3 VCC时,触发器被置位,555的3脚输出
高电平,同时放电开关管截止。
.
7
图6.5.2 用555定时器接成的施密特 触发器
返回
.
8
实验七 触发器与555电路应用 实验七 2/10
二、实验内容1:设计一个4人抢答逻辑电路
(提出任务—原理框图(方案比较) —电路设计及逻辑分析— 电路实验—电路修改确定……)
设计要求:1、每个参赛者控制一个按钮,用按动按钮发出抢答信号
555时基集成电路原理及应用

555时基集成电路原理及应用1 555时基电路的特点555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。
但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。
此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。
由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。
555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。
其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。
图2 555集成电路封装图我们也可以把555电路等效成一个带放电开关的R-S触发器,如图3(A)所示,这个特殊的触发器有两个输入端:阈值端(TH)可看成是置零端R,要求高电平,触发端(TR)可看成是置位端S,要求低电平,有一个输出端Vo,Vo可等效成触发器的Q端,放电端(DIS)可看成是由内部放电开关控制的一个接点,由触发器的Q端控制:Q=1时DIS端接地,Q=0时DIS端悬空。
另外还有复位端MR,控制电压端Vc,电源端VDD和地端GND。
这个特殊的触发器有两个特点:(1)两个输入端的触发电平要求一高一低,置零端R即阈值端(TH)要求高电平,而置位端s即触发端(TR)则要求低电乎;(2)两个输入端的触发电平使输出发生翻转的阈值电压值也不同,当V c端不接控制电压时,对TH(R)端来讲,>2/3VDD是高电平1,<2/3VDD是低电平0:而对TR(S)端来讲,>1/3VDD是高电平1,<1/3VDD是低电平0。
555时基电路工作原理

555时基电路工作原理概述:555时基电路是一种常用的集成电路,广泛应用于定时、脉冲、频率和波形发生等电子电路中。
本文将详细介绍555时基电路的工作原理及其应用。
一、555时基电路的基本结构和引脚功能:555时基电路由比较器、RS触发器、电压比较器、输出级以及电压稳定器等组成。
它具有8个引脚,分别是VCC、GND、TRIG、THRES、OUT、RESET、CTRL和DIS。
1. VCC和GND:分别是电路的供电正负极。
2. TRIG(触发器输入):当该引脚电压低于1/3 VCC时,触发器将被置位。
3. THRES(阈值器输入):当该引脚电压高于2/3 VCC时,触发器将被复位。
4. OUT(输出):输出引脚,可以连接到其他电路。
5. RESET(复位):当该引脚电压低于1/3 VCC时,触发器将被复位。
6. CTRL(控制电压):该引脚用于控制电路的工作方式。
7. DIS(禁止):当该引脚电压高于2/3 VCC时,禁止输出。
二、555时基电路的工作原理:555时基电路可以分为单稳态(单脉冲)模式和多稳态(多脉冲)模式两种工作方式。
1. 单稳态模式:在单稳态模式下,555时基电路可以产生一个持续时间可调的单脉冲信号。
当TRIG引脚电压低于1/3 VCC时,触发器被置位,输出高电平;同时,电容C开始充电。
当电容充电至2/3 VCC时,阈值器被复位,触发器输出低电平,脉冲信号结束。
单脉冲信号的持续时间由电容充电时间决定,可以通过改变电容或电阻值来调节。
2. 多稳态模式:在多稳态模式下,555时基电路可以产生连续的方波信号或频率可调的脉冲信号。
通过控制CTRL引脚电压,可以选择不同的工作方式。
- 电压比较模式(电平触发模式):当CTRL引脚电压小于1/3 VCC时,电路工作在电压比较模式下。
此时,TRIG引脚的电压低于THRES引脚的电压,触发器被置位,输出高电平;当TRIG引脚电压高于THRES引脚电压时,触发器被复位,输出低电平。
实验3555时基电路及其应用

LCD显示屏
垂直放大系统
示波器信号输入线(探头)
示波器探头结构
信号输入
10:1位
信号接地端 示波器信号输入线
五 实验报告要求
➢画出实验原理图,用直角坐标纸定量绘 出观测的波形; ➢分析总结实验结果。
呵呵呵
六
思考题
1、在实验中555定时器5脚所接的电容起什么作用?
2、多谐振荡器的振荡频率主要由哪些元件决定?单稳 态触发器输出脉冲宽度和重复频率各与什么有关?
VCC
Vi
V+=
2/3vcc
Vs
Vi
8
4
V-= 1/3vcc
t
6
555 3
V0
0
2 15
V0
10k R 0.01u
t
0
三 实验原理(续)
(3)单稳态触发器
此电路有一个稳态,在输入信号触发下进入暂稳态。经 过时间Tw自动回到稳态。它常用于对脉冲信号的延迟与 定时。电路的主要参数输出的脉冲宽度TW约为1.1RC。
3、单稳态触发器实验内容波形的每个周期,电压VC为 什么都是从0V开始上升,然后又回到0V?在什么情 况下电压不会回到0V?
4、施密特触发器电路图中,对Vi的幅值有没有要求, 为什么?
均由多谐振荡器作为时钟源。由555构成的多谐振荡器
的电路参数为: T=0.7(R1+2R2)C
+5V
R1 5.1K
4
8
RD
Vcc
7
R2 5.1K
vc
C 0.01u
2 TL 555
3
VO
6 TH
1
5
C 0.01u
三 实验原理(续)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二555 时基电路及其应用
一、实验目的
1.熟悉555 型集成时基电路结构、工作原理及其特点。
2.掌握555 型集成时基电路的基本应用。
二、实验原理
集成时基电路又称为集成定时器或555 电路,是一种数字、模拟混合型的中规模集成电路,应用十分广泛。
外加电阻、电容等元件可以构成多谐振荡器,单稳电路,施密特触发器等。
它是一种产生时间延迟和多种脉冲信号的电路,由于内部电压标准使用了三个5K 电阻,故取名555 电路。
其电路类型有双极型和CMOS型两大类,二者的结构与工作原理类似。
一般双极型产品型号最后的三位数码都是555 或556, 而CMOS 产品型号最后四位数码都是7555 或7556,二者的逻辑功能和引脚排列完全相同,易于互换。
555 和7555 是单定时器。
556 和7556 是双定时器。
双极型的电源电压U DD=+5V~+15V,输出的最大电流可达200mA,CMOS 型的电源电压为+3V~+18V,能直接驱动小型电机、继电器和低阻抗扬声器。
1.555 定时器的工作原理
555 定时器原理图及引线排列如图1 所示。
其功能见表1。
定时器内部由电压比较器、分压电路、RS 触发器及放电三极管等组成。
1)电压比较器
两个相同的电压比较器A1,和A2,其中A1的同相端接基准电压,反相端接外触发输人电压,称高触发端TH。
电压比较器A2的反相端接基准电压,其同相端接外触发电压,称低触发端TR。
2)分压电路
分压电路由三个5K 的电阻构成,分别给A1和A2提供参考电平2/3 U DD和1/3 U DD。
5 脚为控制端,平时等于2/3 U DD作为比较器的参考电平,当5 脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制。
如果不在5 脚外加电压通常接0.01μF 电容到地,起滤波作用,以消除外来的干扰,确保参考电平的稳定。
3)基本RS触发器
它由交叉耦合的两个与非门组成。
比较器A1的输出作为基本RS触发器的复位输入,比较器A2的输出作为基本RS触发器的置位输入。
4 脚是直接复位控制端,当4 脚接入低电平时,则3脚输出U O=0;正常工作时4脚接高电平。
4)放电开关管VT
A1和A2的输出端控制RS触发器状态和放电管开关状态。
当输入信号自6 脚输入大于2/3 U DD时,触发器复位,3 脚输出为低电平,放电管VT导通;当输入信号自2 脚输入并低于1/3 U DD
时,触发器置位,3 脚输出高电平,放电管截止。
5)输出缓冲级
它由反相器构成,其作用是提高定时器的带负载能力并隔离负载对定时器的影响。
图1 NE555引脚排列及内部功能框图
输入输出阈值输入⑥触发输入②复位④输出③放电管V T⑦X X 0 0 导通< 2/3 U DD< 1/3 U DD 1 1 截止
> 2/3 U DD> 1/3 U DD 1 0 导通
< 2/3 U DD> 1/3 U DD 1 不变不变
2.典型应用
555定时器的应用非常之广,但最基本的应用或称基本工作模式只有三种:多谐振荡器、单稳态触发器和施密特触发器。
下面介绍这3种基本应用电路及其工作波形和计算公式。
图 2 单稳态电路的电路图和波形图
1) 单稳态触发器
电路如图2 所示,接通电源→电容C 充电(至2/3 U DD )→ RS 触发器置0 → U O =0,T 导通,C 放电,此时电路处于稳定状态。
当②加入V i <1/3 U DD 时,RS 触发器置“1”,输出U O =1,使T 截止。
电容C 开始充电,按指数规律上升,当电容C 充电到2/3 U DD 时, 比较器A 1 翻转,使输出U O =0。
此时T 又重新导通,C 很快放电,暂稳态结束,恢复稳态,为下一个触发脉冲的到来作好准备。
其中输出U O 脉冲的持续时间t 1=1.1RC,一般取 R = 1kΩ--10MΩ,C >1000PF 。
2) 多谐振荡器
电路由555 定时器和外接元件R 1 、 R 2 、C 构成多谐振荡器,脚②和脚⑥直接相连。
电路无稳态,仅存在两个暂稳态,亦不需外加触发信号,即可产生振荡。
电源接通后, U DD 通过电阻R 1 、 R 2 向电容C 充电。
当电容上电U C =2/3 U DD 时,阀值输入端⑥受到触发,比较器A 1 翻转,输出电压U O =0,同时放电管T 导通,电容C 通过R 2 放电;当电容上电压U C =1/3 U DD ,比较器A 2工作,输出电压U O 变为高电平。
C 放电终止、又重新开始充电,周而复始,形成振荡。
电容C 在1/3 U DD ~2/3 U DD 之间充电和放电,其波形图见图3。
555 电路要求R 1 、 R 2均应大于或等于1kΩ,而R 1 + R 2 应小于或等于3.3MΩ。
充电时间常数: 120.7()PH T R R C ≈+ 放电时间常数: 20.7PL T R C ≈
振荡周期: 120.7(2)PH PL T T T R R C =+≈+
振荡频率:
121 1.44(2)f T R R C =
=+ 输出方波占空比: 12
12
2PH T R R D T R R +=
=+
图3 多谐振荡器的电路图和波形图
3)施密特触发器
电路如图4 所示,U S为正弦波,经D 半波整流到555 定时器的②脚和⑥脚,当U i上升到2/3 U DD时,U O从1→0;U i下降到1/3 U DD时,U O又从0→1。
电路的电压传输特性如图4 所示。
其中:
上限阈值电平:
2
U
3
UT DD V=
下限阈值电平:
1
3
LT DD V U
=
回差电压:ΔU =1/3 U DD
图4 施密特触发器的电路图和电压传输特性
三、实验仪器及设备
实验箱:
数字万用表:
示波器:TDS210 ×1
集成定时器:NE555 ×2;
电阻:10kΩ×1、100kΩ×1,5.1kΩ×3,1kΩ×1;
电容器:0.01μF×3、10μF×1、100μF×1;
喇叭:8Ω/0.25W×1。
发光二极管:红色
四、实验内容——模拟声光报警电路
两片555 定时器可构成变音信号发生器,其电路如图 5 所示。
它能按一定规律发出两种不同的声音。
这种变音信号发生器是由两个多谐振荡器组成。
一个振荡频率较低,另一个振荡频率受其控制。
适当调整电路参数,使声音达到满意的效果。
图5 模拟报警音响电路
1)按图5搭接电路,其中左边555(1)的③脚和右边555(2)的⑤脚的5.1K电阻暂时不接,
右边555(2)的⑤脚接法和左边555(1)一样,接0.01uF电容到地;
2)用示波器分别测量并记录两个555的③脚输出波形;
3)将左边555(1)的③脚和右边555(2)的⑤脚之间的5.1K电阻接上,右边555的⑤脚接
的0.01uF电容去除;
4)用示波器测量并记录右边555(2)③脚输出波形。
五、实验预习要求
1.复习555 集成定时器的工作原理,复习单稳触发器、多谐振荡器和施密特触发器的工
作原理;
2.拟定实验中所需的表格;
3.拟定各次实验的步骤和方法。
六、实验报告
1.根据实验内容,记录数据,画出波形;
2.分析、总结实验结果。