第22章相似形综合复习-沪科版九年级数学上册练习

合集下载

沪科版九年级上册数学 第22章 相似形 单元测试卷

沪科版九年级上册数学 第22章 相似形  单元测试卷

沪科新版九年级上册数学《第22章相似形》单元测试卷一.选择题1.若=,则等于()A.B.C.D.2.已知=,则的值为()A.B.C.D.3.下列四组线段中,不构成比例线段的一组是()A.1cm,2cm,3cm,6cm B.2cm,3cm,4cm,6cmC.1cm,cm,cm,cm D.1cm,2cm,3cm,4cm4.下列各组图形一定相似的是()A.两个矩形B.两个等边三角形C.各有一角是80°的两个等腰三角形D.任意两个菱形5.已知,那么下列等式中,不成立的是()A.B.C.(y≠﹣4a)D.4x=3y6.如图,在△ABC中,D,E两点分别在BC,AC上,且AD平分∠BAC,若∠ABE=∠C,BE与AD相交于点F,则图中与△ABD相似的是()A.△ABC B.△ABF C.△BFD D.△AEF7.如图,在△ABC中,D为AB上一点,若AC2=AD•AB,则()A.△ADC∽△CBD B.△BDC∽△BCA C.△ADC∽△ACB D.无法判断8.若△ABC∽△ADE,AB=9,AC=6,AD=3,则EC的长是()A.2B.3C.4D.59.如图,顶角为36°的等腰三角形,其底边与腰之比等于k,这样的三角形称为黄金三角形,已知腰AB=1,△ABC为第一个黄金三角形,△BCD为第二个黄金三角形,△CDE 为第三个黄金三角形以此类推,第2020个黄金三角形的周长()A.k2018B.k2019C.D.k2019(2+k)10.如图,点E是矩形ABCD的边CD上一点,作AF⊥BE于F,连接DF,若AB=6,DF =BC,则CE的长度为()A.2B.C.3D.二.填空题11.如果x:y=1:2,那么=.12.如图,△ABC的两条中线AD,BE交于点G,EF∥BC交AD于点F.若FG=1,则AD=.13.已知△ABC的三边分别是5,6,7,则与它相似△A′B′C′的最短边为10,则△A′B′C′的周长是.14.若x:y=5:2,则(x+y):y的值是.15.已知线段AB,点P是线段AB的黄金分割点,AP>BP,设以AP为边的正方形的面积为S1,以PB、AB为边的矩形的面积为S2,则S1S2(填<、≤、=、>或≥).16.某课外活动小组的同学在研究某种植物标本(如图所示)时,测得叶片①最大宽度是8cm,最大长度是16cm;叶片②最大宽度是7cm,最大长度是14cm;叶片③最大宽度约为6.5cm,请你用所学数学知识估算叶片③的完整叶片的最大长度,结果约为cm.17.如图,∠B=∠D,请你添加一个条件,使得△ABC∽△ADE,这个条件可以是.18.如果=,那么=.19.在1:40000的地图上,村犀路的距离是7厘米,则实际距离是千米.20.如图,在△ABC中,P为AB上的一点,补充条件,能使△APC∽△ACB,这个条件可以是.(写出一个即可)三.解答题21.已知==,且2x+3y﹣z=18,求x,y,z的值.22.已知,求m的值.23.已知,求的值.24.如图,a∥b∥c,直线m,n与直线a,b,c分别相交于点A,B,C和点D,E,F.若AB=3,BC=5,DE=4,求EF的长.25.已知==2,求和的值.26.阅读理解:如图1,点C将线段AB分成两部分,若=,则点C为线段AB的黄金分割点.某研究学习小组,由黄金分割点联想到“黄金分割线”,而给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果=,那么称直线l为该图形的黄金分割线.问题解决:如图2,在△ABC中,若点D是AB的黄金分割点.(1)研究小组猜想:直线CD是△ABC的黄金分割线,你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组探究发现:过点C作直线交AB于E,过D作DF∥CE,交AC于F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.27.如图1,将A4纸2次折叠,发现第一次的折痕与A4纸较长的边重合,如图2,将1张A4纸对折,使其较长的边一分为二,沿折痕剪开,可得2张A5纸.(1)A4纸较长边与较短边的比为;(2)A4纸与A5纸是否为相似图形?请说明理由.参考答案与试题解析一.选择题1.解:∵=,∴a=b,则==.故选:A.2.解:由=,得==.故选:D.3.解:A、1:2=3:6,即1cm,2cm,3cm,6cm成比例;B、2:3=4:6,即2cm,3cm,4cm,6cm成比例;C、1:=:,即1cm,cm,cm,cm成比例;D、四条线段中,任意两条的比都不相等,因而不成比例.故选:D.4.解:两个矩形对应边的比不一定相等,故不一定相似;两个等边三角形相似对应边的比相等,对应角相等,一定相似;各有一角是80°的两个等腰三角形对应角不一定相等,故不一定相似;任意两个菱形对应角不一定相等,故不一定相似;故选:B.5.解:A、∵,∴=,此选项正确,不合题意;B、∵,∴=﹣,此选项错误,符合题意;C、∵,∴=,此选项正确,不合题意;D、∵,∴4x=3y,此选项正确,不合题意;故选:B.6.解:在△ABE与△ACB中,∠ABE=∠C,∠BAE=∠CAB,∴△ABE∽△ACB,∴∠AEB=∠ABC,∵AD平分∠BAC,∴∠BAD=∠EAF,∴△ABD∽△AEF.故选:D.7.解:∵AC2=AD•AB,∴,∵∠A=∠A,且∠A为AD、AC和AB、AC的夹角,∴△ADC∽△ACB.故选:C.8.解:设EC=x,∵AC=6,∴AE=6﹣x,∵△ABC∽△ADE,∴,∴,解得:x=4,故选:C.9.解:∵AB=AC=1,∴△ABC的周长为2+k;△BCD的周长为k+k+k2=k(2+k);△CDE的周长为k2+k2+k3=k2(2+k);依此类推,第n个黄金三角形的周长为k n﹣1(2+k),∴第2020个黄金三角形的周长为k2019(2+k).故选:D.10.解:过D作DH⊥AF于点H,延长DH与AB相交于点G,∵四边形ABCD为矩形,∴AD=BC,∵DF=BC,∴DA=DF,∴AH=FH,∵AF⊥BE,∴DG∥BE,∴AG=BG=,∵矩形ABCD中,AB=DC=6,AB∥DC,∴四边形BEDG为平行四边形,∴DE=BG=3,∴CE=CD﹣DE=6﹣3=3.故选:C.二.填空题11.解:+1=+1,即=.故答案为:.12.解:∵△ABC的两条中线AD,BE交于点G,∴BD=CD,AE=CE,∵EF∥CD,∴==1,即AF=FD,∴EF为△ADC的中位线,∴EF=CD,∴EF=BD,∵EF∥BD,∴==,∴DG=2FG=2,∴FD=2+1=3,∴AD=2FG=6.故答案为6.13.解:∵△ABC∽△A′B′C′,△ABC的三边分别是5,6,7,△A′B′C′的最短边为10,∴相似比是:=,∴△A′B′C′的另外两条边是6×2=12,7×2=14,∴△A′B′C′的周长是:10+12+14=36,故答案为:36.14.解:由合比性质,得==,故答案为:.15.解:根据黄金分割的概念得:AP:AB=PB:AP,即AP2=PB•AB,则S1:S2=AP2:(PB•AB)=1,即S1=S2.故答案为:=.16.解:根据叶片①②的最大长度和宽度,可得出这种植物的叶片的最大宽度:最大长度=1:2.由此可得出完整的叶片③的最大长度应是6.5×2=13cm.故答案为:13.17.解:∵∠B=∠D,∴添加∠C=∠E或∠BAC=∠DAE或∠BAD=∠CAE或=,可证△ABC∽△ADE.故答案为:∠C=∠E或∠BAC=∠DAE或∠BAD=∠CAE或=.18.解:∵=,则x=y,∴===.故答案为:.19.解:因为实际距离=图上距离÷比例尺,则:7÷=280000(厘米)=2800(米)=2.8千米;答:这两地之间的实际距离是2.8千米.故答案为:2.8.20.解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△APC,故答案为:∠ACP=∠B(答案不唯一)三.解答题21.解:由==,得y=,z=2x.将y=,z=2x代入2x+3y﹣z=1中,得2x+﹣2x=18.解得x=4,y==6,z=2x=8.22.解:由可知:x+y=mz,y+z=mx,z+x=my.这几式相加可得:2(x+y+z)=m(x+y+z),当x+y+z≠0时,有m=2,当x+y+z=0时,有x+y=﹣z,y+z=﹣x,x+z=﹣y,m=﹣1.故m=2或﹣1.23.解:设===k,所以,a=3k,b=4k,c=5k,则==.24.解:∵a∥b∥c,∴,即,解得:EF=.25.解:因为==2,可得:a =2b ,c =2d , 所以=,=.26.解:(1)直线CD 是△ABC 的黄金分割线.理由如下:∵点D 是AB 的黄金分割点, ∴=, ∵=,=, ∴=,∴直线CD 是△ABC 的黄金分割线;(2)∵三角形的中线把AB 分成相等的两条线段,即AD =BD , ∴=,==1,∴三角形的中线不是该三角形的黄金分割线;(3)∵DF ∥CE ,∴S △FDE =S △FDC ,S △DEC =S △FEC ,∴S △AEF =S △ADC ,S 四边形BEFC =S △BDC , ∵=, ∴=,∴直线EF 是△ABC 的黄金分割线.27.解:(1)如图1,由折叠过程可以看到:第一次折叠,A 与D 重合,四边形ABDC 为正方形,折痕BC 为对角线,由勾股定理可得BC =AB ;第二次折叠,第一次的折痕与A 4纸较长的边重合,即BC 与较长边重合.所以,较长边=AB . ∴A 4纸较长边与较短边的比为:.故答案为:.(2)A4纸与A5纸是相似图形.理由:∵A4纸较长边与较短边的比为:,∴设A4纸较短边的长为a,则较长边为a.∵由图2可知:A5纸的长边与A4纸的短边重合,短边等于A4纸的长边的一半,∴A5纸的长边为a,短边为.∴A5纸的长边与短边的比为:=.∴A4纸较长边与较短边的比=A5纸的长边与短边的比.又∵A4纸与A5纸的四个角均为直角,∴A4纸与A5纸相似.。

沪科版九年级上册数学第22章 相似形 含答案

沪科版九年级上册数学第22章 相似形 含答案

沪科版九年级上册数学第22章相似形含答案一、单选题(共15题,共计45分)1、已知两个相似三角形的相似比为1:4,则它们的周长比为()A.1:4B.4:1C.1:2D.1:162、如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF =S△ABF,其中正确的结论有()A.2个B.3个C.4个D.5个3、如图,将△ABC沿DE翻折,折痕DE∥BC,若,BC=9 ,则DE的长等于()A.2B.3C.4D.4.54、如图,AB为半圆O的直径,AD、BC分别切⊙O于A,B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD :S△BOC=AD2:AO2,④OD:OC=DE:OE,⑤OD2=DE•CD,正确的有()A.2个B.3个C.4个D.5个5、如图,⊙O的直径为6,在⊙O上位于直径AB的异侧有定点C和动点P.已知BC:CA=4:3,P在半圆上运动,CP⊥CD交PB的延长线于D点.当点P运动到什么位置时,△PCD的面积最大为()A.36B.24C.18D.126、直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A. B. C. D.7、如图,在中,,若,则与的面积之比为()A. B. C. D.8、在△ABC中,DE∥BC,若AD=1,DB=2,则的值为()A. B. C. D.9、已知a:b:c=4:3:2,且a+3b-3c=14,则4a-3b+c的值是( )A.8B.10C.16D.1810、已知∠PAQ=36°,点B为射线AQ上一固定点,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交射线AP 于点D,连接 BD;③以B为圆心,BA长为半径画弧,交射线AP 于点C;根据以上作图过程及所作图形,下列结论中错误的是()A.∠CDB=72°B.△ADB∽△ABCC.CD:AD=2:1D.∠ABC=3∠ACB11、下列各组线段中,能成比例的是()A.1cm,3cm,4cm,6cmB.30cm,12cm,0.8cm,0.2cmC.11cm,22cm,33cm,44cmD.12cm,16cm,45cm,60cm12、下列命题中,假命题的是( )A.两条弧的长度相等,它们是等弧B.等弧所对的圆周角相等C.所有的等边三角形都相似D.位似图形一定有位似中心13、如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有()个.A.1B.2C.3D.414、如图,在△ABC中,∠B=70°,AB=4,BC=6,将△ABC沿图示中的虚线DE 剪开,剪下的三角形与原三角形相似的有()A.1个B.2个C.3个D.4个15、如图,己知四边形ABCD中,E、F分别为AB、CD 上的两点,且AD∥BC∥EF,AB=4BE,则DF与FC的关系是()A.DF=4FCB.DF=3FCC.DF= FCD.DF=2FC二、填空题(共10题,共计30分)16、已知线段AB = 4厘米,点P是线段AB的黄金分割点(AP > BP),那么线段AP =________厘米.(结果保留根号)17、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB :S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确结论的个数是________.18、如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE·CA,分别延长AB,DC相交于点P,PB=BO,CD=2 .则BO的长是________.19、已知△ABC∽△DEF,且BC=5cm,EF=3cm,若S△ABC =25cm2,则S△DEF=________。

沪科版九年级数学上册第22章 相似形单元测试卷含解析

沪科版九年级数学上册第22章 相似形单元测试卷含解析
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
12.如图 RtABC 中,AC⊥BC,CD⊥AB 于 D,AD=4,BD=2,则 CD=_________. 三、解答题(共 9 大题,满分 90 分)
15.已知:如图,ABC 中, DE / / BC , AB 8 , AD 5 , EC 4 .求 AE 的长.
AD BC
第 7页 共 10页

第 8页 共 10页
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
成①②③④四个三角形.若 OA∶OC OB∶OD ,则下列结论中一定正确的是
()
第 1页 共 10页

第 2页 共 10页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………

初中数学九年级数学上册 第22章 相似形检测题考试卷及答案 (新版)沪科版.docx

初中数学九年级数学上册 第22章 相似形检测题考试卷及答案 (新版)沪科版.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列四组图形中,不是相似图形的是()试题2:若△ABC∽△A′B′C′,相似比为1∶2,则△ABC与△A′B′C′的面积的比为()A.1∶2B.2∶1C.1∶4D.4∶1试题3:在比例尺为的地图上,量得两地的距离是,则这两地的实际距离是()A. B. C. D.试题4:评卷人得分如图,在△中,为边上一点,∠∠,,,则的长为()A.1B.4C.3D.2试题5:如图,在△中,点分别是的中点,则下列结论:①;②△∽△;③.其中正确的有()A.3个B.2个C.1个D.0个试题6:如图,//,//,分别交于点,则图中共有相似三角形()A.4对B.5对C. 6对D.7对试题7:如图,已知△,则下列4个三角形中,与△相似的是()试题8:如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF︰FC等于()A.3︰2 B.3︰1C.1︰1D.1︰2试题9:如图,点是线段的黄金分割点,则下列结论中正确的是()A. B.C. D.试题10:如图,正五边形是由正五边形经过位似变换得到的,若,则下列结论正确的是( )A. B. C. D.试题11:已知,且,则_______.试题12:如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长为_______,面积为________.试题13:如图,在△中,∥,,则______.试题14:若,则=__________.试题15:如图,是的黄金分割点,,以为边的正方形的面积为,以为边的矩形的面积为,则_______(填“>”“<”“=”).试题16:五边形∽五边形,,,,,________.试题17:如图,在△ABC中,DE∥BC,,△ADE的面积是8,则△ABC的面积为 .试题18:如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为.试题19:已知:如图,是上一点,∥,,分别交于点,∠1=∠2,探索线段之间的关系,并说明理由.试题20:某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.第20题图根据以上测量过程及测量数据,请你求出河宽BD是多少米?试题21:已知:如图,在△中,∥,点在边上,与相交于点,且∠.求证:(1)△∽△;(2)试题22:如图,在正方形中,分别是边上的点,连接并延长交的延长线于点(1)求证:;(2)若正方形的边长为4,求的长.试题23:如图,为线段的中点,与交于点,∠∠∠且交于点F,交于.写出图中两对相似三角形,并证明其中的一对.试题24:如图,梯形中,∥,点在上,连接并延长与的延长线交于点.(1)求证:△∽△;(2)当点是的中点时,过点作∥交于点,若求的长.试题25:如图,是的直径,是上的两点,且,的延长线与的延长线交于点.(1)求证:△∽△;(2)若,,求的长.试题1答案:一个是直角三角形,不是相似图形.试题2答案:C 解析:根据相似三角形的面积比等于相似比的平方的性质直接得出结果.△ABC与△A′B′C′的面积的比为1∶4.故选C.试题3答案:D 解析:试题4答案:D 解析:∵在△中,为边上一点,,,∴△∽△,∴.又∵,,∴,∴.试题5答案:A 解析:因为点分别是的中点,所以是△的中位线.由中位线的性质可推出①②③全部正确. 试题6答案:C 解析:△∽△∽△∽△.试题7答案:C 解析:由对照四个选项知,C项中的三角形与△相似. 试题8答案:D 解析:∵AD∥BC,∴,,∴△DEF∽△BCF,∴.又∵,∴,∴试题9答案:C 解析:根据黄金分割的定义可知,.试题10答案:B 解析:由正五边形是由正五边形经过位似变换得到的,知,所以选项B正确.试题11答案:4 解析:因为,所以设所以,所以所以试题12答案:90 270 解析:设另一三角形的其他两边为由题意得,所以又因为所以三角形是直角三角形,所以周长为试题13答案:9 解析:在△中,因为∥,所以∠∠∠∠,所以△∽△,所以,所以,所以试题14答案:解析:由,得,,,所以试题15答案:解析:由黄金分割的概念知,又所以所以.试题16答案:解析:因为五边形∽五边形所以又因为五边形的内角和为所以.试题17答案:18 解析:∵DE∥BC,∴△ADE∽△ABC,∴.∵△ADE的面积为8,∴解得=18.试题18答案:(3,3) 解析:因为,所以点A(6,6)经过缩小变换后点C的坐标为(3,3).试题19答案:解:. 理由如下:∵∥∴∠∠.又∴.又∵∴△∽△,∴即.试题20答案:解:由题意,知∠BAD=∠BCE.∵∠ABD=∠ABE=90°,∴△BAD∽△BCE.∴,∴.∴BD=13.6.∴河宽BD是13.6米.试题21答案:证明:(1)∵,∴∠.∵∥,∴,.∴.∵,∴△∽△.(2)由△∽△,得,∴.由△∽△,得.∵∠∠,∴△∽△.∴.∴.∴.试题22答案:(1)证明:在正方形中,,.∵∴,∴,∴.(2)解:∵∴.由(1)知,∴,∴.由∥,得,∴△∽△,∴,∴.试题23答案:解:△∽△,△∽△,△∽△(写出两对即可). 以下证明△∽△.∵∠=∠+∠=∠+∠=∠,∠=∠,∴△∽△.试题24答案:(1)证明:∵梯形中,∥,∴∴△∽△.(2)解:由(1)知,△∽△,又是的中点,∴∴△≌△∴又∵∥∥,∴∥,得.∴∴.试题25答案:(1)证明:∵,∴.∴∠∠.又∠∠,∴△∽△.(2)解:∵△∽△,∴.∵,,∴.∴.∴.∵是的直径,∴∠°.在Rt△中,∴.。

(B卷)沪科版九年级上册数学第22章 相似形含答案

(B卷)沪科版九年级上册数学第22章 相似形含答案

沪科版九年级上册数学第22章相似形含答案一、单选题(共15题,共计45分)1、如图,菱形ABCD中,点M,N在AC上,ME⊥AD, NF⊥AB. 若NF = NM = 2,ME = 3,则AN =()A.3B.4C.5D.62、如图,已知M,N分别为AB,AC上的两点,且MN∥BC,AN=4CN,若AB=10,则BM的长为()A.1B.2C.3D.43、如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB :S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确结论的个数是()A.1B.2C.3D.44、如图,E是矩形ABCD中AD边的中点,BE交AC于点的面积为2,则四边形CDEF的面积为()A.4B.5C.6D.75、如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A.3B.6C.D.106、如图,□ABCD中,EF∥AB,DE∶EA = 2∶3,EF = 4,则CD的长为()A. B.8 C.10 D.167、如图,△ABC中,DE∥BC,= ,则OE:OB=()A. B. C. D.8、如图,四边形ABCD∽四边形A1B1C1D1, AB=12,CD=15,A1B1=9,则边C1D1的长是()A.10B.12C.D.9、如图,在中,,将绕点顺时针旋转,使点旋转至边上的点处,点的对应点为点,的延长线恰好经过点,则的长为()A. B. C. D.10、如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④11、如图,在△ABC中,D为AB上的一点,过点D作DE∥BC交AC于点E,过点D作DF∥AC交BC 于点F,则下列结论错误的是()A. B. C. D.12、把ab= cd写成比例式,下列写法错误的是()A. B. C. D.13、如图,在Rt△ABC中,∠C=90°,P是斜边上一定点,过点P作直线与一直角边交于点Q使图中出现两个相似三角形,这样的点Q有 ( )A.1个B.2个C.3个D.4个14、若2a=3b,则的值为( )A. B. C. D.15、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A. B. C. D.二、填空题(共10题,共计30分)16、如图,在面积为80 cm²的矩形ABCD中作等边△BEF,点E,F分别落在AD,BC上,将△BEF向右平移得到△B1E1F1(点B1在F的左侧),再将△B1E1F1向右平移,使得F1与C重合,得到△B2E2C(点B2在F1的左侧),且第二次平移的距离是第一次平移距离的1.4倍.若FB2= BE,则阴影部分面积为________cm²。

沪科版九年级数学上册试题 第22章《相似形》单元测试卷(含答案详解)

沪科版九年级数学上册试题  第22章《相似形》单元测试卷(含答案详解)

第22章《相似形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P 是线段AB 上一点(AP >BP ),若满足,则称点P 是AB 的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x 米时恰好站在舞台的黄金分割点上,则x 满足的方程是( )A .(20﹣x )2=20xB .x 2=20(20﹣x )C .x (20﹣x )=202D .以上都不对2.如图,点D ,E ,F 分别在的边上,,,,点M 是的中点,连接并延长交于点N ,则的值是( )A .B .C .D .3.将含有的三角板按如图所示放置,点在直线上,其中,分别过点,作直线的平行线,,点到直线,的距离分别为,,则的值为( )BP APAP AB=ABC V 13AD BD =DE BC ∥EF AB ∥EF BM AC ENAC32029161730︒ABC A DE 15BAD ∠=︒B C DE FG HIB DE HI 1h 2h 12h hA .1 BCD4.如图,点D 是△ABC 中AB 边上靠近A 点的四等分点,即4AD =AB ,连接CD ,F 是AC 上一点,连接BF 与CD 交于点E ,点E 恰好是CD 的中点,若S △ABC =8,则四边形ADEF 的面积是( )A .4B .C .2D .5.如图,在边长为的小正方形组成的网格中,建立平面直角坐标系,的三个顶点均在格点(网格线的交点)上.以原点为位似中心,画使它与的相似比为,则点的对应点的坐标是( )A .B .C .或D .或6.如图,已知、,与相交于点,作于点,点是的中点,于点,交于点,若,,则值为( )11-1181171ABC V O 111A B C △ABC V 2B 1B ()42,()42--,()42,()42--,()42,()42,-AB BC ⊥DC BC ⊥AC BD O OM BC ⊥M E BD EF BC ⊥G AC F 4AB =6CD =OM EF -A.B .C .D .7.如图,在平面直角坐标系中,为原点,为平面内一动点,,连接,点是线段上的一点,且满足.当线段取最大值时,点的坐标是( )A .B .C .D .8.如图,四边形是矩形,平分,,、的延长线交于点,连接,连接交于点.下列结论错误的是()A .图中共有三个等腰直角三角形B .C .D .9.如图,在平面直角坐标系中,点,点B 是线段上任意一点,在射线上取一点C ,使,在射线上取一点D ,使.所在直线的关系式为,点F 、G分别为线段的中点,则的最小值是()751253525O OA OB ==C 32BC =AC M AC :1:2CM MA =OM M36,55⎛⎫ ⎪⎝⎭612,55⎛⎫ ⎪⎝⎭ABCD CE BCD ∠AE CE ⊥EA CB F DE BD CE G DGC EBC∠=∠AB AD CG CE⋅=⋅∽CDG CEBV V ()E OE OA OB BC =BC BD BE =OA 12y x =OC DE 、FGABC .D .4.810.如图所示,正方形由四个全等的直角三角形和一个小正方形组成,且内接于正方形,连接,.已知正方形与正方形面积之比为,若,则( )A BCD .二、填空题(本大题共8小题,每小题4分,共32分)11.已知,且,则 .12.在中,M ,N 分别是BC ,AC 边上一点,连接AM ,BN 交于点P ,若,,则 .13.正方形中,E ,F 分别是,上的点,连结交对角线于点G ,若恰好平分,,则的值为 .ABCD FGHI DE BE CE>ABCD FGHI 59DE CH ∥BECE=32::3:5:7a b c =10a b c -+=a b c ++=ABC V :2:3BM CM =:1:4AN CN =:AP MP =ABCD AD DC EF BD BE AEF ∠413DG GB =DE AE14.宽与长的比等于黄金比的矩形称为黄金矩形.古希腊很多矩形建筑中宽与长的比都等于黄金比,如图,矩形ABCD 为黄金矩形,AB <AD ,以AB 为边在矩形ABCD 内部作正方形ABEF ,若AD =1,则DF = .15.如图,矩形的两条对角线相交于点O ,,垂足为E ,F 是的中点,连接交于点P,那么.16.如图,中,,,,若正方形的顶点在上,顶点、都在上,射线交边于点,则长为 .17.如图:等腰直角三角形中,E 为边上一点,.将沿着翻折得到线段,连接,若.ABCD AC BD ,OE AB ⊥OC EF OB OPPB=ABC V 90ACB ∠=︒2BC =4AC =DEFC D AB F G AC AF BC H CH ABC BC 3BE CE =AB AE AD CD AB =CD =18.如图,在矩形中,,,点在直线上,从点出发向右运动,速度为每秒,点在直线上,从点出发向右运动,速度为每秒,相交于点,则的最小值为 .三、解答题19.(8分)如图,,于点D ,M 是的中点,交于点P ,.若,求的长.ABCD 5cm AB =6cm BC =E AD A 0.5cm F BC B 2cm BE AF 、G BG CG +cm AB AC =AD BC ⊥AD CM AB DN CP ∥6cm AB =PN20.(8分)如图,四边形ABCD 中,AB=AC=AD ,AC 平分∠BAD ,点P 是AC 延长线上一点,且PD ⊥AD .(1)证明:∠BDC=∠PDC ;(2)若AC 与BD 相交于点E ,AB=1,CE :CP=2:3,求AE 的长.21.(10分)如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.若铁塔底座宽CD=12m ,塔影长 m ,小明和小华的身高都是1.6m ,同一时刻小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,求塔高AB.18DE22.(10分)如图1,在,,,D 为上一点,连接,分别过点A 、B 作于点N ,于点M .(1)求证:;(2)若点D 满足,求的长;(3)如图2,若点E 为中点,连接,求证:.图1 图2Rt ABC △90ACB ∠=︒1AC BC ==AB CD AN CD ⊥BM CD ⊥ACN CBM V V ≌21BDAD =∶∶DM AB EM 45EMN ∠=︒23.(10分)如图,在正方形中,点是对角线上一点,的延长线交于点,交的延长线于点,连接.(1)求证:;(2)求证:;(3)若的长.ABCD G BD CG AB E DA F AG CG AG =2AB BE DF =⋅GE =GC =EF24.(12分)如图,在平面直角坐标系中,点A 在轴的正半轴上,点在轴的负半轴上,点在轴的正半轴上,且,线段、的长是一元二次方程的两个根,且.(1)求点A 、点的坐标;(2)求点的坐标;(3)若直线过点A 交线段于点,且,求点坐标;(4)在平面内是否存在一点,使得以为直角顶点的与相似,若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.x B x C y 90ACB ∠=︒OB OA 213360x x -+=OB OA <B C l BC D :1:2ABD ADC S S =△△D P P APC △ABC V P答案一、单选题1.A【分析】点P 是AB 的黄金分割点,且PB <PA ,PB =x ,则PA =20−x ,则,即可求解.解:由题意知,点P 是AB 的黄金分割点,且PB <PA ,PB =x ,则PA =20−x ,∴,∴(20−x )2=20x ,故选:A .2.A【分析】过点F 作交AC 于点G,可证.同理,可得,,;由,得,于是;设,则,,,从而得.解:过点F 作交AC 于点G,∴∴.BP AP AP AB=BP AP AP AB =FG BN ∥EN GN =13AE AD EC DB ==3EC AE =13AE BF EC FC ==FG BN ∥13BF NG FC GC ==3GC NG =EN NG a ==3=GC a 5EC a =203AC a =320EN AC =FG BN ∥1EN EM GN FM==EN GN =∵,∴.∴.∵,∴.∵,∴.∴.设,则,∴∴.∴.∴.∴.故选:A3.B【分析】设交于点,由,得三角形BCM 为等腰直角三角形,再由含30度角直角三角形三边长比及等腰直角三角形的边长比,设BC 为x ,可得MA 为,再由平行线分线段成比例求解.解:设交于点,∵,,DE BC ∥13AE AD EC DB ==3EC AE =EF AB ∥13AE BF EC FC ==FG BN ∥13BF NG FC GC ==3GC NG =EN NG a ==3=GC a 5EC EN NG GC a=++=35EC AE a ==53AE a =520+533AC AE EC a a a =+==320203EN a AC a ==CE FG M 45DAC BAD CAB ∠=∠+∠=︒MA x =-CE FG M 30CAB ∠=︒15BAD ∠=︒∴,∵,∴,三角形为等腰直角三角形,在Rt △ABC 中,设长为,则,∵,∴,∴,∵,∴,故选:B .4.D【分析】过D 点作DG∥EF ,连接AE ,,GF =FC ,再计算△ADE 和△AEF 的面积即可.解:过D 点作DG ∥EF ,连接AE ,∵点E 恰好是CD 的中点,4AD =AB ,∴,GF =FC ,设AG =k ,则AF =4k ,GF =3k ,FC =3k ,∴,∵,S △ABC =8,∴,∴,∵,∴,∴=.45DAC BAD CAB ∠=∠+∠=︒//FG DE 45CMB DAC ∠=∠=︒BCM BC x CM BC x ==30CAB ∠=︒CA ==MA x =-////HI FG DE 121h MA h CM ===14AG AD AF AB ==14AG AD AF AB ==43AF FC =14ACD ABC S AD S AB ∆∆==124ACD ABC S S ∆∆==112ADE AEC ACD S S S ∆∆∆===43AEFCEF S AF S CF ∆∆==4477AEF AEC S S ∆∆==417ADE AEF ADEF S S S ∆∆=+=+四边形117故选:D .5.C【分析】直接利用位似图形的性质画出三角形顶点的对应点,再顺次连接即可画出图形,根据点的位置写出坐标即可.解:如图所示,当和在原点同侧时,∵与的相似比为2,,∴,即;如图所示,当和在原点两侧时,∵与的相似比为2,,∴,即;综上所述,或,故选C.1B ABC V 111A B C △111A B C △ABC V ()2,1B ()122,12B ⨯⨯()142B ,ABC V 111A B C △111A B C △ABC V ()2,1B ()122,12B -⨯-⨯()142B --,()142B --,()142B ,6.A【分析】证明,,,,求出,求出,,得出即可得出答案.解:、,,∴,,,∴,,∴,,∴,,∴,点是的中点,,,,∴,,∴,∴,故选:.7.DCOM CAB △∽△BOM BDC V V ∽OM CM AB BC =OM BM DC BC =125OM =132EG CD ==122FG AB ==1EF EG FG =-=AB BC ⊥ DC BC ⊥OM BC ⊥OM AB CD ∥∥COM CAB ∴V V ∽BOM BDC V V ∽OM CM AB BC =OM BM DC BC =4OM CM BC =6OM BM BC=125OM =EF BC ⊥ EG AB CD ∥∥ E BD BE DE ∴=BG CG ∴=CF AF ∴=132EG CD ==122FG AB ==1EF EG FG =-=75OM EF -=A【分析】由题意可得点在以点为圆心,为半径的上,在轴的负半轴上取点,连接,分别过、作,,垂足为、,先证,得,从而当取得最大值时,取得最大值,结合图形可知当,,三点共线,且点在线段上时,取得最大值,然后分别证,,利用相似三角形的性质即可求解.解:∵点为平面内一动点,,∴点在以点为圆心,为半径的上,在轴的负半轴上取点,连接,分别过、作,,垂足为、,∵∴∴,∵,∴,∵,∴,∴,∴当取得最大值时,取得最大值,结合图形可知当,,三点共线,且点在线段上时,取得最大值,C B 32OB x 0D ⎛⎫ ⎪ ⎪⎝⎭BD C M CF OA ⊥ME OA ⊥F E OAM DAC V V ∽23OM OA CD AD ==CD OM D B C B DC CD BDO CDF V V ∽AEM AFC V V ∽C 32BC =C B 32OB x 0D ⎛⎫ ⎪ ⎪⎝⎭BD C M CF OA ⊥ME OA ⊥F E OA OB ==AD OD OA =+=23OA AD =:1:2CM MA =23OA CM AD AC==OAM DAC ∠∠=OAM DAC V V ∽23OM OA CD AD ==CD OM D B C B DC CD∵∴,∴,∵,∴,∵轴轴,,∴,∵,∴,∴,解得同理可得,,∴,解得∴∴当线段取最大值时,点的坐标是,故选D .8.A【分析】根据矩形的性质以及角平分线的性质得,是等腰直角三角形,,是等腰直角三角形,由证明,可得,,则,是等腰直角三角形,由,可得,由三角形外角的性质可得,证明,列比例式并结合等量代换可得.OAOB ==OD =BD =152==9CD BC BD =+=23OM CD =6OM =y x ⊥CF OA ⊥90DOB DFC ∠∠==︒BDO CDF ∠∠=BDO CDF V V ∽OB BD CF CD =1529=CF =AEM AFC V V ∽23ME AM CF AC ==23=ME =OE ===OM M 45DCE BCE ∠=∠=︒CEF △45F DCE ∠=∠=︒ABF △SAS (SAS)≌EBF EDC V V FEB CED ∠=∠BE ED =90FEB CEB CEB CED ∠+∠=∠+∠=︒BED V EBF EDC △≌△FEB CED ∠=∠DGC EBC ∠=∠∽CDG CEB V V AB AD CG CE ⋅=⋅解:如图:四边形是矩形,,,,平分,,,,是等腰直角三角形,,,是等腰直角三角形,,,,,,,,是等腰直角三角形,是等腰直角三角形,故A 错误;,,,,故B 正确;,,故D正确;ABCD AB CD ∴=90ABC BCD ADC ∠=∠=∠=︒90ABF ∴∠=︒CE BCD ∠45DCE BCE ∴∠=∠=︒AE CE ⊥ 90FEC ∴∠=︒CEF ∴V EF CE ∴=45F ∠=︒ABF ∴V BF AB CD ∴==45F DCE ∠=∠=︒ (SAS)≌EBF EDC ∴V △FEB CED ∴∠=∠BE ED =90FEB CEB CEB CED ∴∠+∠=∠+∠=︒BE ED = BED ∴V DCH V 45EBD ∴∠=︒45DGC GCB CBG CBG ∠=∠+∠=︒+∠ 45EBC EBD CBG CBG ∠=∠+∠=︒+∠DGC EBC ∴∠=∠DCG ECB ∠=∠ ∽CDG CEB ∴V V,,,,,故C 正确.故选:A .9.A【分析】如图所示,连接,设射线交射线于H ,过点H 作于M ,连接,先根据三线合一定理得到,,进而证明四边形是矩形,得到,,故当点B 与点M 重合时,最小,即最小,最小值为,设,则,求出,利用相似三角形的性质求出(舍去),则的最小值为.解:如图所示,连接,设射线交射线于H ,过点H 作于M ,连接,∵,,点F 、G 分别为线段的中点,∴,,∵,∴,即,∴四边形是矩形,∴,,∴当最小时,最小,∴当点B 与点M 重合时,最小,即最小,最小值为,∵点H 在直线上,∴可设,∴,∵,CD CG CE CB∴=CD AB = BC AD =AB CG CE AD∴=AB AD CG CE ∴⋅=⋅BF BG ,ED OA HM OE ⊥BH BF OC BG DE ⊥,⊥OBF CBF DBG EBG ==∠∠,∠∠BFHG FG BH =90OHE ∠=︒BH FG HM ()2H m m ,2OM m HM m ==,OE =OMH HME △∽△m =0m =FG BF BG ,ED OA HM OE ⊥BH OB BC =BD BE =OC DE 、BF OC BG DE ⊥,⊥OBF CBF DBG EBG ==∠∠,∠∠180OBF CBF DBG EBG +++=︒∠∠∠∠90CBF DBG +=︒∠∠90FBG ∠=︒BFHG FG BH =90OHE ∠=︒BH FG BH FG HM 12y x =()2H m m ,2OM m HM m ==,()E∴∵,∴,又∵,∴,∴,∴∴(舍去),经检验,∴,故选A .10.A【分析】设,,则,根据正方形与正方形面积之比为,得到,求出,作交于点M ,作交于点P ,证明出,设,则然后利用相似三角形的性质得到,然后解方程求解即可.解:由题意可得,∴设,,则,∵,∴,OE =90MEH HOE MHO MOH +=︒=+∠∠∠∠MHO MEH =∠OMH HME =∠∠OMH HME △∽△OM HM HM ME=2m m =m =0m =m =FG CI DH a ==CH b =IH a b =+ABCD FGHI 59()22259a b a b +=+2BI CH a ==BM GH ⊥GH NE BM ⊥BM BPE ENC ∽V V CN m =IN BP a m ==+a m a a m +=BIC CHD ≌V V CI DH a ==CH b =IH a b =+90H ∠=︒22222CD CH DH a b =+=+∵正方形与正方形面积之比为,∴,即,∴整理得,∴,解得或(舍去),∴,∴,如图所示,作交于点M ,作交于点P ,由题意可得,,∵,∴四边形,是矩形,∴,,∴,∴设,则,∵,∴,∵,∴,∴,又∵,∴,ABCD FGHI 592259CD IH =()22259a b a b +=+222520a ab b -+=25220a a b b ⎛⎫-+= ⎪⎝⎭12a b =2a b=2b a =2BI CH a ==BM GH ⊥GH NE BM ⊥BM AGD DHC ≌V V ED CH ∥BINP ENHD 2PN BI a ==EN DH a ==PE PN EN a =-=CN m =IN BP a m ==+BE CE ⊥90BEP CEN ∠+∠=︒BP PN ⊥90BEP PBE ∠+∠=︒CEN PBE ∠=∠90BPE ENC ∠=∠=︒BPE ENC ∽V V∴,即,∴整理得,∴,∴解得,∴故选:A .二、填空题11.30【分析】设,,,根据得到,求得,从而得出,,,代入进行计算即可.解:,设,,,,,解得:,,,,,故答案为:30.12.【分析】过点M 作,交于点Q ,根据平行线分线段成比例可得,设,求出,即可求解.解:过点M 作,交于点Q ,BP PE BE EN CN CE ==a m a a m+=220a am m -+=210a a m m ⎛⎫-+= ⎪⎝⎭a m =BE CE =3a k =5b k =7c k =10a b c -+=35710k k k -+=2k =6a =10b =14c =::3:5:7a b c = ∴3a k =5b k =7c k =10a b c -+= 35710k k k ∴-+=2k =6a ∴=10b =14c =6101430a b c ∴++=++=5:8MQ BN ∥AC 23BM NQ CM CQ ==2,3NQ k CQ k ==54k AN =MQ BN ∥AC∵,∴,设,∴,∵,∴,则,∵,∴,故答案为:.13.或4【分析】延长交于R ,作于T ,不妨设,,,可证得是等腰三角形,可推出,进而表示出,然后解,从而求出x 的值,进而可得结果.解:如图,延长交于R ,作于T ,,不妨设,,则,设,MQ BN ∥23BM NQ CM CQ ==2,3NQ k CQ k ==5CN NQ CQ k =+=:1:4AN CN =154AN k =54k AN =MQ PN ∥55428kAP AN MP NQ k ===5:812EF BC GT DE ⊥4DG =13GB =4DE x =REB V 413EG DE DG RG BR BG ===EG DEG △EF BC GT DE ⊥ 413DG GB =∴4DG =13GB =17BD =4DE x =四边形是正方形,,,,,,恰好平分,,,,,在中,,由勾股定理得,解得,,当,当,综上所述,或4,故答案为:或4.14【分析】先根据黄金矩形求出AB ,再利用正方形的性质求出AF ,然后进行计算即可解答.解:∵矩形ABCD 为黄金矩形,AB <AD ,ABCD ∴BC AD ∥AD ==∴EBC AEB ∠=∠4AE AD DE x =-=413EG DE DG RG BR BG ===∴13BR x = BE AEF ∠∴AEB FEB ∠=∠∴EBC FEB ∠=∠∴13ER BR x ==∴4521717EG ER x ==Rt EGT V GT DT DG ===4ET DE DT x =-=-((22252417x x ⎛⎫+-= ⎪⎝⎭1x =2x =∴4DE x ==DE =AE ==∴4DE AE=DE =AE ==∴12DE AE =12DE AE =12∴∴∵四边形ABEF 是正方形,∴∴DF=AD -AF=15.【分析】根据矩形性质得到,利用三角形的三线合一得,过O 作交于点Q ,则有,,计算即可.解:∵是矩形,∴,∵F 是的中点,∴,又∵,∴,过O 作交于点Q ,∴,,∴,故答案为:.16.AB AD =AB AD ==1=13OA OB OC ==AE EB =OQ AB P EF OQF AEF V V ∽OQP BEP V V ∽ABCD OA OB OC ==OC 1122OF OC OA ==OA OB =OE AB⊥AE EB =OQ AB P EF OQF AEF V V ∽OQP BEP V V ∽13OP OQ OQ OF PB BE AE AF ====1343【分析】证明,,由相似三角形的性质得出 , ,设, 可得,, 从而可得出答案.解:∵四边形为正方形, ,∴,,∴,, ∴, , 设, ∴,, ∴, ∴, ∴.故答案为 .17.2【分析】如图,作,使,连接,,交于,过作于,可得,,可得,求解,,可得,由对折可得:,,,证明,可得,再证明,可得,有,,求解,可得,从而可得答案.解:∵等腰直角三角形,∴,如图,作,使,连接,,交于,过作于,△∽△ADG ABC AEF AHC V V ∽DG AG BC AC=EF AF CH AC =DG EF x ==24x AG =4x AG x CH +=DGFE 90ACB ∠=︒DG EF BC ∥∥DG EF =△∽△ADG ABC AEF AHC V V ∽DG AG BC AC=EF AF CH AC =DG EF x ==24xAG =4x AG x CH +=2AG x =24x x x CH +=43CH =43AH AE ⊥AH AE =DE EH CH DE K A AF BC ⊥F BAE CAH ∠=∠BC ==12AF CF BC ===()SAS BAE CAH ≌△△454590BCH ∠=︒+︒=︒BE CH ==CE EF ==AH AE ===52EH ==AB AD ==BAE DAE ∠=∠DE BE =45ADE ABE ∠=∠=︒()SAS AEC AHD V V ≌90ECH EDH ∠=∠=︒()Rt Rt HL HEC EHD V V ≌HED CHE ∠=∠CH DE ==EK HK =CK DK =EK HK ==CK DK ===HKE CKD V V ∽ABC AB =AB AC ==BC =AH AE ⊥AH AE =DE EH CH DE K A AF BC ⊥F∵等腰直角三角形,∴,,∴,∴,∴,,∴,∵,∴,,∴∴,由对折可得:,,,∵,∴,∴,∵,,∴,∴,∴,∴,∵,,∴,ABC 90BAC EAH ∠=︒=∠AB AC ==45B ACB ∠=∠=︒BAE CAH ∠=∠BC ==12AF CF BC ===()SAS BAE CAH ≌△△BE CH =45B ACH ∠=∠=︒454590BCH ∠=︒+︒=︒3BE CE =BE CH ==CE EF ==AH AE ===52EH =AB AD ==BAE DAE ∠=∠DE BE ==45ADE ABE ∠=∠=︒90BAC EAH ∠=∠=︒90BAE EAC DAE DAH ∠+∠=︒=∠+∠EAC DAH ∠=∠AE AH =AB AC AD ==()SAS AEC AHD V V ≌45ACE AHD ∠=∠=︒CE HD ==454590EDH ∠=︒+︒=︒90ECH EDH ∠=∠=︒EH EH =CE DH =()Rt Rt HL HEC EHD V V ≌∴,,∴,,由勾股定理可得:,∴,∴,∴,∴,,∴,∴,∴,故答案为:218.10【分析】过点作直线,分别交、于点,过点作直线,分别交、于点,易知四边形、、为矩形,证明,由相似三角形的性质可得;设两点运动时间为,则,,易得,;作点关于直线的对称点,由轴对称的性质可得,故当三点共线时,的值最小,即取最小值,此时,在中,由勾股定理求得的值,即可获得答案.解:如下图,过点作直线,分别交、于点,过点作直线,分别交、于点,HED CHE ∠=∠CH DE ==EK HK =CK DK =222EK CE CK =+222EK EK ⎫=-+⎪⎪⎭EK HK ==CK DK ===45DK CK EK HK ===HKE DKC ∠=∠HKE CKD V V ∽45CD CK HE HK ==4452552CD EH ==⨯=G MN BC ⊥AD BC M N 、G PQ CD ∥AB DC P Q 、ABNM PBNG GNCQ GAE GFB V V ∽AE GM BF GN =E F 、t 0.5AE t =2BF t =1cm GM =4cm GN =C PQ K CG KG =B G K 、、BG KG +BG CG +Rt BCK △BK G MN BC ⊥AD BC M N 、G PQ CD ∥AB DC P Q 、易知四边形、、为矩形,,∵四边形为矩形,∴,∴,,∴,∴,设两点运动时间为,则,,则有,即,∵,∴,,∵四边形为矩形,∴,作点关于直线的对称点,如图,则,,由轴对称的性质可得,当三点共线时,的值最小,即取最小值,此时,在中,,∴的最小值为.故答案为:10.三、解答题19.ABNM PBNG GNCQ 5cm MN AB ==ABCD AD BC ∥AB DC∥GAE GFB ∠=∠GEA GBF ∠=∠GAE GFB VV ∽AEGM BF GN=E F 、t 0.5AE t =2BF t =0.5124GM t GN t ==4GN GM =5cm MN =1cm GM =4cm GN =GNCQ 4cm QC GN ==C PQ K 4cm QK QC ==8cm KC QK QC =+=CG KG =B G K 、、BG KG +BG CG +Rt BCK △10cm BK ===BG CG +10cm解:∵,,∴,又∵,∴,∴,∵点M 是线段的中点,,∴,∴,∴,∵,∴.20.解:(1)证明:∵AB=AD ,AC 平分∠BAD ,∴AC ⊥BD ,∴∠ACD+∠BDC=90°,∵AC=AD ,∴∠ACD=∠ADC ,∴∠ADC+∠BDC=90°,∵PD ⊥AD ,∴∠ADC+∠PDC=90°,∴∠BDC=∠PDC ;(2)解:过点C 作CM ⊥PD 于点M ,AB AC =AD BC ⊥BD DC =DN CM ∥1BN BD PN DC==BN NP =AD DN CM ∥1AP AM PN MD==AP PN =13PN AB =6cm AB =()1162cm 33PN AB ==⨯=∵∠BDC=∠PDC ,∴CE=CM ,∵∠CMP=∠ADP=90°,∠P=∠P ,∴△CPM ∽△APD ,∴=,设CM=CE=x ,∵CE :CP=2:3,∴PC=x ,∵AB=AD=AC=1,∴=,解得:x=,故AE=1-=.21.解:如图,过点D 作,交AE 于点F ,过点F 作,垂足为点G.由题意得,,∴,∵,,∴,∴,答:塔高AB 为24m.CM AD PC PA32x 13x 23x 12+131323DF CD ⊥FG AB ⊥1.62DF DE =18 1.6214.4(m)DF =⨯÷=16m 2GF BD CD === 1.61AG GF =1.669.6(m)AG =⨯=14.49.624(m)AB =+=22.解:(1)证明:∵,,∴,,又∵,∴,∴∵,∴;(2)解:∵,,∴,∴,设,则,由(1)知,,∵,∴,∴,∴,∴,∴;(3)解:延长,相交于点H,AN CD ⊥BM CD ⊥90ANC ∠=︒90BMC ∠=︒90ACB ∠=︒90ACN BCM BCN CBM ∠+∠=∠+∠=︒ACN CBM∠=∠AC BC =()ACN CBM ASA V V ≌AND BMD ∠=∠ADN BDM ∠=∠AND BMD V V ∽12AN DN AD BM DM DB ===AN x =2BM x =AN CM x ==2BM CN x ==222AN CN AC +=()22221x x +=x =CM =CN =MN 2233DM MN ===ME AN∵E 为的中点,∴∵,,∴,∴,,∴,∴,又∵,∴,又∴,∴,∴.23.解:(1)证明:∵是正方形的对角线,∴,,在和中,,∴,∴;(2)证明:∵四边形是正方形,∴,,,AB AE BE=90ANM ∠=︒90BMN ∠=︒AN BM ∥HAE MBE ∠=∠AHE BME ∠=∠()AAS AHE BME V V ≌AH BM =BM CN =CN AH =CM AN=MN HN =45HMN ∠=︒45EMB ∠=︒BD ABCD 45C D B A D B ∠=∠=︒DC DA =CDG V ADG △DC DA CDG ADG DG DG =⎧⎪∠=∠⎨⎪=⎩()SAS CDG ADG ≌△△CG AG =ABCD 90CBE FDC ∠=∠=︒CB CD AB ==CB DF ∥∴,∴,∴,即,∴;(3)解:∵∴,∵四边形是正方形,∴,,,∴,∴,,∴,∴,设,则,∴,∵,∴,,∴,∴,∴,∴的长为24.(1)解:∵,∴.∴.∵点A 在轴的正半轴上,点在轴的负半轴上,BCE DFC ∠=∠BCE DFC ∽△△CB FD BE DC =AB FD BE AB=2AB BE DF =⋅GE =GC =CE CG GE =+=ABCD CD AB ∥CD AB =CB AD ∥BE CD ∥EBG CDG ∠=∠BEG DCG ∠=∠BEG DCG ∽△△BE GE DC GC ==BE =6CD x =(66AE AB BE CD BE x x =-=-==AF CB ∥FAE CBE ∠=∠AFE BCE ∠=∠AFE BCE △∽△EF AE EC BE==EF =EF 213360x x -+=(4)(9)0x x --=124,9x x ==x B x∴A 点坐标为,B 点坐标为,(2)∵A 点坐标为,B 点坐标为,∴,设点C 的坐标为,则,∵,,∴,∴,∴,∴,∴,解得,经检验,是方程的解且符合题意,∴点C 的坐标是;(3)过点D 作轴于点E ,轴于点F ,如图,则,∴,,∵,∴.∴;,∵,,∴;,()9,0()4,0-()9,0()4,0-9,4OA OB ==()0,t ()0t >OC t =90ACB ∠=︒90AOC COB ∠=∠=︒90OCB ACO OCB OBC ∠+∠=∠+∠=︒ACO OBC ∠=∠ACO CBO V V ∽OC AO OB OC=94tt =6t =6t =()0,6DE x ⊥DF y ⊥DE OC ∥DF OB∥BED BOC V V ∽CDF CBO V V ∽:1:2ABD ADC S S =△△:1:2BD DC =13DE BD OC BC ==23DF CD BO BC ==4OB =6OC =2DE =243DF =解得.∴.(4)解:存在,求解过程如下:设,由题意可得:,,当时,,即,,解得,或,即点坐标为或,当时,,即,,解得或,即点坐标为或,综上可知,满足条件的P 点为:或或或83DF =8,23D ⎛⎫- ⎪⎝⎭(,)P x y 13AB OB OA =+=BC ===AC ===AP =CP =APC ACB △∽△AP AC PC AC AB CB ==29AC AP AB===6AC CB CP AB ⨯===00x y =⎧⎨=⎩721310813x y ⎧=⎪⎪⎨⎪=⎪⎩P (0,0)72108,1313⎛⎫⎪⎝⎭APC BCA △∽△AP AC PC BC AB AC ==6AC BC AP AB ⨯===29AC CP AB===96x y =⎧⎨=⎩45133013x y ⎧=⎪⎪⎨⎪=-⎪⎩P ()9,64530,1313⎛⎫- ⎪⎝⎭(0,0)72108,1313⎛⎫ ⎪⎝⎭()9,64530,1313⎛⎫- ⎪⎝⎭。

沪科版九年级数学上 第22章 相似形 单元综合测试(含解析)

沪科版九年级数学上 第22章 相似形 单元综合测试(含解析)

九年级上册数学单元综合测试卷(第22章相似形)注意事项:本卷共23题,满分:150分,考试时间:120分钟.一.精心选一选(本大题共10小题,每小题4分,满分40分)1﹒如果x:(x+y)=3:5,那么x yx-的值是()A.13B.12C.23D.322﹒若ab c+=ba c+=ca b+=k,则直线y=kx+k一定经过()A.第一.二象限B.第二.三象限C.第三.四象限D.第一.四象限3﹒已知线段a=2,c=6,线段b是a.c的比例中项,则线段b的值为()A.±B.±4C.D.124﹒已知两点A(5,6).B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的12,得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)5﹒已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC BCB.BC2=AC BCC.AC BCD.BC AB6﹒如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则DEEF的值为()A.12B.2C.25D.35第6题图第7题图第8题图第9题图7﹒如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,若AB=2,DC=3,则△ABC与△DCA的面积比是()A.2:3B.2:5C.4:9D8﹒如图,在△ABC中,D.E分别是BC.AC上的点,AD与BE相交于点G,若AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A. 83B.32C.85D.439﹒如图,Rt△ABC中,∠C=90°,以点C为顶点向△ABC内做正方形DECF,使正方形的另三个顶点D,E,F分别在的边AB,BC,AC上.若BC=6,AB=10,则正方形DECF的边长为()第10题图 A .187 B .247C .43D .53 10.如图,在△ABC 中,AB =BC ,∠ABC =90°,BM 是AC 边 中线,点D ,E 分别在边AC 和BC 上,DB =DE ,EF ⊥AC 于点F ,以下结论:①△BMD ≌△DFE ;②△NBE ∽△DBC ; ③AC =2DF ;④EF AB =CF BC ,其中正确结论的个数是 ( )A .1B .2C .3D .4二.细心填一填(本大题共5小题,每小题4分,满分20分)11.如图,△ABC 中,D 为BC 上一点,∠BAD =∠C ,AB =6,BD =4,则CD 的长为_______.第11题图 第12题图 第13题图 第14题图12.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在边AB 上的点D 处,已知MN ∥AB ,MC =6,NC =MABN 的面积是___________.13.如图,在钝角△ABC 中,AB =6cm ,AC =12cm ,动点D 从点A 出发到B 点止,动点E 从点C 出发到A 点止,点D 运动的速度为1cm /s ,点E 运动的速度为2cm /s.如果两点同时运动,那么当以点A ,D ,E 为顶点的三角形与△ABC 相似时,运动的时间是_______________. 14.如图,正方形ABCD 中,△BPC 是等边三角形,BP .CP 的延长线分别交AD 于点E .F ,连接BD .DP .BD 与CF 相交于点H .给出下列结论:①△ABE ≌△DCF ;②FP PH =35;③DP 2=PH PB ;④BPD ABCD S S ∆正方形.其中正确的是________.(填写正确结论的序号) 三.(本大题共2小题,每小题8分,满分16分)15.已知实数x .y .z 满足430320x y y z -=⎧⎨-=⎩,试求22x y zx y z +--+的值.16.在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请你按要求完成下列各小题:(1)求证:△ABC是直角三角形;(2)判断△ABC与△DEF是否相似,并说明理由;(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△ABC相似(要求:用尺规作图,保留作图痕迹,不写作法与证明).四.(本大题共2小题,每小题8分,满分16分)17.已知,△ABC在直角坐标系内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长均为一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是______________;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是______________;(3)求△A2B2C2的面积是__________平方单位.18.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.(1)图中△APD与哪个三角形全等?并说明理由;(2)求证:PC2=PE PF.五.(本大题共2小题,每小题10分,满分20分)19.已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD CE=CD DE.20.某市经济开发区建有B.C.D三个工厂,这三个工厂和开发区A处的自来水厂正好在一个矩形的四个顶点上(如图所示),他们之间有公路相通,且AB=CD=900米,AD=BC=1700米.自来水公司已经修好一条自来水主管道AN,B.C两厂之间的公路与自来水管道交于E处,EC=500米.若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元.(1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应是怎样设计?请你在图中画出他们的路线;(2)求出各工厂所修建的自来水管道的最低的造价各是多少元?21.如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD,连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.七.(本题满分12分)22.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B 匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值.23.如图,已知反比例函数y=kx(k>0,k为常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数的解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.参考答案一.精心选一选(本题共10小题,每小题3分,共30分)二.细心填一填(本题共8小题,每小题3分,共24分)11. 5 . 12. 13. 3s 或4.8s . 14. ①③④ . 三.(本大题共2小题,每小题8分,满分16分)15.解答:∵x .y .z 满足430320x y y z -=⎧⎨-=⎩,∴4332x y y z=⎧⎨=⎩,∴x y =34,z y =32=64,∴3x =4y=6z =k ,∴x =3k ,y =4k ,z =6k , ∴22x y z x y z +--+=386646k k k k k k +--+=58kk=58.16.解答:(1)证明:由图形结合勾股定理可得:AB =AC BC =5, ∴AB 2+AC 2=BC 2,∴△ABC 是直角三角形; (2)△ABC 与△DEF 相似,由图形结合勾股定理可得:DE =DF =EF =,∴AB DE =AC DF =BCEF,∴△ABC ∽△DE ;(3)如图,△P 2P 4P 5为所画三角形,它与△ABC 相似.四.(本大题共2小题,每小题8分,满分16分) 17.解答:(1)如图所示,C 1(2,-2); (2)如图所示,C 2(1,0);(3)∵A 2C 22=20,B 2C 22=20,A 2B 22=40, ∴A 2C 22=B 2C 22,且A 2C 22+ B 2C 22=A 2B 22,∴△△A 2B 2C 2是等腰直角三角形,∴△A 2B 2C 2的面积是12=10(平方单位).18.解答:(1)图中△APD 与△CPD 全等,理由如下:∵四边形ABCD 是菱形,∴AD =CD ,∠ADP =∠CDP , 又∵PD =PD ,∴△APD ≌△CPD (SAS );(2)证明:由(1)知:△APD ≌△CPD , ∴∠DAP =∠DCP , ∵CD ∥AB ,∴∠DCF =∠DAP =∠CFB , 又∠FP A =∠FP A , ∴△APE ∽△FP A , ∴AP FP =PE PA,即P A 2=PE PF , 由△APD ≌△CPD 得,PC =P A , ∴PC 2=PE PF .五.(本大题共2小题,每小题10分,满分20分) 19.解答:(1)∵四边形ABCD 是平行四边形, ∴BO =DO =12BD , ∵OE =OB ,∴OE =OB =DO =12BD , ∴∠OBE =∠OEB ,∠ODE =∠OED , ∵∠OBE +∠OEB +∠ODE +∠OED =180°, ∴∠OEB +∠OED =90°,即∠BED =90°, ∴DE ⊥BE ;(2)∵OE ⊥CD ,∴∠CEO +∠DCE =∠CDE +∠DCE =90°, ∴∠CEO =∠CDE ,∵OB =OE ,∴∠DBE =∠CDE , ∵∠BED =∠BED , ∴△BDE ∽△DCE ,∴BD CD =DECE,即BD CE =CD DE . 20.解答:(1)过点B .C .D 分别向AN 作垂线段BH .CF .DG ,垂足分别为H .F .G ,则线段BH .CF .DG 即为所求的造价最低的管道的路线;画图如下:(2)由题意知:BE =BC -CE =1200米,由勾股定理得:AE 1500米, ∵四边形ABCD 是矩形,CF ⊥AN , ∴∠ABE =∠CFE =90°, 又∵∠AEB =∠CEF , ∴△ABE ∽△CFE ,∴CF AB =CEAE,即900CF =5001500,解得:CF =300(米),∵BH ⊥AN ,CF ⊥AN ,∴BH ∥CF , ∴△BHE ∽△CFE ,∴CF BH =CEBE,即300BH =5001200, 解得:BH =720(米),∵DG ⊥AN ,∴∠ABE =∠DGA =90°, ∵AD ∥BC ,∴∠AEB =∠DAG , ∴∴△ABE ∽△DGA ,∴AB DG =AEAD,即900DG =15001700, 解得:DG =1020(米),∴B .C .D 三个工厂所建自来水管道的最低造价分别为720×800=576000(元),300×800=240000(元),1020×800=816000(元). 六.(本题满分12分) 21.解答:(1)△BMN 是等腰直角三角形,证明:AB =AC ,点M 是BC 的中点, ∴AM ⊥BC ,AM 平分∠BAC , ∵AC ⊥BD ,∴∠AEB =90°, ∴∠BAE +∠ABE =90°, ∵BN 平分∠ABE ,∴∠ABN =12∠ABE , ∴∠MNB =∠NAB +∠ABN =12(∠BAE +∠ABE )=45°, ∴△BMN 是等腰直角三角形; (2)△MFN ∽△BDC ,证明:∵F ,M 分别是AB ,BC 的中点,∴FM ∥AC ,FM =12AC , ∵AC =BD ,∴FM =12BD ,即FMBD=12, ∵△BMN 是等腰直角三角形,∴NM =BM =12BC ,即NMBC=12, ∴FM BD =NM BC, ∵AM ⊥BC ,∴∠NMF +∠FMB =90°,∵FM ∥AC ,∴∠ACB =∠FMB , ∵∠CEB =90°,∴∠ACB +∠CBD =90°, ∴∠CBD +∠FMB =90°,∴∠NMF =∠CBD , ∴△MFN ∽△BDC . 七.(本题满分12分) 22.解答:(1)①△BPQ 与△ABC 相似时, 则BP BA =BQBC, ∵BP =5t ,QC =4t ,AC =6cm ,BC =8cm ,∴510t =848t -,解得:t =1; ②△BPQ 与△BCA 相似时,则BP BC =BQ BC ,即58t =8410t-,解得:t =3241,综合上述:当t =1或t =3241时,△BPQ 与△ABC 相似(2)过点P 作PM ⊥BC 于点M ,设AQ 与CP 相交于点N ,则有PB =3t ,MC =8-4t , ∵∠NAC +∠NCA =90°,∠PCM +∠NCA =90°,∴∠NAC =∠PCM ,又∵∠ACQ =∠CMP =90°, ∴△ACQ ∽CMP ,∴AC CM=CQ MP ,即684t -=43t t , 解得:t =78.八.(本题满分14分)23.解答:(1)∵反比例函数y =kx的图象经过点A (1,4),点B (m ,n ), ∴k =4,∴反比例函数的解析式为y =4x;(2)∵点A (1,4),点B (m ,n ),∴AC =4-n ,BC =m -1,ON =n ,OM =1,∴ACNO=4nn-=4n-1,∵点B(m,n)在y=4x上,∴4m=n,∴ACNO=m-1,而BCMO=11m-,∴ACNO=BCMO,又∵∠ACB=∠NOM=90°,∴△ACB∽△NOM;(3)∵△ACB与△NOM的相似比为2,∴m-1=2,∴m=3,∴B(3,43),设直线AB的解析式为y=kx+b,则4334k bk b⎧=+⎪⎨⎪=+⎩,解得:43163kb⎧=-⎪⎪⎨⎪=⎪⎩,∴AB所在直线的解析式为y=-43x+163.。

沪科版九年级数学上册第22章:相似形 达标测试卷(含答案)

沪科版九年级数学上册第22章:相似形 达标测试卷(含答案)
向点 B 以 2 cm/s 的速度移动,点 Q 沿 DA 边从点 D 开始向点 A 以 1 cm/s 的 速度移动.如果 P,Q 同时出发,用 t(s)表示移动的时间(0≤t≤6),那么: (1)当 t 为何值时,△QAP 是等腰直角三角形? (2)根据四边形 QAPC 的面积的计算结果,能得出什么结论? (3)当 t 为何值时,以点 Q,A,P 为顶点的三角形与△ABC 相似?
的面积之比为( )
A.1:2
B.1:3
C.3:4
D.1:4
3.如图,AD 是直角三角形 ABC 斜边上的中线,AE⊥AD 交 CB 的延长线于 E,
则图中一定相似的三角形是( )
A.△AED 与△ACB
B.△AEB 与△ACD
C.△BAE 与△ACE
D.△AEC 与△DAC
4.如图,在平面直角坐标系中,有点 A(6,3),B(6,0),以原点 O 为位似中心,
14.如图,正△ABC 的边长为 2,以 BC 边上的高 AB1 为边作正△AB1C1,△ABC 与△AB1C1 公共部分的面积记为 S1,再以正△AB1C1 的边 B1C1 上的高 AB2 为 边作正△AB2C2,△AB1C1 与△AB2C2 公共部分的面积记为 S2,…,以此类推, 则 Sn=________.(用含 n 的式子表示)
知识像烛光,能照亮一个人,也能照亮无数的人。--培根 20.如图,在边长为 1 个单位长度的小正方形网格中:
(1)画出△ABC 向上平移 6 个单位长度,再向右平移 5 个单位长度后的 △A1B1C1;
(2)以点 B 为位似中心,将△ABC 放大为原来的 2 倍,得到△A2BC2,请在网 格中画出△A2BC2;
11 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沪科版九年级上册数学相似形综合复习
课堂练习
1. 如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,位似比是1:2,∠OCD=90°,CO=CD.若B(1,0),则点C 的坐标为( ) A. (1,2) B.(1,1) C.(2,2) D.(
2.1)
2.如图,矩形ABCD 中,AB=3,BC=4,动点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记PA=x,点D 到直线PA 的距离为y,则y 关于x 的函数图象大致是( )
3.如图,在△ABC 中,∠ACB=90°,AC=BC=1,E,F 为线段AB 上两动点,且ECF=45°,过点E,F 分别作BC,AC 的垂线相交于点M,垂足分别为H,G,现有以下结论:①AB=
2,②当点E 与点B 重合时,MH=21,③AF+BE=EF,④MG ·MH=2
1
,其中正确结论为
( )
A.①②③
B.①③④
C.①②④
D.①②③④
第1题 第2题 第3题
4.小组的同学要测量树的高度在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高( ) A.11.5米 B.11.75米 C.11.8米 D.12.25米
5.如图,在矩形ABCD 中,BC=10,CD=5.若点M,N 分别是线段BD,BC 上的两个动点,则CM+MN 的最小值为( )
A.10
B.8
C.53
D.6
第4题第5题
6.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则
OD
OB =_____________.
7.如图,矩形ABCO中,OA在x轴上,OC在y轴上,且OA=2,AB=5,把△ABC沿着AC
对折得到△AB
1C,AB交y轴于D点,则点B
1
的坐标为___________.
8.如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为
(1,1),(-1,1),把正方形ABCD绕原点O逆时针旋转45°得到正方形A
1B
1
C
1
D
1
,则正
方形ABCD与正方形A
1B
1
C
1
D
1
重叠部分形成的正八边形的边长为_________.
第6题第7题第8题第9题
9.如图,已知零件的外径为25mm,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB.若OC:OA=1:2,量得CD=10m,则零件的厚度x=_______mm.
10.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为________.
第10题
11.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长,(结果精确到0.01米)
12.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐的情况下,现在河岸边选择了一点B(点B与河对岸边上的一棵树的底部点D所确定的直线垂直于河岸)
①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米。

13.如图,在一个长40m 、宽30m 的长方形小操场上,王刚从A 点出发,沿着A →B →C 的路线以3m/s 的速度跑向C 地.当他出发4s 后,张华有东西需要交给他,就
从A 地出发沿王刚走的路线追赶,当张华跑到距B 地32
2m 的D 处时,他和王刚在
阳光下的影子恰好重叠在同一条直线上,此时,A 处一根电线杆在阳光下的影子也恰好落在对角线AC 上。

(1)求他们的影子重叠时,两人相距多少米(DE 的长)? (2) 求张华追赶王刚的速度是多少(精确到0.1m/s)?
14. 如图,小芳家的落地窗(线段DE)与公路(直线PQ)互相平行,她每天做完作业后都会在点A 处向窗外的公路望去。

(1)请在图中画出小芳能看到的那段公路并记为BC.
(3) 小芳很想知道点A 与公路之间的距离,于是她想到了一个办法她测出了邻家小彬在公路BC 段上走过的时间为10秒,又测量了点A 到窗的距离是4米,且窗DE 的长为3米,若小彬步行的平均速度为1.2米/秒,请你帮助小芳计算出点A 到公路的距离.
15.(1)如图①,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD 长。

(2)如图②,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD 的长。

16.阅读理解:
如图①,在四边形ABCD的边AB上任取一点E(点E不与点A、,点B重合),分别连接ED,BC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点。

解决问题:
(1)如图①∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说名理由。

(3)如图②,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点E。

3)如图①,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BE的关系。

答案 1-5 BBCCB 6.2 7. (
29
105
,
2942) 8. 222 9. 2.5
10. 5.6
11.有题意可知∠CAD=∠MND=90°, ∠CDA=∠MDN
∴△CAD ≌△MND ∴ 即
∴MN=9.6
又∵∠EBF=∠MNF=90°, ∠EFB=∠MNF ∴△EBF ≌△MNF

即∴
EB=1.75
所以小军身高BE 的长为1.75米.
12.由题意得∠BAD =∠BCE ,
又∵∠ABD =∠CBE =90°, ∴△BAD ∽△BCE ,
∴,
即,
解得BD =13.6米.
答:河宽BD是13.6米.
13.(1)根据题意可知:DE∥AC,
∴△ACB∽△DEB
∴,
在Rt△ABC中,AB=40m,BC=30m,BD=m,
∵在一个长40m、宽30m的长方形小操场上,
∴AC=50m,
∴=,即DE=;
(2)根据题意得
∴DE2=BD2+BE2,
∴BE==2m,
∴s王=AB+BE=42m,
∴t王===14s,
∴t张=t王-4=10s,
∴s张=AD=AB-BD=40-2=-=m,
v张=≈3.7m/s.
14.(1)如图,线段BC就是小芳能看到的那段公路。

(2)过点A作,垂足为M,交DE于点N。

∵∴,

又∵


根据题意得:(米)
又∵AN=4 米,DE=3米,∴,∴AM=16(米)
15.(1)
解:如图1,连接BE,
∵∠ACB=∠DCE=90°,
∴∠ACB+∠ACE=∠DCE+∠ACE,
即∠BCE=∠ACD,
又∵AC=BC,DC=EC,
在△ACD和△BCE中,
AC=BC∠BCE=∠ACDDC=EC{AC=BC∠BCE=∠ACDDC=EC,∴△ACD≌△BCE(SAS),
∴AD=BE,
∵AC=BC=6,
∵∠BAC=∠CAE=45°,
∴∠BAE=90°,
∴BE=9,
∴AD=9.
(2)如图2,连接BE,
在Rt△ACB中,∠ABC=∠CED=30°,
tan30°==,
∵∠ACB=∠DCE=90°,
∴∠BCE=∠ACD,
∴△ACD∽△BCE,
∴==,
∵∠BAC=60°,∠CAE=30°,
∴∠BAE=90°,又AB=6,AE=8,∴BE=10,
∴AD=.
16.略。

相关文档
最新文档