新高考数学模拟试卷带答案
2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。
A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。
A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。
A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。
A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。
A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。
A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。
A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。
)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。
高考数学模拟试题含答案详解

高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。
答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。
2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。
答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。
3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。
答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。
4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。
答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。
5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。
答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。
二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。
答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。
新高考数学模拟卷(附答案)

新高考数学模拟卷(考试时长120分钟,总分150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若1i z =+,则2|2|z z -=A .0B .1CD .22.已知集合{}31|3,|log 02A x x B x x ⎧⎫=<<=<⎨⎬⎩⎭,则A B ⋂=( )A.122x x ⎧⎫<<⎨⎬⎩⎭∣ B.112x x ⎧⎫<<⎨⎬⎩⎭∣ C.{13}xx <<∣ D.1123xx ⎧⎫<<⎨⎬⎩⎭∣ 3. 已知a ,b 是单位向量,c =a +2b ,若a ⊥c ,则|c |=A.34.已知,,a b ∈R 则“||1a ”是“||||1a b b -+”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件5. 将函数2log (22)y x =+的图象向下平移1个单位长度,再向右平移1个单位长度,得到函数()g x 的图象,则()g x = A.2log (21)1x +- B.2log (21)1x ++ C.2log 1x - D.2log x6. 某中学举行“十八而志,青春万岁”成人礼,现在需要从4个语言类节目和6个歌唱类节目中各选2个节目进行展演,则语言类节目A 和歌唱类节目B 至少有一个被选中的不同选法种数是 A.15 B.45 C.60D.757.已知拋物线22y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与拋物线交于M ,N 两点,若3,PF MF =则||MN =( )A.163B.83C.2 8. 如图,正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱1AA ,1CC 的中点,过点,E F 的平面分别与棱1BB ,1DD 交于点G ,H ,给出以下四个命题:①平面EGFH 与平面ABCD 所成角的最大值为45°; ②四边形EGFH 的面积的最小值为1;③四棱锥1C EGFH -的体积为定值16;④点1B 到平面EGFH. 其中正确命题的序号为( ) A .②③ B .①④C .①③④D .②③④二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.若函数2(),f x x =设155151log 4,log ,2,3a b c ===则(),(),()f a f b f c 的大小关系不正确的是( )A.()()()f a f b f c >>B.()()()f b f c f a >>C.()()()f c f b f a >>D.()()()f c f a f b >>10.已知m ,n 是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题不正确的是( )A.若m α⊂,则m β⊥B.若,m n αβ⊂⊂,则m n ⊥C.若,m m αβ⊂⊥/,则//m αD.若,m n m αβ⋂=⊥,则n α⊥11.已知函数()2sin()(0,0π)f x x ωϕωϕ=+><<,ππ082f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且()f x 在(0,π)上单调.下列说法不正确的是( ) A.12ω=B.π6282f -⎛⎫-= ⎪⎝⎭C.函数()f x 在ππ,2⎡⎤--⎢⎥⎣⎦上单调递增D.函数()y f x =的图象关于点3π,04⎛⎫⎪⎝⎭对称 12.已知函数()f x 是定义在R 上的奇函数,当0x >时,()e (1)x f x x -=-.下列命题正确的是( ) A.当0x <时,()e (1)x f x x =+ B.函数()f x 有5个零点C.若关于x 的方程()f x m =有解,则实数m 的范围是[(2),(2)]f f -D.对()()1221,,2x x f x f x ∀∈-<R 恒成立三、填空题:本题共4小题,每小题5分,共20分.13.在6211(1)x x ⎛⎫++ ⎪⎝⎭的展开式中含2x 项的系数为____________.(用数字作答).14.已知圆22(2)(1)2x y -+-=关于直线1(0,0)ax by a b +=>>对称,则21a b+的最小值为_______. 15.巳知球O 为正四面体ABCD 的内切球,E 为棱BD 的中点,2AB =,则平面ACE 截球O 所得截面圆的面积为____________.16. 对平面直角坐标系xOy 中的两组点,如果存在一条直线ax +by +c =0使这两组点分别位于该直线的两侧,则称该直线为“分类直线”,对于一条分类直线l ,记所有的点词l 的距离的最小值为d ,约定:d 1越大,分类直线l 的分类效果越好,某学校高三(2)出的7位同学在2020年期间网购文具的费用x (单位:百元)和网购图书的费用y (单位:百元)的情况如图所示,现将P 1,P 2,P 3和P 4归为第I 组点,樽Q 1,Q 2,和Q 3归为第II 组点,在上述约定下,可得这两组点的分类效果最好的分类直线,记为L 给出下列四个结论:①直线x =2.5比直线3x -y -5=0的分类效果好; ②分类直线L 的斜率为2;③该班另一位同学小明的网购文具与网购图书的费用均为300元,则小明的这两项网购花销的费用所对应的点与第II组点位于L的同侧;④如果从第I组点中去掉点P1,第II组点保持不变,则分类效果最好的分类直线不是L。
2024年高考数学精选模拟试卷及答案

2024年高考数学精选模拟试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.现要完成下列2项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;①东方中学共有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )4.现将5个代表团人员安排至甲、乙、丙三家宾馆入住,要求同一个代表团人员住同一家宾馆,且每家宾馆至少有一个代表团入住.若这5个代表团中,A B 两个代表团已经入住甲宾馆且不再安排其他代表团入住甲宾馆,则不同的入住方案种数为( ) A .6B .12C .16D .185.下列命题中正确的个数是①命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠; ①“0a ≠”是“20a a +≠”的必要不充分条件; ①若p q ∧为假命题,则p ,q 为假命题;①若命题2000:,10p x R x x ∃∈++<,则:p x ⌝∀∈R ,210x x ++≥.二、多选题三、填空题四、解答题16.2018年茂名市举办“好心杯”少年美术书法作品比赛,某赛区收到200件参赛作品,为了解作品质量,现从这些作品中随机抽取12件作品进行试评.成绩如下:67,82,78,86,96,81,73,84,76,59,85,93. (1)求该样本的中位数和方差;(2)若把成绩不低于85分(含85分)的作品认为为优秀作品,现在从这12件作品中任意抽取3件,求抽到优秀作品的件数的分布列和期望.17.某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n 的样本,并将样本数据分成五组:[)1828,,[)2838,,[)3848,,[)4858,,[)5868,,再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖概率.18.某食品公司在八月十五来临之际开发了一种月饼礼盒,礼盒中共有7个两种口味的月饼,其中4个五仁月饼和3个枣泥月饼.(1)一次取出两个月饼,求两个月饼为同一种口味的概率;(2)依次不放回地从礼盒中取2个月饼,求第1次、第2次取到的都是五仁月饼的概率;(3)依次不放回地从礼盒中取2个月饼,求第2次取到枣泥月饼的概率.19.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,大于等于90分的选手将直接参加竞赛选拔赛.已知成绩合格的100名参赛选手成绩的60,70,80,90,90,100的频率构成等比数列.频率分布直方图如图所示,其中[)[)[](2)若试剂A在连续进行的三轮测试中,都有2X ,则认为该试剂对药品B的酸碱值检测效果是稳定的,求出出现这种现象的概率.参考答案:a4)中位数为81.5,方差为,x=9(2)。
新高考数学多选题模拟测试卷(题目及详细答案)

高中数学多选题荟萃一、《函数、导数》多选题1、设0,1a a >≠且,函数1()log 1ax f x x -=+在(1,)+∞单调递减,则()f x ( ACD ) A .在(,1)-∞-上单调递减,在(1,1)-上单调递增 B .在(,1)-∞-上单调递增,在(1,1)-上单调递减 C .在(,1)-∞-上,)(x f 的值域为)0,(-∞D .在),1(+∞上,)(x f 的值域为)0(∞+,2、已知函数)(x f 在定义域)0(∞+,上的单调函数,若对于任意)0(∞+∈,x ,都有()12f f x x ⎛⎫-= ⎪⎝⎭,则的值是( AB ) A .)(x f 为减函数B .165f ⎛⎫= ⎪⎝⎭C .6)5(=fD .)(x f 值域为)0(∞+,【解】因为函数()f x 在定义域()0+∞,上是单调函数,且()12f f x x ⎛⎫-= ⎪⎝⎭,所以()1f x x -为一个常数,令这个常数为n ,则有()1f x n x -=,且()2f n =,将()2f n =代入上式可得()12f n n n=+=,解得1n =,所以()11f x x=+3、已知函数20()2(1)10a x f x x f x x ⎧+≤⎪=+⎨⎪-+>⎩,,,若对任意的),3(+∞-∈a ,关于x 的方程kx x f =)(都有3个不同的根,则k 的值不可能等于( ABD ) A .1B .2C .3D .44、已知函数1()1f x x=-,若关于x 的方程2()()0f x bf x c ++=恰有6个不同的实数解,则,b c 的取值情况可能的是( ACD )A .10,0b c -<<=B .10,0b c c ++>>C .10,0b c c ++<>D .10,01b c c ++=<< 【方法】画出)(x f 的图像,注意对称性和渐近线;2()()0f x bf x c ++=有两个不等实数根2121,)(,)(t t t x f t x f <==假设或;则直线的图像有六个交点与)(;21x f y t y t y ===;令c bt t t t t ++=<221)(,ϕ, 则(1)10,021<<=t t 时,120;01)1(;0)0(<-<>++===bc b c ϕϕ (2)1,1021≥<<t t 时,01)1(;0)0(≤++=>=c b c ϕϕ5、已知函数f (x )=e x +a ln x 的定义域是D ,关于函数f (x )给出下列命题其中正确命题的序号是( BD )A 、对于任意a ∈(0,+∞),函数f (x )是D 上的减函数;B 、对于任意a ∈(-∞,0),函数f (x )存在最小值;C 、存在a ∈(0,+∞),使得对于任意的x ∈D ,都有f (x )>0成立; D 、存在a ∈(-∞,0),使得函数f (x )有两个零点.6、定义在()+∞∞-,上的偶函数()x f 满足()()x f x f -=+1,且在[]0,1-上是增函数,下面是关于)(x f 的判断,其中正确的判断是( ABD )A 、()x f 的图像关于点对称B 、()x f 的图像关于直线1=x 对称;C 、()x f 在[0,1]上是增函数;D 、()()02f f =.7[]0,1上单调递增,则( BC )A .实数a 的取值范围是()1,1-B 、实数a 的取值范围是[]1,1-C 、当0>a 时,函数)(x f 有最小值a 2D 、函数)(x f 为偶函数,则a = 1【解】当0a >在区间[]0,1上单调递增, 在区间[]0,1上单调递增,则,解得](0,1a ∈, 当0a =在区间[]0,1上单调递增,满足条件. 当0a <在R 上单调递增,令,解得1a -≥,综上所述,实数a 的取值范围[]1,1-8、已知函数212,2()1|log |,2x x f x x x ⎧≤⎪=⎨⎪>⎩,()g x x b =+,若函数()()y f x g x =+有两个不同的零点,则实数b 的取值可以为( AB )A .1-B .32-C .1D .329、定义在R 上的偶函数()f x ,当0x ≥时,有(1)()f x f x +=-,且当[0,1)x ∈时,2()log (1)f x x =+.则下列命题中正确的命题为( AC ) A.0)2022()2021(=-+f f B.函数()f x 在定义域上是周期为2的周期函数 C.直线y x =与函数()f x 的图像有1个交点D.函数()f x 的值域为]1,1[-【解】可在同一平面直角坐标系中画出直线y x =和函数()f x 的图象如图所示,根据图象可知选项A 中0)2022()2021(=-+f f 正确;对于选项B ,函数()f x 在定义域上不是周期函数,所以B 不正确;对于选项C ,根据函数图象可知y x =与()f x 的图象有1个交点,所以C 正确;对于选项D ,根据图象,函数()f x 的值域是(1,1)-,所以D 错误.故选AC .二、《不等式》多选题1、若)lg(lg lg ,0,0b a b a b a +=+>>,则( ABC )A 、b a +的最小值为4B 、ab 的最小值为4C 、211122≥+b aD 21122≥+b a2、已知()()()2f x x m x n =---,且α、β是方程f (x )=0的两根,则下列不等式不可能成立的是 ( BCD ) A m n βα<<< B m n αβ<<< C m n αβ<<< D n m αβ<<<3、设2()f x x bx c =++(R x ∈),且满足()()0f x f x '+>。
2025届山东省六地市部分学校高考仿真模拟数学试卷含解析
2025届山东省六地市部分学校高考仿真模拟数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在棱长为a 的正方体1111ABCD A B C D -中,E 、F 、M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 、11A D 上,且11(0)A P AQ m m a ==<<,设平面MEF 平面MPQ l =,则下列结论中不成立的是( )A .//l 平面11BDDB B .l MC ⊥C .当2am =时,平面MPQ MEF ⊥ D .当m 变化时,直线l 的位置不变2.已知()f x 为定义在R 上的奇函数,若当0x ≥时,()2xf x x m =++(m 为实数),则关于x 的不等式()212f x -<-<的解集是( )A .()0,2B .()2,2-C .()1,1-D .()1,33.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42B .21C .7D .34.若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( ) A .1log log b a b aa b a b >>> B .1log log a bb ab a b a >>> C .1log log b a b aa ab b >>> D .1log log a b b aa b a b >>> 5.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab +=B .4a b +>C .()()22112a b -+-< D .228a b +>6.已知ABC △的面积是12,1AB =,2BC =,则AC =( )A .5B .5或1C .5或1D .57.设实数满足条件则的最大值为( ) A .1B .2C .3D .48.将函数()sin(2)3f x x π=-()x R ∈的图象分别向右平移3π个单位长度与向左平移n (n >0)个单位长度,若所得到的两个图象重合,则n 的最小值为( )A .3π B .23π C .2π D .π 9.某工厂只生产口罩、抽纸和棉签,如图是该工厂2017年至2019年各产量的百分比堆积图(例如:2017年该工厂口罩、抽纸、棉签产量分别占40%、27%、33%),根据该图,以下结论一定正确的是( )A .2019年该工厂的棉签产量最少B .这三年中每年抽纸的产量相差不明显C .三年累计下来产量最多的是口罩D .口罩的产量逐年增加 10.已知复数41iz i=+,则z 对应的点在复平面内位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限11.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )为( )A .163B .6C .203D .22312.已知复数z 满足()11z i i +=-(i 为虚数单位),则z 的虚部为( ) A .i -B .iC .1D .1-二、填空题:本题共4小题,每小题5分,共20分。
2024年高考数学全真模拟试卷六(新高考、新结构)(全解全析)
2024年高考数学全真模拟试卷六(新高考、新结构)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a b ∈R ,,i (3i )i a b -=-(i 为虚数单位),则()A .1a =,3b =-B .1a =-,3b =C .1a =-,3b =-D .1a =,3b =【答案】A【解析】因为3i (i)i 1i a b b -=-=+,所以1,3a b ==-.故选A2.已知{}n a 为等差数列,n S 为其前n 项和.若122a a =,公差0,0m d S ≠=,则m 的值为()A .4B .5C .6D .7【答案】B【解析】由已知()12122a a a d ==+,得12a d =-,又()()1112022m m m m m S ma d md d --=+=-+=,又0d ≠,所以()1202m m m --+=,解得5m =或0m =(舍去),故选B.3.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为7.5A 时,放电时间为60h ;当放电电流为25A 时,放电时间为15h ,则该蓄电池的Peukert 常数λ约为(参考数据:lg 20.301≈,lg 30.477≈)()A .1.12B .1.13C .1.14D .1.15【答案】D【解析】由题意知7.5602515C λλ=⨯=⨯,所以410325607.515λλ⎛⎫= ⎪⎝⎭⎛⎫== ⎪⎝⎭,两边取以10为底的对数,得10lg2lg 23λ=,所以2lg 220.301 1.151lg310.477λ⨯=≈≈--,故选D.4.已知向量,a b 满足||2,(2,0)a b ==,且||2a b += ,则,a b 〈〉= ()A .π6B .π3C .2π3D .5π6【答案】C【解析】由已知||2,2a b == ,所以()22224222cos ,44a ba b a b a b +=+⋅+=+⨯⨯⨯〈〉+=r r r r r r r r,得1cos ,2a b 〈〉=- ,又[],0,πa b 〈〉∈ ,所以2π,3a b 〈〉= .故选C.5.在平面直角坐标系xOy 中,已知()()3,0,1,0,A B P -为圆22:(3)(3)1C x y -+-=上动点,则22PA PB +的最小值为()A .34B .40C .44D .48【答案】B【解析】设(),P x y ,则()()222222223122410PA PB x y x y x y x +=+++-+=+++()22218x y ⎡⎤=+++⎣⎦,即22PA PB +等价于点P 到点()1,0Q -的距离的平方的两倍加8,又1PQ QC PC ≥-=514=-=,即22224840PA PB +≥⨯+=.故选B.6.如图,四棱锥A BCDE -是棱长均为2的正四棱锥,三棱锥A CDF -是正四面体,G 为BE 的中点,则下列结论错误的是()A .点,,,ABC F 共面B .平面ABE 平面CDF C .FG CD ⊥D .FG ⊥平面ACD【答案】D【解析】选项A :如图,取CD 中点H ,连接GH ,FH ,AG ,AH ,因为A BCDE -是正四棱锥,A CDF -是正四面体,G 为BE 的中点,所以CD GH ⊥,CD AH ⊥,CD FH ⊥,因为GH AH H = ,,GH AH ⊂平面AGH ,所以CD ⊥平面AGH ,因为AH FH H = ,,AH FH ⊂平面AFH ,所以CD ⊥平面AFH ,所以,,,A G H F 四点共面,由题意知3AG HF ==2GH AF ==,所以四边形AGHF是平行四边形,所以GH AF ∥,因为BC GH ∥,所以BC AF ∥,所以,,,A B C F 四点共面,故A 说法正确;选项B :由选项A 知AG FH ∥,又AG ⊄平面CDF ,FH ⊂平面CDF ,所以AG 平面CDF ,因为CD BE ∥,且BE ⊄平面CDF ,CD ⊂平面CDF ,所以BE 平面CDF ,又AG ⊂平面ABE ,BE ⊂平面ABE ,且AG BE G = ,所以平面ABE 平面CDF ,故B 说法正确;C 选项:由选项A 可得CD ⊥平面AGHF ,又FG ⊂平面AGHF ,所以FG CD ⊥,故C 说法正确;D 选项:假设FG ⊥平面ACD ,因为AH ⊂平面ACD ,则FG AH ⊥,由选项A 知四边形AGHF 是平行四边形,所以四边形AGHF 是菱形,与3AG =2GH =矛盾,故D 说法错误;故选D7.甲、乙两人进行一场友谊比赛,赛前每人记入3分.一局比赛后,若决出胜负,则胜的一方得1分,负的一方得1-分;若平局,则双方各得0分.若干局比赛后,当一方累计得分为6时比赛结束且该方最终获胜.令i P 表示在甲的累计得分为i 时,最终甲获胜的概率,若在一局中甲获胜的概率为0.5,乙获胜的概率为0.3,则1P =()A .555535-B .666535-C .5662553⨯-D .677553-【答案】C【解析】由题意可知:i 的取值集合为{}0,1,2,3,4,5,6,且060,1P P ==,在甲累计得分为1时,下局甲胜且最终甲获胜的概率为20.5P ,在甲累计得分为1时,下局平局且最终甲获胜的概率为10.2P ,在甲累计得分为1时,下局甲败且最终甲获胜的概率为00.3P ,根据全概率公式可得12100.50.20.3P P P P =++,整理得2108355P P P =-,变形得()211035P P P P -=-,因为100P P ->,则211035P P P P -=-,同理可得324354652132435435P P P P P P P P P P P P P P P P ----====----,所以{}()10,1,2,,5i i P P i +-= 是公比为35的等比数列,所以()()11030,1,2,,55i i i P P P P i +⎛⎫-=-= ⎪⎝⎭ ,各项求和得()()551101135i i i i i P P P P +==⎡⎤⎛⎫-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑∑,则()661103355315P P P P ⎛⎫- ⎪⎝⎭-=-⋅-,即61133551315P P ⎛⎫- ⎪⎝⎭-=⋅-,解得51662553P ⨯=-.故选C.8.已知0,2a b c <<>,且12212,e (1),2ln2bab c c a==+=,则()A .b a c <-<B .a b c -<<C .c a b <-<D .b c a<<-【答案】B 【解析】令1t a=,则22t t =,令()22,0t f t t t =-<,则()2ln 220t f t t '=->在(),0t ∈-∞上恒成立,故()22t f t t =-在(),0t ∈-∞上单调递增,且()11102f -=-<,110224f ⎛⎫-=-> ⎪⎝⎭,故112t -<<-,故()1,2a -∈,令()()2e 1x g x x =-+,0x >,则()()e 21x g x x '=-+,令()()e 21x q x x =-+,则()e 2x q x '=-,令()0q x '>得ln 2x >,令()0q x '<得0ln 2x <<,故()()e 21xq x x =-+在()0,ln 2上单调递减,在()ln 2,+∞上单调递增,则()()ln 222ln 210q =-+<,()22e 60q =->,由零点存在性定理可得,存在()0ln 2,2x ∈,使得()00q x =,且()()2e 1x g x x =-+在()00,x 上单调递减,在()0,x +∞上单调递增,又()00g =,故()()000g x g <=,又()22e 90g =-<,()33e 160g =->,故()2,3b ∈,令()2ln 2,2h x x x x =->,则()21h x x'=-,当2x >时,()0h x '>,故()2ln 2h x x x =-在()2,+∞上单调递增,又因为()446ln 20h =-<,()552ln100h =->,故()4,5c ∈,综上,a b c -<<.故选B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知()()1,1,2,1AB AC =-= ,则下列结论正确的是()A .()3,0BC =B .()25AB BC AC ⋅-=C.cos ,AB AC = D .若()3,1AB AC λμμλ+=+,则2μλ-=【答案】ACD【解析】对于A ,()3,0BC AC AB =-= ,故A 正确;对于B ,因为()24,1BC AC -=-,所以()25AB BC AC ⋅-=- ,故B 错误;对于C,因为1,AB AC AB AC ⋅=-==所以cos ,10AB AC ==,故C 正确;对于D ,()()2,3,1AB AC λμμλμλμλ+=-+=+ ,所以231μλμμλλ-=⎧⎨+=+⎩,解得1,1λμ=-=,则2μλ-=,故D 正确.故选ACD.10.关于方程[]()22cos 10,πx y αα+=∈表示的曲线Γ,下列说法正确的是()A .Γ可以表示两条平行的直线,且这两条直线的距离为2B .若Γ为双曲线,则α为钝角C .若α为锐角,则Γ为焦点在y 轴上的椭圆D .若Γ为椭圆,P 为椭圆Γ上不与长轴顶点,A B 重合的点,则cos PA PB k k α⋅=-【答案】AD【解析】对于A 项,当cos 0α=,即π2α=时,方程为21y =,解得1y =±,因此Γ可以表示两条平行的直线,且这两条直线的距离为2,故A 选项正确;对于B 项,若Γ为双曲线,则cos 0α<,即ππ2α<≤,故α为钝角或平角,故B 选项错误;对于C 项,若α为锐角,则0cos 1α<<,即11cos α>.将原方程化为标准方程为2211cos x y α+=⎛⎫⎪⎝⎭,因此Γ为焦点在x 轴上的椭圆,故C 选项错误;对于D 项,若Γ为椭圆,则α为锐角,设椭圆方程为()222210x y a b a b+=>>,则221,1cos a b α==,不妨设()()()00,0,,0,,A a B a P x y -,将点P 的坐标代入椭圆方程得2200cos 1x y α+=,即22001cos y x α=-,故22000022200001cos cos 1cos PA PBy y y x k k x a x a x a x ααα-⋅=⋅===-+---,故D 选项正确.故选AD .11.对于集合A 中的任意两个元素,x y ,若实数(),d x y 同时满足以下三个条件:①“(),0d x y =”的充要条件为“x y =”;②()(),,d x y d y x =;③z A ∀∈,都有()()(),,,d x y d x z d y z ≤+.则称(),d x y 为集合A 上的距离,记为A d .则下列说法正确的是()A .(),d x y x y =-为d RB .(),sin sin d x y x y =-为d RC .若()0,A =+∞,则(),ln ln d x y x y =-为Ad D .若d 为R d ,则1e d -也为R d (e 为自然对数的底数)【答案】AC【解析】对于A ,(),d x y x y =-,即x y =,①,(),0d x y =,即(),0d x y x y =-=,即x y =,若x y =,则(),0d x y x y x x =-=-=,所以“(),0d x y =”的充要条件为“x y =”.②,()(),,d x y x y y x d y x =-=-=,成立,③,,,R x y z ∀∈,()()x y x z z y x z z y -=-+-≤-+-,故A 正确;对于B ,(),sin sin d x y x y =-,①,(),0d x y =,即(),sin sin 0d x y x y =-=,即sin sin x y =,此时若0,πx y ==,则x y ≠,故B 错误;对于C ,(),ln ln d x y x y =-,①,(),0d x y =即ln ln ln0xx y y-==,即1x y =,得x y =,若x y =,则(),ln ln ln ln 0d x y x y x x =-=-=,所以“(),0d x y =”的充要条件为“x y =”.②,()(),ln ln ln ln ,d x y x y y x d y x =-=-=,成立;③,()()(),ln ln ln ln ln ln d x y x y x z z y =-=-+-()()ln ln ln ln ,,x z z y d x z d y z ≤-+-=+,故成立,故C 正确;对于D ,设,x y ∀∈R ,(),d x y x y =-,则()1,1e e x y d x y ---=,①,若(),0d x y =,则0x y -=,即x y =,111e e 0x y d e ----==≠,故D 错误.故选AC.三、填空题:本题共3小题,每小题5分,共15分.12.函数()()2312(2)log 22x f x x a +=+-+是偶函数,则=a .【答案】38【解析】因为()()2312(2)log 22x f x x a +=+-+是偶函数,可得()()()31231228log 83022x x f x f x ax a x +-++--=-=-=+,所以38a =.13.《九章算术》中记录的“羡除”是算学和建筑学术语,指的是一段类似隧道形状的几何体,如图,羡除ABCDEF 中,底面ABCD 是正方形,//EF 平面ABCD ,ADE V 和BCF △均为等边三角形,且26EF AB ==.则这个几何体的外接球的体积为.【答案】36π【解析】连接BD ,分别取EF 、BD 、AD 中点G 、H 、I ,连接GH 、HI 、EI ,由底面ABCD 是正方形,//EF 平面ABCD ,ADE V 和BCF △均为等边三角形,故//EG IH ,GH ⊥底面ABCD ,又26EF AB ==,故3EG AD AB ===,则22EI AD ==,故2GH ==,由H 为底面正方形中心,HG IH ⊥,故羡除ABCDEF 外接球球心O 在直线GH 上,连接OI 、OE 、OA ,设半径为r ,OH a =,则==OA OE r ,由GH ⊥底面ABCD ,AD ⊂平面ABCD ,故GH AD ⊥,又AD IH ⊥,IH 、GH Ì平面IOH ,故AD ⊥平面IOH ,又IO ⊂平面IOH ,故AD IO ⊥,故2222232IO r AI r ⎛⎫=-=- ⎪⎝⎭,又222223+2IO OH IH a ⎛⎫=+= ⎪⎝⎭,故有222233+22r a ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即229+2r a =,又2222227322EO r a a ⎛⎫==-+=-+ ⎪ ⎪⎝⎭,故有22279+22a a -+=,解得2a =,故22999+9222r a ==+=,即3r =,则这个几何体的外接球的体积为34π36π3V r ==.14.已知函数π2cos (0)4y x ωω⎛⎫=-> ⎪⎝⎭在区间ππ,42⎛⎫⎪⎝⎭上有且仅有一个零点,则ω的取值范围为.【答案】371115(3)(][7]2222,,, 【解析】由题意知函数π2cos (0)4y x ωω⎛⎫=-> ⎪⎝⎭在区间ππ,42⎛⎫⎪⎝⎭上有且仅有一个零点,故函数的最小正周期πππ2ππ082444T ,,ωω≥-=∴≥∴<≤,又ππ,42x ⎛⎫∈ ⎪⎝⎭,则πππππ44424x ωωω-<-<-,而πππ7π4444ω-<-≤,当ππππ4442ω-<-<时,即03ω<<时,需有πππ3π2242ω<-≤,即3722ω<≤,此时3(3)2,ω∈;当πππ442ω-=时,即3ω=时,ππ5π244ω-=,此时函数在π5π(,24)上无零点,不合题意;当πππ3π2442ω<-<时,即37ω<<时,需有3πππ5π2242ω<-≤,即71122ω<≤,此时711(]22,ω∈;当ππ3π442ω-=时,即7ω=时,ππ13π244ω-=,此时函数在3π13π(,)24上有一零点5π2,符合题意;当3πππ7π2444ω<-≤时,即78ω<≤时,需有5πππ7π2242ω<-≤,即111522ω<≤,此时15(7]2,ω∈;综合上述,得ω的取值范围为371115(3)(][7]2222,,, 三、解答题:本题共5小题,共77分,解答应写出文字说明,证明过程和解题步骤.15.(13分)近年来“天宫课堂”受到广大中小学生欢迎,激发了同学们对科学知识的探索欲望和对我国航天事业成就的自豪.为领悟航天精神,感受中国梦想,某校组织了一次“寻梦天宫”航天知识竞赛(满分100分),各年级学生踊跃参加.校团委为了比较高一、高二学生这次竞赛的成绩,从两个年级的答卷中各随机选取了50份,将成绩进行统计得到以下频数分布表:成绩[)60,70[)70,80[)80,90[]90,100高一学生人数1551515高二学生人数10102010试利用样本估计总体的思想,解决下列问题:(1)从平均数与方差的角度分析哪个年级学生这次竞赛成绩更好(同一组中的数据用该组区间的中点值为代表)?(2)校后勤部决定对参与这次竞赛的学生给予一定的奖励,奖励方案有以下两种:方案一:记学生得分为x ,当70x <时,奖励该学生10元食堂代金券;当7090x ≤<时,奖励该学生25元食堂代金券;当90x ≥时,奖励该学生35元食堂代金券;方案二:得分低于样本中位数的每位学生奖励10元食堂代金券;得分不低于中位数的每位学生奖励30元食堂代金券.若高一年级组长希望本年级学生获得多于高二年级的奖励,则他应该选择哪种方案?解:(1)设高一年级学生竞赛成绩的平均数为x ,方差为21s .高二年级学生竞赛成绩的平均数为y ,方差为22s .则6515755851595158150x ⨯+⨯+⨯+⨯==,(1分)2222211[15(6581)5(7581)15(8581)15(9581)]144,50s =⨯-+⨯-+⨯-+⨯-=(3分)1(6510751085209510)8150y =⨯+⨯+⨯+⨯=,(4分)2222221[10(6581)10(7581)20(8581)10(9581)]161.650s =⨯-+⨯-+⨯-+⨯-=,(6分)因x y =2212s s <,故高一年级学生这次竞赛成绩比较稳定集中,成绩更好;(7分)(2)按照方案一,高一年级学生获得奖励为:1510(515)2515351175⨯++⨯+⨯=元,而高二年级学生获得奖励为:1010(1020)2510351200⨯++⨯+⨯=元,即按照方案一,高一年级获得奖励少于高二;(9分)按照方案二,依题意,所抽取的100名参加竞赛学生的成绩中位数为90806801082357-+⨯=,则样本中,高一年级学生成绩低于中位数的人数约为682807155152410-++⨯≈人,则高一年级获得奖励为:241026301020⨯+⨯=元;高二年级学生成绩低于中位数的人数约为6828071010202610-++⨯≈人,则高二年级获得奖励为:26102430980⨯+⨯=元.(11分)因1020980>,即按照方案二,高一年级获得奖励多于高二.故若高一年级组长希望本年级学生获得多于高二年级的奖励,则他应该选择方案二.(13分)16.(15分)已知在四边形ABCD 中,ABD △为锐角三角形,对角线AC 与BD 相交于点O,π2,4,4AD AC BD ABD ∠====.(1)求AB ;(2)求四边形ABCD 面积的最大值.解:(1)由余弦定理可得2222πcos 42AB BD AD AB BD +-=⋅,化简为220AB -+=,解得1AB =1,(4分)当1=AB时,因为2146cos 0BAD +-∠=<,与ABD △为锐角三角形不符合,故1AB =.(7分)(2)作,AE CF 垂直BD 于,E F ,设1AOB ∠=∠,(9分)则()1111sin 1sin 1sin 12222ABCD ABD CBD S S S BD AE BD CF BD AO CO BD AC =+=⋅+⋅=∠+∠=⋅∠ ,当sin 11190AC BD ∠=⇒∠=︒⇒⊥,四边形面积最大,最大面积为146262⨯=(15分)17.(15分)如图,在几何体111B C D ABCD -中,平面111//B C D 平面ABCD ,四边形ABCD 为正方形,四边形11BB D D 为平行四边形,四边形11D DCC 为菱形,112,22,120,DC AC D DC E ︒==∠=为棱11C D 的中点,点F 在棱1CC 上,//AE 平面BDF .(1)证明DE ⊥平面ABCD ;(2)求平面1AB D 与平面BDF 夹角的余弦值.解:(1)如图,连接DC 1,因为四边形11D DCC 为菱形,1120︒∠=D DC ,所以160DCC ︒∠=,所以12DC =,因为12,22AD DC AC ===22211AD DC AC +=,所以1AD DC ⊥,又11,,,AD DC DC DC D DC DC ⊂⊥= 平面11CDD C ,所以AD ⊥平面11CDD C ,所以,AD DE AD DC ⊥⊥,(3分)因为四边形11D DCC 为菱形,且1120︒∠=D DC ,所以1111DD DC D C ==,因为E 为棱11C D 的中点,所以11DE C D ⊥,又11//C D CD ,所以DE CD ⊥,(5分)因为,,,DE AD AD DC D AD DC ⊥=⊂ 平面ABCD ,所以DE ⊥平面ABCD .(7分)(2)以D 为坐标原点,,,DA DC DE分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系D xyz -.易知3DE =所以()0,0,0,(2,0,0),(2,2,0),(0,2,0),3)D A B C E ,113),(0,3)C D -,所以1(0,3),(0,2,0),(2,0,3),(2,2,0),(2,0,0)CC DC AE DB DA =-==-== ,1(0,3)DD -= ,设()10,3(01)CF tCC t t t ==-≤≤ ,则(0,2,3)DF DC CF t t =+=- ,(9分)因为//AE 平面BDF ,所以存在唯一的,R λμ∈,使得(2,2,0)(0,2,3)(2,22,3)AE DB DF t t t λμλμλλμμμ=+=+-=+- .所以22,220,33t t λλμμμ=-+-==23t =,所以111114230,,,(2,1,3)33DF DB DD D B DD DB ⎛⎫==+=+= ⎪ ⎪⎝⎭,(11分)设平面BDF 的法向量为()111,,x n y z = ,则00DF n DB n ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111423033220y x y ⎧=⎪⎨⎪+=⎩,取13y =-,则113,23x z ==,故(3,3,23)n =- ,设平面1AB D 的法向量为()222,,m x y z = ,则100DA m DB m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以222220230x x y z =⎧⎪⎨+=⎪⎩,取23y =,则220,3x z ==-(0,3,3)m =- ,(13分)设平面1AB D 与平面BDF 的夹角为θ,则10cos cos ,43023m n m n m nθ⋅=〈〉===⨯ ,故平面1AB D 与平面BDF 104(15分)18.(17分)已知抛物线C :()2205y px p =<<上一点M 的纵坐标为3,点M 到焦点距离为5.(1)求抛物线C 的方程:(2)过点()1,0作直线交C 于A ,B 两点,过点A ,B 分别作C 的切线1l 与2l ,1l 与2l 相交于点D ,过点A 作直线3l 垂直于1l ,过点B 作直线4l 垂直于2l ,3l 与4l 相交于点E ,1l 、2l 、3l 、4l 分别与x 轴交于点P 、Q 、R 、S .记DPQ V 、DAB 、ABE 、ERS △的面积分别为1S 、2S 、3S 、4S .若3412S S S S λ=,求实数λ的取值范围.解:(1)设(),3M t ,由题意可得9252pt p t =⎧⎪⎨+=⎪⎩,即9522p p +=,(2分)解得1p =或9p =(舍去),所以抛物线C 的方程为22y x =.(4分)(2)如图,设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m ∈R ,0m ≠),与抛物线方程22y x =联立可得222y my =+,即2220y my --=,2480m ∆=+>∴122y y m +=,122y y =-.∵22y x =,则y =∴'1y y=,(6分)∴过点A 作C 的切线1l 方程为()11111112y y x x y x y y =-+=+,令0y =,得212y x =-,即21,02y P ⎛⎫- ⎪⎝⎭.同理,过点B 作C 的切线2l 方程为2212y y x y =+,令0y =,得222y x =-,即22,02y Q ⎛⎫- ⎪⎝⎭.∴222122y y PQ =-.(8分)联立两直线方程11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得1212122y y x y y y m ⎧==-⎪⎪⎨+⎪==⎪⎩,即()1,D m -,则D 到直线AB l的距离2D AB d -==又∵过点A 作直线3l 垂直于1l ,直线3l 的方程为311111112y y y x x y y y x y =-++=-++,令0y =,得2112y x =+,即211,02y R ⎛⎫+ ⎪⎝⎭.(10分)同理,直线4l 的方程为32222y y y x y =-++,令0y =,得2212y x =+,即221,02y S ⎛⎫+ ⎪⎝⎭.∴222122y y RS =-.联立两直线方程3111322222y y y x y y y y x y ⎧=-++⎪⎪⎨⎪=-++⎪⎩,解得()2212121212122y y y y x y y y y y ⎧++=+⎪⎪⎨+⎪=-⎪⎩,整理后可得2222x m y m⎧=+⎨=⎩,即()222,2E m m +,则E 到直线AB l的距离E AB d -==.(13分)由上可得22211112222D y y S PQ y m =⋅=-,212d AB S AB d -=⋅=,312E AB S AB d -=⋅=,222141122222E y y S RS y m =⋅=-,(15分)∴2123422S S m S S +==,得2212m λ=<+,故λ的取值范围为()0,1.(17分)19.(17分)超越数得名于欧拉,它的存在是法国数学家刘维尔(Joseph Liouville )最早证明的.一个超越数不是任何一个如下形式的整系数多项式方程的根:11100n n n n a x a x a x a --++++= (0a ,1a ,…,n a ∈Z ,0n a ≠).数学家证明了自然对数的底数e 与圆周率π是超越数.回答下列问题:已知函数()e x n n n f x b x =-(*n ∈N )只有一个正零点.(1)求数列{}n b 的通项公式;(2)(ⅰ)构造整系数方程00n n a x a +=,证明:若N m ∈,则e m 为有理数当且仅当0m =.(ⅱ)数列{}n b 中是否存在不同的三项构成等比数列?若存在,求出这三项的值;否则说明理由.解:(1)若()e x n n n f x b x =-只有一个正零点,可得e ,e 1,x n n x n n b x b x -==(1分)令()e n x g x x -=,()11()e e e n x n x n x g x nx x x n x -----=-=-',令()0g x '<,(,)x n ∈+∞,令()0g x '>,(0,)x n ∈,故()g x 在(0,)n 上单调递增,在(,)n +∞上单调递减,可得()g x 在x n =处取得最大值,且最大值为()e n n g n x -=,(4分)而当0x →时,()0g x →,当x →+∞时,()0g x →,由题意得,当()g x 最大时,符合题意,故e 1n n n b n -=,即e n n n b n -=⋅.(6分)(2)(ⅰ)若0m =,则e 1m =为有理数;若m 正整数,假设e m 为有理数,则e ,,,0m p y p q q q==∈≠Z ,则方程0q y p ⋅-=的根中有有理数,又在方程0m q x p ⋅-=中,发现e x =是它的根,(8分)而已知e 是超越数,故e 不是方程的根,与0q y p ⋅-=矛盾,即e m 不为有理数;综上所述:m ∈N ,e m 为有理数当且仅当0m =;(10分)(ⅱ)若数列{}n b 中存在不同的三项构成等比数列,则()2e e e e m m n n l l m n ---⋅⋅⋅=⋅,可得22e m n l m n l m n l +--=⋅⋅,由方程右边是有理数知左边是有理数,由上问知当且仅当2m n l +=时成立,故2m n l m n m n l l l ⋅==⋅,则()()1m n m n l l ⋅=,设1m x l-=,则(1)m l x =-,(1)n l x =+,则()()111m n x x -⋅+=,将(1)m l x =-,(1)n l x =+代入进行化简,可得()()(1)111l x l x x x -+-⋅+=,故()()11111l x x x x -+⎡⎤-⋅+=⎣⎦,故()()11111x x x x -+-⋅+=,(14分)构造函数()()()()()1ln 11ln 1f x x x x x =--+++,而()()2ln 10f x x ='-<,知()f x 在其定义域内单调递减,又()00f =,故若()()11111x x x x -+-⋅+=,则有0x =,即2m n l m n l ⋅=成立,当且仅当m n l ==时成立.即数列{}n b 中不存在不同的三项构成等比数列.(17分)。
全国新高考一卷地区2024届普通高等学校招生模拟考试数学试题及答案
全国新高考一卷地区2024届普通高等学校招生模拟考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知i 为虚数单位,且复数2024i 6z =,则下列说法中正确的是( ). A .复数z 为实数 B .2024i i = C .复数z 为纯虚数D .6i z =−2.已知集合{}31,Z A x x k k ==+∈,则下列表示正确的是( ). A .2A −∈ B .2023A ∉ C .231k A +∉D .35A −∉3.已知正三棱台的高为1,上、下底面边长分别为上,则该球的表面积为( ) A .100πB .128πC .144πD .192π4.若a ,b 都是正数,且1ab =,则11822a b a b+++的最小值为( )A .4B .8C .D .5.神舟十五号飞行任务是中国载人航天工程2022年的第六次飞行任务,也是中国空间站建造阶段最后一次飞行任务,航天员乘组将在轨工作生活6个月.某校为了培养学生们的航天精神,特意举办了关于航天知识的知识竞赛,竞赛一共包含两轮.高三(9)班派出了u 和v 两位同学代表班级参加比赛,每轮竞赛u 和v 两位同学各答1题.已知u 同学每轮答对的概率是45,v 同学每轮答对的概率是34,每轮竞赛中u 和v 两位同学答对与否互不影响,每轮结果亦互不影响,则u 和v 两位同学至少答对3道题的概率为( ). A .39200B .129200C .12950D .39506.椭圆()2222:10x y E a b a b+=>>的左顶点为M ,点,A B 均在E 上,且点,A B 关于点y 轴对称,若直线,MA MB 均存在斜率,且斜率之积为18,记E 的离心率为e ,则2e =( ).A .18B 4C .78D .147.若直线π4x =是πsin()4y x ω=−(0)>ω的一条对称轴,且在区间π[0,]12上不单调,则ω的最小值为( )A .9B .7C .11D .38.设函数()f x 在R 上满足()()22f x f x −=+,()()77f x f x −=+,且在区间[]07,上只有()()130f f ==,则方程()0f x =在闭区间[]20232023−,上根的个数为( ). A .806 B .810 C .807 D .811二、多选题9.如图,在下列给出的正方体中,点M N ,为顶点,点O 为下底面的中心,点P 为正方体的棱所在的中点,则OP 与MN 不垂直的是( ).A .B .C .D .10.已知直线2:0l mx ny r +−=与圆222:C x y r +=,点(),P m n ,则下列命题中是假命题的是( ).A .若点P 在圆C 外,则直线l 与圆C 相离B .若点P 在圆C 内,则直线l 与圆C相交C .若点P 在圆C 上,则直线l 与圆C 相切D .若点P 在直线l 上,则直线l 与圆C 相切11.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设a ,b ,m (m >0)为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为a ≡b (mod m ).如9和21除以6所得的余数都是3,则记为9≡21(mod 6).若0122222222222222C C 2C 2C 2a =+⋅+⋅++⋅,a ≡b (mod 10),则b 的值可以是( ). A .2019 B .2023 C .2029 D .2033三、填空题12.已知向量a 与b 相互垂直,且3a =,2b =,则()()a b a b +⋅−= . 13.已知符号“lim ”代表极限的意思,现给出两个重要极限公式:①0sin lim1x xx→=;②1lim(1)e xx x →+=,则依据两个公式,类比求0sin cos lim x x xx→= ;1sin cos 0lim(1sin 2)x xx x →+= .14.已知函数()2e e e x x xg x x x =−−,若方程()g x k =有三个不同的实根,则实数k 的取值范围是 .四、解答题15.当今社会面临职业选择时,越来越多的青年人选择通过创业、创新的方式实现人生价值.小明是一名刚毕业的大学生,通过直播带货的方式售卖自己家乡的特产,下面是他近5个月的家乡特产收入y (单位:万元)情况,如表所示.(1)根据5月至9月的数据,求y 与t 之间的线性相关系数(精确到0.001),并判断相关性;(2)求出y 关于t 的回归直线方程(结果中b 保留两位小数),并预测10月收入能否突破1.5万元,请说明理由.附:相关系数公式:()()nniii it t y y t y nt yr−−−==∑∑.0.75r >,则线性相关程度很强,可用线性回归模型拟合)②一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线方程y bx a =+的斜率和截距的最小二乘估计公式分别为1221ni ii nii x y nx yb xnx==−=−∑∑,a y bx =−. 2.91≈. 16.已知数列{}n a 是公差为d 的等差数列,2n na b n−=. (1)证明:数列{}n b 也为等差数列;(2)若13a d ==,数列{}n c 是以数列{}n b 的公差为首项,2为公比的等比数列,数列{}n n b c 的前n 项和n T ,证明:1n T ≥.17.如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥; 条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.18.已知1(2,0)F −,2(2,0)F ,点P 满足122PF PF −=,记点P 的轨迹为E .直线l 过点2F 且与轨迹E 交于P 、Q 两点.(1)无论直线l 绕点2F 怎样转动,在x 轴上总存在定点(,0)M m ,使MP MQ ⊥恒成立,求实数m 的值;(2)在(1)的条件下,求MPQ 面积的最小值.19.已知当π02x ⎛⎫∈ ⎪⎝⎭,时,2()πx f x =,()sin g x x =,()h x x =.(1)证明:()()()f x g x h x <<; (2)已知()()()0f x g x h x −−<,证明:()π()2πh x g x −>(π可近似于3.14).参考答案:1.A【分析】借助复数的运算法则计算即可得. 【详解】()()1012101220242i i 11==−=,故6z =,故A 正确,B 、C 、D 错误. 故选:A. 2.A【分析】令31k +分别为选项中不同值,求出k 的值进行判定. 【详解】当1k =−时,2x =−,所以2A −∈,故A 正确; 当674k =时,367412023x =⨯+=,所以2023A ∈,故B 错误; 当1k =或0k =时,23131k k +=+,所以231k A +∈,故C 错误; 当12k =−时,123135x =−⨯+=−,所以35A −∈,故D 错误. 故选:A 3.A【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以123432,260sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =2d =故121d d −=或121d d +=,1=1=,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .4.A【分析】将1ab =代入,利用基本不等式直接求解即可得出结论. 【详解】若a ,b 都是正数,且1ab =∴11888422222b a a b a b a b a b a b +++=++=+=+++≥, 当且仅当4a b +=时等号成立, 故选:A. 5.D【分析】分别求出答对4道题,答对3道题的概率,再求和事件的概率即可. 【详解】若u 和v 两位同学答对4道题,则其概率为224395425⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭;若u 和v 两位同学答对3道题,则其概率为22143134212255444550⎛⎫⎛⎫⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭;故u 和v 两位同学至少答对3道题的概率为92139255050+=. 故选:D. 6.C【分析】根据题意得到,,M A B 的坐标,进而利用两点距离公式与点在椭圆上得到关于,a b 的齐次方程,从而得解.【详解】由题可得(),0M a −,设()()0000,,,A x y B x y −.则20002200018AM BMy y y k k x a a x a x ⋅=⋅==+−−, 又222222000022222118x y y a x b a b b a a −+=⇒=⇒=, 则22222287a b c a b b ==−=,. 则222227788c b e a b ===. 故选:C 7.C【分析】根据给定条件求出ω的关系式,再求出函数πsin()4y x ω=−含0的单调区间即可判断作答.【详解】因直线π4x =是πsin (0)4y x ωω⎛⎫=−> ⎪⎝⎭的一条对称轴,则ππππ,Z 442k k ω−=+∈,即43,Z k k ω=+∈,由πππ242x ω−≤−≤,得π3π44x ωω−≤≤,则πsin()4y x ω=−在π3π[,]44ωω−上单调递增, 而πsin()4y x ω=−在区间π[0,]12上不单调,则3ππ412ω<,解得9ω>, 综上,ω的最小值为11. 故选:C 8.B【分析】先根据条件确定函数周期,然后确定一个周期内的根的个数,进而得到在闭区间[]20232023−,上根的个数. 【详解】因为()()22f x f x −=+,所以()()4f x f x −=+, 又()()77f x f x −=+,所以()()14f x f x −=+, 所以()()414f x f x +=+,即()()10f x f x =+, 所以函数()f x 的周期为10,在区间[]07,上只有()()130f f ==, 所以()0f x =在(]4,7上无解, 则()70f x −=在(]0,3上无解,又()()77f x f x −=+,所以()70f x +=在(]0,3上无解,,即()0f x =在(]7,10上无解, 即一个周期[]0,10内,方程的根只有1,3,闭区间[]20202020−,上含有404个周期,此时有4042808⨯=个根, 在区间(]20202023,内,()()()()202110,202330,f f f f ==== 对于区间[)2023,2020−−,根据周期等价于区间[)7,10,该区间上无解, 故方程()0f x =在闭区间[]20232023−,上根的个数为810. 故选:B. 9.CD【分析】建立适当空间直角坐标系,利用空间向量分析判断即可. 【详解】设正方体的棱长为2,对A :建立如图所示空间直角坐标系,则(2,2,2),(0,2,0),(0,0,1),(1,1,0)M N P O , 可得(2,0,2),(1,1,1)MN OP =−−=−−,则2020MN OP ⋅=+−=, 所以MN OP ⊥,即MN OP ⊥,故A 错误;对B :建立如图所示空间直角坐标系,则(0,0,2),(2,0,0),(2,0,1),(1,1,0)M N P O , 可得(2,0,2),(1,1,1)MN OP =−=−,则2020MN OP ⋅=+−=, 所以MN OP ⊥,即MN OP ⊥,故B 错误;对C :建立如图所示空间直角坐标系,则(0,2,0),(0,0,2),(2,1,2),(1,1,0)M N P O , 可得(0,2,2),(1,0,2)MN OP =−=,则0040MN OP ⋅=++≠, 所以MN 与OP 不垂直,即MN 与OP 不垂直,故C 正确;对D :建立如图所示空间直角坐标系,则(2,0,2),(0,2,2),(0,2,1),(1,1,0)M N P O , 可得(2,2,0),(1,1,1)MN OP =−=−,则2200MN OP ⋅=++≠, 所以MN 与OP 不垂直,即MN 与OP 不垂直,故D 正确.故选:CD. 10.AB【分析】根据直线和圆相切、相交、相离的等价条件进行求解即可. 【详解】对于A ,因为点(),P m n 在圆C 外,所以222m n r +>,则圆心()0,0C 到直线l 的距离为d r ==<,所以直线l 与圆C 相交,故命题A 是假命题;对于B ,因为点(),P m n 在圆C 内,所以222m n r +<,则圆心()0,0C 到直线l 的距离为d r ==>,所以直线l 与圆C 相离,故命题B 是假命题; 对于C ,因为点(),P m n 在圆C 上,所以222m n r +=,则圆心()0,0C 到直线l 的距离为d r ===,所以直线l 与圆C 相切,故命题C 是真命题;对于D ,因为点(),P m n 在直线l 上,所以2220m n r +=−,即222m n r +=,则圆心()0,0C 到直线l 的距离为d r ===,所以直线l 与圆C 相切,故命题D 是真命题; 故选:AB. 11.AC【分析】先利用二项式定理化简得223a =;再利用二项式定理将()11221139101==−展开可得到a 除以10所得的余数是9,进而可求解.【详解】因为()22012222222222222222C C 2C 2C 2123a =+⋅+⋅++⋅=+=()()112211011110101101019101111111111111139101C 10C 10C 10C 10C 10C 10C 19==−=⨯−⨯++⨯−=⨯−⨯++−+所以a 除以10所得的余数是9. 又因为a ≡b (mod 10) 所以b 除以10所得的余数是9.而2019201109=⨯+,2023202103=⨯+,2029202109=⨯+,2033203103=⨯+ 故选:AC. 12.5【分析】根据向量的数量积运算法则即可求解.【详解】()()2222325a b a b a a b b a b +⋅−=⋅−⋅=−=−=,故答案为:5 13. 1 2e【分析】根据题意,结合极限的运算法则,准确计算,即可求解.【详解】由极限的定义知:①0sin lim1x xx→=;②10lim(1)e x x x →+=, 因为sin cos sin 22x x x x x =,sin 2t x =,可得sin 2sin 2x tx t=, 则00sin cos sin limlim 1x t x x tx t→→==;又因为12sin cos sin 2(1sin 2)(1sin 2)x x x x x +=+,令sin 2t x =,可得22sin 2(1sin 2)(1)x t x t +=+, 所以12122sin cos 0lim(1sin 2)lim(1)lim (1e [)]x xt t x t t x t t →→→+=+=+=.故答案为:1;2e . 14.()20,5e−【分析】通过求导得出函数的单调性和极值,即可得出有三个实根时实数k 的取值范围. 【详解】由题意,在()2e e e x x x g x x x =−−中,()()2e 2x g x x x '=+−,当()0g x '=时,解得2x =−或1,当()0g x '<即2<<1x −时,()g x 单调递减, 当()0g x '>即<2x −,1x >时,()g x 单调递增,∵()()()2222222e 2e e 5e g −−−−−=−−−−=,()1111e e e e g =−−=−,当()()22,1e 0xx g x x x −=−−,方程()g x k =有三个不同的实根, ∴()02k g <<−即205e k −<<, 故答案为:()20,5e−.【点睛】易错点点点睛:本题考查函数求导,两函数的交点问题,在研究函数的图象时很容易忽略()()22,1e 0xx g x x x −=−−这个条件.15.(1)0.962r ≈−,y 与t 具有很强的线性相关关系(2)0.28 3.12y t =−+,10月收入从预测看不能突破1.5万元,理由见解析【分析】(1)直接套公式求出y 与t 之间的线性相关系数,即可判断; (2)套公式求出系数b 、a ,即可得到回归方程,并求出10月份的收入. 【详解】(1)(1)由5月至9月的数据可知1234535t ++++==,3 2.4 2.22 1.82.285y ++++==,51132 2.43 2.2425 1.831.4i i i t y ==⨯+⨯+⨯+⨯+⨯=∑,()5214101410i i t t=−=++++=∑,()522222210.720.120.080.280.480.848ii y y =−=++++=∑,所以所求线性相关系数为550.962i it y t yr −===≈−∑.因为相关系数的绝对值0.9620.9620.75r =−=>, 所以认为y 与t 具有很强的线性相关关系.(2)由题得522222211234555i i t ==++++=∑,51522215 3.1453 2.28 2.80.285553105i ii i i t y t yb t t==−−⨯⨯−====−−⨯−∑∑,所以()2.280.283 3.12a y bt =−=−−⨯=, 所以y 关于t 的回归直线方程为0.28 3.12y t =−+. 当6t =时,0.286 3.12 1.44y =−⨯+=,因为144 15<..,所以10月收入从预测看不能突破1.5万元. 16.(1)证明见解析; (2)证明见解析.【分析】(1)通过计算1n n b b +−为定值可证明等差数列;(2)先求出数列的通项公式,然后利用错位相减法求n T ,根据n T 的结构即可证明不等式.【详解】(1)∵2n na b n−=, ∴2n n b a n =−,∴()()1112122n n n n n n b b a n a n a a +++⎡⎤−=−+−−=−−⎣⎦, 又∵数列{}n a 是公差为d 的等差数列, ∴1n n a a d +−=, ∴12n n b b d +−=−,∴数列{}n b 是以2d −为公差的等差数列; (2)∵13a d ==,∴112321b a =−=−=,2321d −=−=, ∴数列{}n b 是以1为首项,1为公差的等差数列. ∴1(1)1n b n n =+−⨯=,∴数列{}n c 是以1为首项,2为公比的等比数列,∴11122n n n c −−=⨯=,∴1·2n n n b c n −=, ∴1121112222n n T n −−−=⨯+⨯++⨯①,∴2n T =()21112122n n n n −−⨯+++⨯⨯−②,∴②−①得,11222n n n T n n −=−−−−⨯+⨯()11222n n n n −=−+++⨯+⨯12212n n n −=−+⋅−122n n n =−+⋅()121n n =−+,∵1n ≥且n 为正整数, ∴10n −≥,20n >,∴()1211nn T n =−+≥(当1n =时取等).17.(1)见解析 (2)见解析【分析】(1)取AB 的中点为K ,连接,MK NK ,可证平面//MKN 平面11BCC B ,从而可证//MN 平面11BCC B .(2)选①②均可证明1BB ⊥平面ABC ,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值.【详解】(1)取AB 的中点为K ,连接,MK NK , 由三棱柱111ABC A B C 可得四边形11ABB A 为平行四边形, 而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B , 而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B , 而,,NKMK K NK MK =⊂平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B , (2)因为侧面11BCC B 为正方形,故1CB BB ⊥, 而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A , 平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A , 因为//NK BC ,故NK ⊥平面11ABB A , 因为AB ⊂平面11ABB A ,故NK AB ⊥, 若选①,则AB MN ⊥,而NK AB ⊥,NKMN N =,故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM ===, 设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯. 若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面11ABB A , 故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =, 而12B B MK ==,MB MN =,故1BB M MKN ≅, 所以190BB M MKN ∠=∠=︒,故111A B BB ⊥, 而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M , 故()()()0,2,0,1,1,0,0,1,2BA BN BM ===, 设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎪⎨⋅=⎪⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n BA θ===⨯.18.(1)1m =−(2)9【分析】(1)由双曲线定义即可得点P 的轨迹方程,设出直线l 方程,联立双曲线方程可得与x 有关韦达定理,借助向量垂直数量积为0可计算出M 点坐标;(2)借助弦长公式与点到直线的距离公式可表示出面积,再借助换元法计算即可得解. 【详解】(1)由12122PF PF F F −=<知,点P 的轨迹E 是以1F 、2F 为焦点的双曲线的右支,设轨迹E 的方程为22221(1)x y x a b−=≥,0a >,0b >,2c =,22a =,23b ∴=,故轨迹E 的方程为221(1)3y x x −=≥,当直线l 的斜率存在时,设直线方程为(2)y k x =−,()11,P x y ,()22,Q x y ,与双曲线方程联立2213(2)y x y k x ⎧−=⎪⎨⎪=−⎩,可得()222234430k x k x k −−++=, 有()()24222122212230Δ16434304034303k k k k k x x k k x x k ⎧−≠⎪=−−+>⎪⎪⎪⎨+=>⎪−⎪+⎪⋅=>⎪−⎩,解得23k >, ()()()12121MP MQ x m x m y y x m ⋅=−−+=−.()()()221222x m k x x −+−−()()()22221212124k x x k m x x m k =+−++++()()()222222214342433k k k kmmk k k +++=−++−−2223(45)3m k m k −+=+− ()()222245313m m k m k −−+−=−MP MQ ⊥,0MP MQ ∴⋅=,故得()()22231450m k m m −+−−=对任意的23k >恒成立,2210,450,m m m ⎧−=∴⎨−−=⎩解得1m =−,∴当1m =−时,MP MQ ⊥.当直线l 的斜率不存在时,可得(2,3)P ,则(2,3)Q −, 此时有()()3312121−⋅=−−−−−,即此时结论也成立,综上,当1m =−时,MP MQ ⊥;(2)由(1)知(1,0)M −,当直线l的斜率存在时,()2122613k PQ x k +=−=−,点M 到直线PQ 的距离为d,则d =1||2MPQSPQ d ∴===令23(0)k t t−=>,则MPQS=10t>,9MPQS ∴=>, 当直线l 的斜率不存在时,13692MPQS =⨯⨯=, 综上可知,MPQS的最小值为9.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.19.(1)证明见解析; (2)证明见解析.【分析】(1)令π()()()sin ,02F x h x g x x x x ⎛⎫=−=−∈ ⎪⎝⎭,,求导得到函数单调性,得到sin x x >,要证()()f x g x <,只需证2sin πx x <,构造πsin 2()x G x x =−,π(0)2x ∈,,二次求导得到单调性,得到π()02G x G ⎛⎫= ⎪⎝⎭>,证明出()(),(0)π2f x g x x ∈<,,证明出不等式;(2)变形得到0ππ(2)sin x x −−<,两边同时除以(2)s πin 0x −<得到:πsin 2πx x −>,证明出不等式.【详解】(1)令π()()()sin ,02F x h x g x x x x ⎛⎫=−=−∈ ⎪⎝⎭,,∴()1cos 0F x x =−>'在π02x ⎛⎫∈ ⎪⎝⎭,上恒成立,∴()F x 在π02x ⎛⎫∈ ⎪⎝⎭,上单调递增,∴()(0)0F x F =>, ∴sin x x >,∴π()(),(0)2g x h x x ∈<,,要证()()f x g x <,只需证2sin πxx <, ∵π02x ⎛⎫∈ ⎪⎝⎭,,∴只需证2sin πxx<,令πsin 2()x G x x =−,π(0)2x ∈,,∴2cos sin ()x x x G x x −'=,∴22cos tan cos cos ()(tan )x x x x xG x x x x x−'==−,令()tan M x x x =−,π(0)2x ∈,,∴2221cos 1()1cos cos x M x x x −'=−=, 又∵当π(0)2x ∈,时,20cos 1x <<,∴当π(0)2x ∈,时,()0M x '<,∴()M x 在(0)π2,上单调递减,∴()(0)0M x M =<,∴当π(0)2x ∈,时,()0G x '<,∴()G x 在(0)π2,上单调递减∴π()02G x G ⎛⎫= ⎪⎝⎭>,∴2sin πx x <, ∴()(),(0)π2f xg x x ∈<,,∴综上所述,当π(0)2x ∈,时,()()()f x g x h x <<,证毕.(2)∵当π(0)2x ∈,时,()()()0f x g x h x −−<,∴2sin 0πxx x −−<, ∴2sin 0πππx x x−−<,∴0ππ2)i π(s n x x−−<,①将①式两边同时乘以π得到:0ππ(2)sin x x −−<,② ∵20π−<,但当π(0)2x ∈,时,sin 0x >,∴(2)s πin 0x −<,将②式两边同时除以(2)s πin 0x −<得到:(2)sin 0(2)n ππsi πx xx−−>−,∴0πsin 2πx x −>−, ∴πsin 2πx x −>, ∴当π(0)2x ∈,时,()π()2πh x g x −>,证毕. 【点睛】方法点睛:证明不等式或比较两函数大小,需构造函数,并根据导函数得到函数单调性,结合特殊点函数值得到结论.。
备战2024年高考数学模拟卷(新高考Ⅰ卷专用)含解析
【赢在高考·黄金8卷】备战2024年高考数学模拟卷(新高考Ⅰ卷专用)黄金卷(答案在最后)(考试时间:120分钟试卷满分:150分)第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要A.51 62 a b+C.51 63 a b+【答案】CA .242B .24【答案】B【详解】如图所示,在正四棱锥P ABCD -连接OP ,则底面边长32AB =,对角线又5BP =,故高224OP BP BO =-=故该正四棱锥体积为()21323V =⨯⨯故选:B5.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果可以表示为两个素数的和身外没有其他因数的自然数)中,随机选取两个不同的数,其和等于将APQ △翻折后,PQ A Q '⊥,PQ BQ ⊥,又平面平面A PQ ' 平面BCPQ PQ =,A Q '⊂平面A PQ ',BQ ⊂平面BCPQ ,于是A Q '⊥平面显然A P ',BP 的中点D ,E 分别为A PQ ' ,四边形BCPQ 则DO ⊥平面A PQ ',EO ⊥平面BCPQ ,因此//DO BQ 取PQ 的中点F ,连接,DF FE 则有////EF BQ DO ,DF 四边形EFDO 为矩形,设A Q x '=且023x <<,DO 设球O 的半径R ,有22223324A P R DO x x '⎛⎫=+=-+⎪⎝⎭当23x =时,()22R =,所以球O 表面积的最小值为故选:A .二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得5分,部分选对的得2分,有选错的得0分。
A .正方体11ABCD A B C -B .两条异面直线1D C 和C .直线BC 与平面ABC D .点D 到面1ACD 的距离为【答案】BC【分析】根据正方体和内切球的几何结构特征,可判定的角的大小即为直线1D C 和进而求得直线BC 与平面ABC 判定D 错误.【详解】对于A 中,正方体所以内切球的半径12R =,所以对于B 中,如图所示,连接因为11//AB C D 且11AB C D =所以异面直线1D C 和1BC 所成的角的大小即为直线又因为112AC AD D C ===对于C 中,如图所示,连接B 因为AB ⊥平面11BB C C ,1B C 又因为1AB BC B =I ,AB ⊂所以1B C ⊥平面11ABC D ,所以直线所以C 正确;对于D 中,如图所示,设点D 所以111πsin 23ACD S AC AD =⨯⨯V 又因为12ACD S AD CD =⨯⨯=V 即111133ACD ACD S h S DD ⨯⨯=⨯⨯ 故选:BC.10.已知函数321()3f x x x =-A .()f x 为奇函数C .()f x 在[1,)-+∞上单调递增【答案】BC【分析】根据奇函数的定义判断12.已知函数()f x 及其导函数f 则()A .(1)(4)f f -=B .g ⎛- ⎝【答案】ABD【分析】由题意分析得到()f x 关于直线【详解】因为3(2)2f x -为偶函数,所以所以()f x 关于直线32x =对称,令因为33()()22f x f x -=+,所以f '所以()()21g x g x +=--,因为所以()()21g x g x -=--,即(g 则()g x 的一个周期为2.因为(f x 所以33022g f ⎛⎫⎛⎫== ⎪ '⎪⎝⎭⎝⎭,所以g 因为()()1g x g x +=-,所以(2g 设()()h x f x c =+(c 为常数),定义域为3322h x f x c ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,又f ⎛ ⎝显然()()h x f x c =+也满足题设,即()f x 上下平移均满足题设,显然()0f 的值不确定,故C 错误.故选:ABD第II 卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.回归直线一定过(4.5, 3.5)
C. A 产品每多生产 1 吨,则相应的生产能耗约增加 0.7 吨 D. t 的值是 3.15
12.在 ABC 中, A 为锐角, lg b lg(1) lg sin A lg 2 ,则 ABC 为( ) c
A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形
g x x2 ;
③
f
x
x0 与
g
x
1 x0
;④
f
x
x2
2x 1与
g t
t2
2t
1.
A.① ②
B.① ③
C.③ ④
D.① ④
9.若 是 ABC 的一个内角,且 sin θ cos θ 1 ,则 sin cos 的值为( )
8
A. 3 2
B. 3 2
C. 5 2
10.函数 f (x) x ln x 的大致图像为 ( )
二、填空题
13.函数 y= 3 2x x2 的定义域是 .
a x 1 , x 1
14.已知函数 f (x) (x a)2
,函数 g(x) 2 f (x) ,若函数 y f (x) g(x) x 1
恰有 4 个不同的零点,则实数 a 的取值范围为______.
15.在 ABC 中,内角 A,B,C 所对的边分别为 a,b,c,若 A , a 3 ,b=1,则 3
于点 M ,延长 FA ,与抛物线 C 的准线相交于点 N ,若 FM : MN 1: 3 ,则实数 a 的值
为__________.
19.已知直线 :
与圆
交于 两点,过 分别作 的垂线与
轴交于 两点.则
_________.
20.如图,圆 C(圆心为 C)的一条弦 AB 的长为 2,则 AB AC =______.
新高考数学模拟试卷带答案
一、选择题
1.若圆 A.21
与圆 C2 : x2 y2 6x 8 y m 0 外切,则 m ( )
B.19
C.9
D.-11
2. 1
1 x2
1
x6 展开式中
x2
的系数为()A.Fra bibliotek5B.20
C.30
D.35
3.
(x2
2 x3
)5
展开式中的常数项为(
)
A.80
B.-80
C.40
D.-40
4.设集合 M {x | x2 2x 0, x R}, N {x | x2 2x 0, x R},则 M N ( )
A.0
B.0, 2
C. 2, 0
D. 2,0, 2
5.
1
i 2
i3
i
(
)
A. 3 i
B. 3 i
C. 3 i
D. 3 i
6.设向量 a , b 满足 a 2 ,| b || a b | 3 ,则 a 2b ( )
三、解答题
21.如图,在四面体 ABCD 中,△ABC 是等边三角形,平面 ABC⊥平面 ABD,点 M 为棱
AB 的中点,AB=2,AD= 2 3 ,∠BAD=90°.
(Ⅰ)求证:AD⊥BC; (Ⅱ)求异面直线 BC 与 MD 所成角的余弦值; (Ⅲ)求直线 CD 与平面 ABD 所成角的正弦值.
24.已知 a , b , c 分别为 ABC 三个内角 A , B , C 的对边, c 3asinC ccosA .
(Ⅰ)求 A ;
(Ⅱ)若 a =2, ABC 的面积为 3 ,求 b , c .
25.四棱锥
P
ABCD
中,底面
ABCD
是边长为
2
的菱形,
BAD
3
,
PAD
是等边
三角形, F 为 AD 的中点, PD BF .
A.6
B. 3 2
C.10
D. 4 2
7.在 ABC 中, A 60 , B 45, BC 3 2 ,则 AC ( )
A. 3 2
B. 3
8.下列各组函数是同一函数的是(
C. 2 3
)
D. 4 3
① f x 2x3 与 f x x 2x ; f x 2x3与y x 2x ② f x x 与
22.设椭圆
x2 a2
y2 b2
1(a
b
0) 的左焦点为 F
,右顶点为 A ,离心率为
1 2
.已知
A 是抛
物线 y2 2 px( p 0) 的焦点, F 到抛物线的准线 l 的距离为 1 . 2
(I)求椭圆的方程和抛物线的方程;
(II)设 l 上两点 P , Q 关于 x 轴对称,直线 AP 与椭圆相交于点 B ( B 异于点 A ),直
线 BQ 与 x 轴相交于点 D .若△APD 的面积为 6 ,求直线 AP 的方程. 2
23.如图,四面体 ABCD 中,O、E 分别是 BD、BC 的中点, AB AD 2 , CA CB CD BD 2. (1)求证: AO 平面 BCD;
(2)求异面直线 AB 与 CD 所成角的余弦值; (3)求点 E 到平面 ACD 的距离.
心距离等于半径和)可得
3 02 4 02 1 25 m m 9,故选 C.
考点:圆与圆之间的外切关系与判断
2.C
D. 5 2
A.
B.
C.
D.
11.下表提供了某厂节能降耗技术改造后在生产 A 产品过程中记录的产量 x (吨)与相应 的生产能耗 y (吨)的几组对应数据,根据表中提供的数据,求出 y 关于 x 的线性回归方
程为 y 0.7x 0.35,则下列结论错误的是( )
x
3
4
5
6
y
2.5
t
4
4.5
A.产品的生产能耗与产量呈正相关
(1)求证: AD PB ; (2)若 E 在线段 BC 上,且 EC 1 BC ,能否在棱 PC 上找到一点 G ,使平面 DEG
4 平面 ABCD?若存在,求四面体 D CEG 的体积.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C 解析:C 【解析】
试题分析:因为 x2 y2 6x 8y m 0 x 32 y 42 25 m ,所以 25 m 0 m 25且圆 C2 的圆心为 3, 4,半径为 25 m ,根据圆与圆外切的判定(圆
c _____________
16.△ABC 的内角 A, B,C 的对边分别为 a,b, c .若 b 6, a 2c, B π ,则△ABC 的面 3
积为__________.
17.函数 y lg1 2sin x 的定义域是________.
18.已知点 A0,1,抛物线 C : y2 axa 0 的焦点为 F ,连接 FA ,与抛物线 C 相交