3.第三讲 勾股定理的应用答案
勾股定理专题附答案全面精选

257勾股定理一、探索勾股定理知识点1勾股定理定理内容:在RT △中, 勾股定理的应用:在RT △中,知两边求第三边,关键在于确定斜边或直角典型题型1、对勾股定理的理解1已知直角三角形的两条直角边长分别为a, b,斜边长c,则下列关于a,b,c 的关系不成立的是 A 、c2- a2=b2 B 、c2- b2=a2 C 、a2- c2=b2 D 、 a2+b2= c22在直角三角形中,∠A=90°,则下列各式中不成立的是 A 、BC2- AB2=AC2 B 、BC2- AC2=AB2 C 、AB2+AC2= BC2 D 、AC2+BC2= AB22、应用勾股定理求边长3已知在直角三角形ABC 中,AB=10 cm, BC=8 cm, 求AC 的长.4在直角△中,若两直角边长为a 、b,且满足√α2−6α+9+|b −4|=0,则该直角三角形的斜边长为 .3、利用勾股定理求面积5已知以直角△的三边为直径作半圆,其中两个半圆的面积为25π,16π,求另一个半圆的面积;6如图1,图中的数字代表正方形的面积,则正方形A 的面积为 ;7如图2,三角形中未知边x 与y 的长度分别是x= ,y= ;8在Rt △ABC 中,∠C =90°,若AC =6,BC =8,则AB 的长为A 、6B 、8C 、10D 、129在直线l 上依次摆放着七个正方形如图4所示;已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________;知识点2勾股定理的验证推导勾股定理的关键在于找面积相等,由面积之间的等量关系并结合图形利用代数式恒等变形进行推导;等积法拼图法推导一般步骤:拼出图形---找出图形面积的表达式---恒等变形—推出勾股定理;10用四个相同的直角三角形直角边为a 、b,斜边为c 按图拼法;问题:你能用两种方法表示下图的面积吗对比两种不同的表示方法,你发现了什么11用两个完全相同的直角三角形直角边为a 、b,斜边为c 按下图拼法,论证勾股定理:222c b a=+3、运用勾股定理进行计算重难点12如图,一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,旗杆折断前有多高 13两棵之间的距离为8m,两棵树的高度分别为8m 、2m,一只小鸟从一棵树的树顶飞到另一棵树的树顶,这只小鸟至少要飞多少米基础检测1、在Rt △ABC 中,∠C =90°,若AB =13,BC =5,则AC 的长为2、已知Rt △ABC 中,∠C =90°,若14=+ba cm,10=c cm,则Rt △ABC 的面积为A . 24cm 2 B. 36cm 2 C. 48cm 2 D. 60cm 23、若△ABC 中,∠C=90°,1若a = 5,b =12,则c = ;2若a =6,c =10,则b = ;3若a ∶b =3∶4,c =10,则a = ,b = ;4、如图,阴影部分是一个半圆,则阴影部分的面积为 ;π不取近似值5、一个直角三角形的斜边为20cm,且两直角边长度比为3 : 4,求两直角边的长;6、一个长为10m 为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m,梯子的顶端下滑2m 后,底端向外滑动了多少米培优突破 1、折叠问题1如图是一张直角三角形的纸片,两直角边AC=6cm 、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为A、4cmB、5cmC、6cmD、10cm2 如图,折叠长方形的一边AD,使点D落在BC边上的点F 处,已知AB=8cm,BC=10cm,求线段EC的值2、运用勾股定理解决生活中的实际问题3如图,为了测得小水坑两边A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90°,并测得AC=20m,BC=16m,则A、B两点之间的距离是对少3、分类讨论已知直角△的两边,求第三边4在△ABC中,AB=15,AC=20,BC边上的高AD=12,则BC的值为A、25B、7C、25或7D、不能确定5已知3, 4,a是一个三角形的三边长,若三角形为直角三角形,则2a的值是多少6在直角△ABC中,AB=15, AC=20,BC边上的高AD=12,则BC的值为多少4、利用方程解题7如图,△ABC中,∠C=90°,D是BC上的一点,已知BD=7,AB=20,AD=15, 求AC的长.8如图,已知△ABC中,AB=AC=20,BC=32,D是BC上一点,且AD⊥AC,求BD的长;培优训练一、选择题1.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是A、365B、1225C 、94D、3√342.若三角形ABC中,∠A:∠B:∠C=2:1:1,a,b,c分别是∠A,∠B,∠C的对边,则下列等式中,成立的是A.a2+b2=c2B.a2=2c2C.c2=2a2D.c2=2b2 3.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE ⊥OB于点E.若OD=8,OP=10,则PE的长为A、5B、6C、7D、84.如图在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为A、16B、15C、14D、135.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为A、1B、34C、23D、26.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC 的长为A、21B、15C、6D、以上答案都不对7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,已知BC=8,AC=6,则斜边AB上的高是A、10B、5C、524D、5128.如图,阴影部分是一个矩形,它的面积是A、25cmB、23cmC、24cm D、25cm9.张大爷离家出门散步,他先向正东走了30m,接着又向正南走了40m,此时他离家的距离为mA.30 B.40 C.50 D. 7010.如图在△ABC中∠C=90°,AD平分∠BAC交BC于D,若BC=64,且BD:CD=9:7,则点D到AB边的距离为A、18B、32C、28D、2411.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边x>y,下列四个说法:①x2+y2=49, ②x﹣y = 2,③2xy+4=49, ④x+y=9.其中说法正确的是A、①②B、①②③C、①②④D、①②③④二.填空题共2小题12.如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD=_____cm.13.如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是_________.14、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长;二、勾股定理的逆定理知识点3勾股定理的逆定理1如果△的三边α,b,c 满足关系满足,则该△为直角三角形;2△的三边α,b,c,假设c为最长边①a2+b2>c2,则该△为三角形②a2+b2<c2,则该△为三角形3勾股定理逆定理的用途典型题1下列各组数据中的三个数,可作为三边长构成直角三角形的是A. 4,5,6B. 2,3,4C. 11,12,13D. 8,15,172若线段a,b,c组成直角三角形,则它们的比为A、2∶3∶4B、3∶4∶6C、5∶12∶13D、4∶6∶73下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=3:4:5;④△ABC中,三边长分别为8,15,17.其中是直角三角形的个数有个.A.1 B.2 C.3 D.44若三角形的三边之比为√22:1√2:1,则这个三角形一定是A. 等腰三角形B. 直角三角形C .等腰直角三角形 D. 不等边三角形5 已知a,b,c为△ABC三边,且满足(a2−b2)(a2+ b2−c2)=0则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是A.钝角三角形 B. 锐角三角形C. 直角三角形D. 等腰三角形7若△ABC的三边长分别长a,b,c,且满足a2+b2+ c2+200=12α+16b+20c ,试判断△ABC的形状; 8△ABC的两边分别为5, 12,另一边为奇数,且a+b+c是3的倍数,则c应为,此三角形为 ;9求:①若三角形三条边的长分别是7, 24, 25,则这个三角形的最大内角是度;②已知三角形三边的比为1:3:2,则其最小角为;知识点4勾股数1勾股数是正整数2满足的关系条件a2+b2=c23勾股数的n倍n≠0,仍然满足a2+b2=c24常见勾股数三、勾股定理的应用1、与图形展开的有关计算注意展开方式1某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为.2如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.3如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行cm4国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.2、航海问题1一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过小时后,它们相距________海里2如图,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上;该货船航行30分钟到达B处,此时又测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁,若继续向正东方向航行,该货船有无暗礁危险试说明理由;3如图,某沿海开放城市A接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度向D移动,已知城市A到BC的距离AD=100km.①那么台风中心经过多长时间从B点移到D点②如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险3、网格问题1如图1,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是 A .0 B .1 C .2 D .3 2如图2,正方形网格中的 △ABC, 若小方格边长为1,则△ABC 是A.、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、以上答案都不对 3如图,小方格都是边长为1的正方形,则四边形ABCD 的面积是 A . 25B.C. 9D.4如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:①使三角形的三边长分别为3、√8、√5在图甲中画一个即可;②使三角形为钝角三角形且面积为4在图乙中画一个即可.4、折叠问题1如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC 折叠,使点B 与点A 重合,折痕为DE,则CD 等于 A. 425 B. 322C.47 D. 35 2如图所示,已知△ABC 中,∠C=90°,AB 的垂直平分线交BC 于M,交AB 于N,若AC=4,MB=2MC,求AB 的长. 3如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F,若△ABF 的面积为30,求折叠的△AED 的面积 4如图,在长方形ABCD 中,将△ABC 沿AC 对折至△AEC 位置,CE 与AD 交于点F; ①试说明:AF=FC ; ②如果AB=3,BC=4,求AF 的长5如图2所示,将长方形ABCD 沿直线AE 折叠,顶点D 正好落在BC 边上F 点处,已知CE=3cm,AB=8cm,则图中阴影部分面积为_______.6如图,将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E,交BC 于F,边AB 折叠后与BC 边交于点G;如果M 为CD 边的中点, 求证:DE :DM :EM=3:4:5勾股定理 参考答案一、探索勾股定理1C 2D3没有确定斜边的情况下,需要先确定斜边;6或4124根据非负数的性质,b=4和0962=+-a a ,解得a=3,根据勾股定理,斜边=55这类型题目分别以直角三角形三边所作的同类型图形,如正多边形、半圆等,均满足如图中所示S1=S2+S3,S3=9π625 710, 12 8C,斜边AB=10 94,根据全等三角形和勾股定理,S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=1+3=4 10s =(a +b )2=4×12ab +c 2,结论: a 2+b 2=c 211S =12(a +b )(a +b )=2×12ab +c 2结论: a 2+b 2=c 212h=9+√92+122=9+15=24 m 1310 m基础检测1、B2、A,解:(a +b)2=a 2+b 2+2ab ,解得:12ab =243、113, 28, 36, 84、72π5、12,16解:根据题意,本题中直角三角形三边关系为3: 4: 5,三边分别为3x, 4x, 5x,5x=206、作如下辅助图:BD=CE=10,AB=8,BC=2,AC=6根据勾股定理:AD=6, AE=8DE=AE-AD=8-6=2 m 培优突破1B23 cm,注意翻折构造全等,勾股定理 312 m 4C,如右图 525或7,在没有确定直角或斜边的情况下,需要讨论确定斜边;625 ,AB 一定是直角边,想想:BC 是否一定是斜边呢BC 边上的高为12,不是15,所以BC 一定是斜边712, 解:设DC=y,根据勾股定理有:AC2=AB2−(BD+y)2=AD2−y2,即202−(7+y)2=152−y2解得:y=9AC=1287, 解:作AE⊥BC与E,设BD=X则AE=12DE=16-xDC=32-x如图,根据勾股定理有:AD2=AE2+DE2=DC2−AC2即AD2=122+(16−x)2=(32−x)2−202解得:x = 7培优训练1、A,三角形的面积计算2、B3、B,4、A,5、C6、D,如右图,BC的长21或97、C 8、A 9、C 10、C11、B,充分利用完全平方公式与勾股定理的证明12、4 13、√514、连接AD, 则△BDE≌△ADF, 则△ADE ≌△CDF,则AE=CF=5,AF=BE=12,∴EF=13二、勾股定理的逆定理典型题答案1D 2C 3 D 4C5C 6C7直角三角形解:a2+b2+c2+200=12α+16b+20c(a2−12α+36)+(b2−16b+64)+c2−20c+100=0(α−6)2+(b−8)2+(c−10)2=0所以:a=6, b=8, c=108直角三角形;分析:设三边分别为a,b,c,有a+b+c=5+12+c=17+c,根据条件有:{17+c是3的倍数c为奇数12−5<c<12+5(三边关系)解得:c=13,所以根据勾股定理的逆定理,为Rt△9 ①90°,②30°三、勾股定理的应用1、与图形有关的计算1 2+2√32 √5354设:正方形的边长为a方案一:S=3a方案二:S=3a方案三:S=2√2a方案四:S=1+√3a ,分析:FH=√36a , BF=√33,EF=a−√33,所以:方案四最节省电线2、航海问题130 2CD=6√3,无暗礁风险3①台风中心经过16h从B点移动到D点②14h内撤离才可脱离危险3、网格问题1D2A 3B 4如图:不唯一4、折叠问题1C 283DE=X,则在直角△EFC中:FG=1,EF=X, EC=5-X,有:x2=12+(5−x)c2解得:x=135, S△AED=4①提示:角平分线+平行线,构造等腰模型②设AF=X,则x2=(4−x)2+32,解得:x=25/85306证明提示:设:DM=X, DE=y,则:正方形边长为2x,AE=2x—y,满足:x2+y2=(2x−y)2,解得:3x=4y., 则可设:y=3k,x=4x,则正方形变成为8k,则AE=5k,所以:DE:DM:EM=3K:4K:5K ,即:DE:DM:EM=3:4:5。
3.1勾股定理(七大题型)(解析版)

(苏科版)八年级上册数学《第3章 勾股定理》3.1 勾股定理●勾股定理: 直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.◆1、勾股定理的应用条件:勾股定理只适用于直角三角形;◆2、勾股定理揭示的是直角三角形三边的关系,已知直角三角形中的任意两边可以求出第三边.◆3、勾股定理的几种变形式:勾股定理将“数”与“形”联系起来,体现了直角三角形三边之间的等量关系.如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,则a 2 + b 2 = c 2、 a 2 = c 2 - b 2、b 2 = c 2 - a 2;22b a c +=、22b c a -=、22a c b -=.【拓展】◎1、锐角三角形的三边关系是:在锐角三角形中,若三边长分别为a ,b ,c ,其中c 为最大边,则a 2+b 2>c 2.◎2、钝角三角形的三边关系是:在钝角三角形中,若三边长分别为a ,b ,c ,其中c 为最大边,则a 2+b 2<c 2.●通过拼图证明勾股定理的思路:(1)图形经过割补拼接后,只要没有重叠、没有空隙,面积就不会改变.(2)根据同一种图形的面积的不同表示方法列出等式.(3)利用等式性质变化验证结论成立,即拼出图形→写出图形面积的表达式→找出等量关系→恒等变形→推导命题结论.●下面列举几种证明方法:◆1、“赵爽弦图”证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=12ab×4+(b﹣a)2,化简得:a2+b2=c2.◆2、我国数学家邹元治的证明方法证明:在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+12ab×4,化简得:a2+b2=c2.◆3、美国第二十任总统伽菲尔德的“总统证法”证明:在图3中,梯形的面积等于三个直角三角形的面积的和.即12(a+b)(a+b)=12ab×2+12c2,化简得:a2+b2=c2.【例题1】在直角三角形中,两条直角边的长分别为9和12,则斜边的长为 .【分析】根据勾股定理直接求出斜边的长即可.【解答】解:∵在直角三角形中,两条直角边的长分别为9和12,=15.故答案为:15.【点评】本题主要考查了勾股定理,解题的关键是熟练掌握勾股定理,如果直角三角形的两条直角边长为a、b,斜边长为c,那么a2+b2=c2.【变式1-1】已知△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)如果a=7,b=24,求c;(2)如果a=12,c=13,求b.【分析】(1)利用勾股定理计算c=(2)利用勾股定理计算b=【解答】解:(1)在Rt△ABC中,∠C=90°,由勾股定理得:c===25;(2)在Rt△ABC中,由勾股定理得:b===5.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.注意勾股定理应用的前提条件是在直角三角形中.【变式1-2】(2022秋•东方期末)如图,在△ABC 中,AB =AC =10,BC =12,AD 平分∠BAC ,则AD 等于( )A .6B .7C .8D .9【分析】根据等腰三角形的三线合一得到AD ⊥BC ,BD =DC =12BC =6,根据勾股定理计算,得到答案.【解答】解:∵AB =AC ,AD 平分∠BAC ,∴AD ⊥BC ,BD =DC =12BC =6,在Rt △ABD 中,AD 8,故选:C .【点评】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.【变式1-3】(2022秋•新泰市期末)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,则点C 到直线AB 的距离是( )A .185B .3C .125D .2【分析】作CD⊥AB于点D,根据勾股定理可以求得AB的长,然后根据面积法,可以求得CD的长.【解答】解:作CD⊥AB于点D,如右图所示,∵∠C=90°,AC=3,BC=4,∴AB=5,∵AC⋅BC2=AB⋅CD2,∴3×42=5CD2,解得CD=2.4,故选:C.【点评】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,画出相应的图形,利用勾股定理和面积法解答.【变式1-4】(2021春•连州市期中)如图所示,AB⊥BC,DC⊥BC,E是BC上一点,∠BAE=∠DEC=60°,AB=3,CE=4,则AD等于( )A.10B.12C.24D.48【分析】本题主要考查勾股定理运用,解答时要灵活运用直角三角形的性质.【解答】解:∵AB⊥BC,DC⊥BC,∠BAE=∠DEC=60°∴∠AEB=∠CDE=30°∵30°所对的直角边是斜边的一半∴AE=6,DE=8又∵∠AED =90°根据勾股定理∴AD =10.故选:A .【点评】解决此类题目的关键是熟练掌握运用直角三角形两个锐角互余,30°所对的直角边是斜边的一半,勾股定理的性质.【变式1-5】如图,在△ABC 中,∠ACB =90°,AC =3,BC =4,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,连接CD ,则CD 的长为 .【分析】根据勾股定理可以求得AB 的长,然后根据线段垂直平分线的判定方法可以得到MN 为线段AB 的垂直平分线,再根据直角三角形斜边上的中线等于斜边的一半,即可得到CD 的长.【解答】解:∵∠ACB =90°,AC =3,BC =4,∴AB ==5,连接NA ,NB ,MA ,MB ,如图所示,∵分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,∴NA =NB ,MA =MB ,∴直线MN 垂直平分AB ,∵直线MN 交AB 于点D ,∴点D 为AB 的中点,∴CD 为Rt △ACB 斜边上的中线,∴CD =12AB =52,故答案为:52.【点评】本题考查勾股定理、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-6】(2022春•河北区期末)如图,在△ABC中,CD⊥AB于点D,AC=20,CD=12,BD=9.求AB与BC的长.【分析】根据勾股定理求出BC即可;根据勾股定理求出AD,求出AB即可.【解答】解:∵CD⊥AB,AC=20,CD=12,BD=9,∴∠ADC=∠BDC=90°,在Rt△CDB中,由勾股定理得:BC=15,在Rt△ADC中,由勾股定理得:AD=16,∴AB=AD+DB=16+9=25.答:AB的长为25,BC的长为15.【点评】本题考查了勾股定理的应用,关键是对定理的掌握和运用.【变式1-7】如图,在△ABC中,AC=8,BC=6,CE是AB边上的中线,CD是AB边上的高,且AE=5.(1)求CD的长;(2)求DE的长.【分析】(1)先证明三角形ABC是直角三角形,再根据等面积法即可求解;(2)根据勾股定理求出BD的长即可求解.【解答】解:(1)∵CE是AB边上的中线,∴AE=BE=5,∴AB=10,又∵AC=8,BC=6,∴AC2+BC2=82+62=100=AB2,∴△ABC是直角三角形,又∵CD是△ABC的高,∴S△ABC=12AC⋅BC=12AB⋅CD,∴CD=AC⋅BCAB=4.8;(2)在Rt△BDC中,由勾股定理得,BD=3.6,∴DE=BE﹣BD=5﹣3.6=1.4.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.【例题2】勾股定理的验证方法很多,用面积(拼图)证明是最常见的一种方法.如图所示,一个直立的长方体在桌面上慢慢地倒下,启发人们想到勾股定理的证明方法,设AB=c,BC=a,AC=b,证明中用到的面积相等关系是( )A.S△ABC+S△ABD=S△AFG+S△AEFB.S梯形BCEF=S△ABC+S△ABF+S△AEFC.S△BDH=S△FGHD.S梯形BCEF=S△ABC+S△ABF+S△AEF+S△FGH【分析】通过用两种方法计算梯形BCEF的面积即可证明勾股定理.【解答】解:∵矩形ACBD旋转得出矩形AGFE,∴△ABC≌△FAE,∴AB=AF,∠BAC=∠AFE,∵∠AFE+∠EAF=90°,∴∠BAC+∠EAF=90°,∴△ABF是等腰直角三角形,由题意知:S梯形BCEF =12(a+b)•(a+b)=12(a+b)2=12a2+ab+12b2,S△ABC+S△ABF+S△AEF=12ab+12ab+12c2=ab+12c2,∴12a2+ab+12b2=ab+12c2,∴a2+b2=c2,故选:B.【点评】本题主要考查了勾股定理的证明,等腰直角三角形的判定,表示出图形面积的不同表达形式,建立等量关系是解题的关键.【变式2-1】(2022春•三门峡期末)我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明.古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用.下面四幅图中,不能证明勾股定理的是( )A .B .C .D .【分析】由正方形面积公式、三角形面积公式以及梯形面积公式分别对各个选项进行判断即可.【解答】解:A 、大正方形的面积为:c 2,也可看作是4个直角三角形和一个小正方形组成,则其面积为:12ab ×4+(b ﹣a )2=a 2+b 2,∴a 2+b 2=c 2,故A 选项能证明勾股定理;B 、大正方形的面积为:(a +b )2,也可看作是2个矩形和2个小正方形组成,则其面积为:a 2+b 2+2ab ,∴(a +b )2=a 2+b 2+2ab ,∴B 选项不能证明勾股定理.C 、大正方形的面积为:(a +b )2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:12ab ×4+c 2=2ab +c 2,∴(a +b )2=2ab +c 2,∴a 2+b 2=c 2,故C 选项能证明勾股定理;D、梯形的面积为:12(a+b)(a+b)=12(a2+b2)+ab,也可看作是2个直角三角形和一个等腰直角三角形组成,则其面积为:12ab×2+12c2=ab+12c2,∴12(a2+b2)+ab=ab+12c2,∴a2+b2=c2,故D选项能证明勾股定理;故选:B.【点评】本题考查了勾股定理的证明、正方形面积公式、三角形面积公式以及梯形面积公式,熟练掌握内弦图、外弦图是解题的关键.【变式2-2】“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为( )A.9B.6C.4D.3【分析】分析题意,首先根据已知条件易得,中间小正方形的边长为:a﹣b;接下来根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,从图形中可得,大正方形的面积是4个直角三角形的面积与中间小正方形的面积之和,∴4×12ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3.故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式.【变式2-3】(2022春•高安市期中)勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(a>b),则下列说法:①a2+b2=25,②a﹣b=1,③ab=12,④a+b=7.正确的是( )A.①②B.①②③C.①②④D.①②③④【分析】根据勾股定理和大正方形面积为25,可以判断①;根据小正方形面积为1,可以判断②;根据大正方形面积为25,小正方形面积为1,可以得到四个直角三角形的面积,从而可以得到ab的值,即可判断③;根据完全平方公式可以判断④.【解答】解:由图可得,a2+b2=c2=25,故①正确;∵小正方形面积为1,∴小正方形的边长为1,∴a﹣b=1,故②正确;∵大正方形面积为25,小正方形面积为1,∴12ab=(25﹣1)÷4,解得ab=12,故③正确;∵a2+b2=25,ab=12,∴(a+b)2=a2+2ab+b2=49,∴a+b=7,故④正确;故选:D.【点评】本题考查勾股定理的证明、正方形的性质、直角三角形的面积,利用数形结合的思想解答是解答本题的关键.【变式2-4】如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC =6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是( )A .36B .76C .66D .12【分析】由题意∠ACB 为直角,利用勾股定理求得外围中一条边,又由AC 延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x ,则x 2=122+52=169,所以x =13,所以这个风车的外围周长是:(13+6)×4=76.故选:B .【点评】此题考查了勾股定理的证明,本题是勾股定理在实际情况中的应用,并注意隐含的已知条件来解答此类题.【变式2-5】用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题,这种方法称为等面积法,这是一种重要的数学方法,请你用等面积法来探究下列三个问题:(1)如图1是著名的“赵爽弦图”,由四个全等的直角三角形拼成,请用它验证勾股定理c 2=a 2+b 2.(2)如图2,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高,AC =4,BC =3,求CD 的长度;(3)如图1,若大正方形的面积是13,小正方形的面积是1,求(a +b )2的值(a <b ).【分析】(1)根据大正方形的面积的两种表示方法求解即可;(2)根据直角三角形的面积公式求解即可;(3)根据小正方形的为1得出2ab =12,再结合c 2=13即可求解.【解答】解:(1)如图1,大正方形的面积=c 2=4×12ab +(b ―a )2,整理得,c2=a2+b2;(2)在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵S△ABC=12AC⋅BC=12AB⋅CD,∴CD=AC⋅BCAB=125;(3)∵大正方形的面积是13,小正方形的面积是1,∴c2=13,(b﹣a)2=1,∴a2+b2﹣2ab=1,∴2ab=12,∴(a+b)2=a2+b2+2ab=13+12=25,即(a+b)2的值为25.【点评】本题考查了勾股定理的证明,正确表示出大正方形的面积的两种表示方法是解题的关键.【变式2-6】(2022春•巢湖市校级期中)学习勾股定理之后,同学们发现证明勾股定理有很多方法.某同学提出了一种证明勾股定理的方法:如图1点B是正方形ACDE边CD上一点,连接AB,得到直角三角形ACB,三边分别为a,b,c,将△ACB裁剪拼接至△AEF位置,如图2所示,该同学用图1、图2的面积不变证明了勾股定理.请你写出该方法证明勾股定理的过程.【分析】连接BF,由图1可得正方形ACDE的面积为b2,由图2可得四边形ABDF的面积为三角形ABF 与三角形BDF面积之和,再利用正方形ACDE的面积与四边形ABDF的面积相等即可证明.【解答】证明:如图,连接BF,∵AC =b ,∴正方形ACDE 的面积为b 2,∵CD =DE =AC =b ,BC =a ,EF =BC =a ,∴BD =CD ﹣BC =b ﹣a ,DF =DE +EF =a +b ,∵∠CAE =90°,∴∠BAC +∠BAE =90°,∵∠BAC =∠EAF ,∴∠EAF +∠BAE =90°,∴△BAE 为等腰直角三角形,∴四边形ABDF 的面积为:12c 2+12(b ﹣a )(a +b )=12c 2+12(b 2﹣a 2),∵正方形ACDE 的面积与四边形ABDF 的面积相等,∴b 2=12c 2+12(b 2﹣a 2),∴b 2=12c 2+12b 2―12a 2,∴12a 2+12b 2=12c 2,∴a 2+b 2=c 2.【点评】本题考查勾股定理的证明,解题的关键是熟练掌握勾股定理的证明方法,一般利用拼图的方法,再利用面积相等证明.【例题3】如图,当正方形B的面积为64,正方形C的面积为100时,正方形A的面积为( )A.36B.25C.16D.6【分析】直接根据勾股定理进行解答即可.【解答】解:由图可知,△DEF是直角三角形,∴DE2+DF2=EF2,∵正方形B的面积=DF2,正方形C的面积=EF2,正方形A的面积=DF2,正方形B的面积为64,正方形C的面积为100,∴正方形A的面积=100﹣64=36.故选:A.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.【变式3-1】(2022秋•渠县期末)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D的面积依次为4、6、18,则正方形B的面积为( )A.8B.9C.10D.12【分析】根据勾股定理、正方形的面积公式计算即可.【解答】解:由勾股定理,得正方形E的面积=正方形C的面积+正方形D的面积,正方形E的面积=正方形A的面积+正方形B的面积,则正方形B的面积=18﹣6﹣4=8,故选:A.【点评】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.【变式3-2】(2022秋•南京期末)如图,在等腰Rt△ACB中,∠ACB=90°,AC=BC,且AB=AB、AC、BC为直径画半圆,其中所得两个月形图案AFCD和BGCE(图中阴影部分)的面积之和等于( )A.8B.4C.2D.【分析】由等腰三角形的性质及勾股定理可求解AC=CB=2,进而可求得S△ACB=2,再利用阴影部分的面积=以AC为直径的圆的面积+△ACB的面积﹣以AB为直径的半圆的面积计算可求解.【解答】解:在等腰Rt △ACB 中,∠ACB =90°,AC =BC ,AB =∴AC 2+BC 2=AB 2=8,∴AC =CB =2,∴S △ACB =12AC •BC =2,∴S 阴影=π(AC 2)2+S △ACB ―12π(AB 2)2=π+2﹣π=2,故选:C .【点评】本题主要考查等腰直角三角形,勾股定理,理清阴影部分的面积=以AC 为直径的圆的面积+△ACB 的面积﹣以AB 为直径的半圆的面积是解题的关键.【变式3-3】如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中S A =4,S B =2,S c =2,S D =1,则S =( )A .25B .20C .9D .5【分析】根据正方形的性质和勾股定理的几何意义解答即可.【解答】解:如图,根据勾股定理的几何意义,可知:S=S F+S G=S A+S B+S C+S D=4+2+2+1=9;即S=9;故选:C.【点评】本题考查了正方形的性质、勾股定理的几何意义,关键是掌握两直角边的平方和等于斜边的平方.【变式3-4】如图,Rt△ABC中,分别以这个三角形的三边为边长作正方形,面积分别记为S1、S2、S2.如果S2+S1﹣S3=18,则阴影部分的面积为 .【分析】由勾股定理得出S2﹣S3=S1,再根据S2+S1﹣S3=18即可得出S1的值,即为图中阴影部分的面积.【解答】解:由勾股定理得,BC2﹣AC2=AB2,即S2﹣S3=S1,∵S2+S1﹣S3=18,∴S 1=9,由图形可知,阴影部分的面积=12S 1,∴阴影部分的面积=92,故答案为:92.【点评】本题考查了勾股定理,由勾股定理得出S 2﹣S 3=S 1,是解题的关键.【变式3-5】(2022秋•绿园区校级期末)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为16cm ,则正方形A ,B ,C ,D 的面积之和为 cm 2.【分析】如图根据勾股定理有S 正方形2+S 正方形3=S 正方形1,S 正方形C +S 正方形D =S 正方形3,S 正方形A +S 正方形B =S 正方形2,等量代换即可求四个小正方形的面积之和.【解答】解:如右图所示,根据勾股定理可知,S 正方形2+S 正方形3=S 正方形1,S 正方形C +S 正方形D =S 正方形3,S 正方形A +S 正方形B =S 正方形2,∴S 正方形C +S 正方形D +S 正方形A +S 正方形B =S 正方形2+S 正方形3=S 正方形1=162=256(cm 2).故答案为:256.【点评】本题考查了勾股定理的几何意义,关键是掌握两直角边的平方和等于斜边的平方.【变式3-6】如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点E.(1)求证:∠DAC=∠BCE;(2)如果AC=BC.①求证:CD=BE;②若设△ADC的三边分别为a、b、c,试用此图证明勾股定理.【分析】(1)根据直角三角形的定义和垂直的定义,可以证明结论成立;(2)①根据AAS可以证明结论成立;②根据S梯形ADEB=S△ADC+S△ACB+S△CEB,代入字母计算即可证明结论成立.【解答】证明:(1)∵∠ACB=90°,AD⊥DE于点D,∴∠DAC+∠ACD=90°,∠ADC+∠BCE=90°,∴∠DAC=∠BCE;(2)①∵AD⊥DE于点D,BE⊥DE于点E,∴∠ADC=∠CEB=90°,由(1)知:∠DAC=∠BCE,在△ADC和△CEB中,∠ADC=∠CEB∠DAC=∠ECB,AC=CB∴△ADC≌△CEB(AAS),∴CD=BE;②由图可知:S 梯形ADEB =S △ADC +S △ACB +S △CEB ,∴(a b )(a b )2=ab 2+c 22+ab 2,化简,得:a 2+b 2=c 2.【点评】本题考查勾股定理的证明,解答本题的关键是明确题意,利用数形结合的思想解答.【例题4】(2022秋•门头沟区期末)已知:如图,在△ABC 中,AB =AC =5,BC =8.求BC 边上的高的长.【分析】过点A 作AD ⊥BC 于点D ,根据等腰三角形的性质求出BD =12BC =4,根据勾股定理求出AD 的长即可.【解答】解:如图,过点A 作AD ⊥BC 于点D ,∵AB =AC =5,BC =8,AD ⊥BC ,∴BD =CD =12BC =4,∴AD==3,即BC 边上的高的长为3.【点评】此题考查了等腰三角形的性质、勾股定理等知识,熟练掌握等腰三角形的性质、勾股定理是解题的关键.【变式4-1】如图,在△ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E两点,若BE=5,CE=3,则AC的长为 .【分析】先根据线段垂直平分线的性质可得BE=AE=5,然后在Rt△ACE中,利用勾股定理进行计算,即可解答.【解答】解:连接AE,∵DE垂直平分AB,∴BE=AE=5,∵∠C=90°,CE=3,∴AC==4,故答案为:4.【点评】本题考查了勾股定理,线段垂直平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式4-2】(2021春•齐齐哈尔月考)已知:△ABC中,AC=2,∠C=30°,∠B=45°,求AB和BC的长.【分析】作AD⊥BC,得∠ADC=∠ADB=90°,根据勾股定理和直角三角形30°所对的直角边是斜边的一半计算即可.【解答】解:作AD⊥BC,∴∠ADC=∠ADB=90°,∵∠C=30°,∴AD=12AC=1,在Rt△ACD,根据勾股定理得,CD=∵∠B=45°,∴∠DAB=∠B=45°,∴BD=AD=1,则BC=1∴AB=【点评】本题考查了解直角三角形,熟练掌握勾股定理和直角三角形中30°所对的直角边是斜边的一半,这两个定理的应用是解题关键.【变式4-3】(2022春•阳新县期末)△ABC中,AB=13,AC=15,高AD=12,则BC的长为( )A.14B.4C.14或4D.以上都不对【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC的长为DC﹣BD=9﹣5=4.故选:C.【点评】本题考查了勾股定理,把三角形边的问题转化到直角三角形中用勾股定理解答.【变式4-4】如图,Rt△ABC中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.连接CD,在点D的运动过程中,当△ACD 为等腰三角形时,AD 的长为 .【分析】分三种情况讨论,利用等腰三角形的性质,分别求解即可解决问题.【解答】解:①当AD =AC 时,△ACD 为等腰三角形,∵AC =15,∴AD =AC =15.②当CD =AD 时,△ACD 为等腰三角形,∵CD =AD ,∴∠DCA =∠CAD ,∵∠CAB +∠B =90°,∠DCA +∠BCD =90°,∴∠B =∠BCD ,∴BD =CD ,∴CD =BD =DA =12.5;③当CD =AC 时,△ACD 为等腰三角形,如图,作CH ⊥BA 于点H ,则12×AB ×CH =12×AC ×BC ,∵AC =15,BC =20,AB =25,∴CH =12,在Rt △ACH 中,AH =9,∵CD =AC ,CH ⊥BA ,∴DH =HA =9,∴AD =18,综上所述:AD 的值为15或12.5或18.故答案为:15或12.5或18.【点评】本题考查解直角三角形的应用,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.【例题5】如图,阴影部分表示以Rt △ABC 的各边为直径的三个半圆所组成的两个新月形,面积分别记作S 1和S 2.若S 1+S 2=7,AB =6,则△ABC 的周长是( )A .12.5B .13C .14D .15【分析】根据勾股定理得到AC 2+BC 2=AB 2,根据扇形面积公式、完全平方公式计算即可.【解答】解:由勾股定理得,AC 2+BC 2=AB 2,∵S 1+S 2=7,∴12×π×(AC 2)2+12×π×(BC 2)2+12×AC ×BC ―12×π×(AB 2)2=7,∴AC ×BC =14,∴(AC +BC )2=AC 2+BC 2+2AC •BC =62+2×14=64,∴AC +BC =8(负值舍去),∴△ABC 的周长=AB +AC +BC =8+6=14,故选:C .【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.【变式5-1】如图,三角形ABC中,∠C=90°,∠BAC的平分线交BC于D,DE⊥AB于E,已知CD=3,BD=5,求三角形ABC的周长.【分析】根据角平分线的性质得到DE=CD=3,根据勾股定理求出BE的长,再根据勾股定理列出方程,解方程得到答案.【解答】解:∵AD是∠BAC的平分线,∠C=90°,DE⊥AB,∴DE=CD=3,AC=AE,∵DE⊥AB,DE=3,BD=5,根据勾股定理得,BE=4,∴AC2+82=(AE+4)2,解得AE=6,则AC=6,∴三角形ABC的周长=AC+AB+BC=24.【点评】本题考查的是角平分线的性质和勾股定理的应用,掌握角的平分线上的点到角的两边的距离相等是解题的关键.【变式5-2】如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于E,若AB=10cm,AC=6cm,则△BED周长为( )A.10cm B.12cm C.14cm D.16cm【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,可求出BE,再利用勾股定理列式求出BC,最后根据三角形的周长列式计算即可得解.【解答】解:∵AD是∠CAB的平分线,∠C=90°,DE⊥AB于E,∴CD=DE,在Rt△ACD和Rt△AED中,AD=ADDC=DE,∴Rt△ACD≌Rt△AED(HL),∴AC=AE=6,∴BE=AB﹣AE=10﹣6=4,由勾股定理得,BC==8,∴△BDE的周长=BE+BD+CD=BE+BD+CD=BE+BC=4+8=12(cm).故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,勾股定理,熟记性质并求出三角形全等是解题的关键.【变式5-3】在四边形ABCD中,∠ABC=∠ADC=90°,连接AC,点E为AC的中点,连接BE,DE.若DE=132,BC=12,则△ABE的周长为 .【分析】根据直角三角形斜边上的中线等于斜边的一边得到AC=2BE=2DE=2AE=13,再利用勾股定理求出AB=5即可得到答案.【解答】解:∵∠ABC=∠ADC=90°,点E为AC的中点,∴AC=2BE=2DE=2AE=13,∵BC=12,∴AB=5,∴△ABE的周长为AE+BE+AB=5+2×132=18,故答案为:18.【点评】本题主要考查了直角三角形斜边上的中线的性质,勾股定理,熟知直角三角形斜边上的中线等于斜边的一半是解题的关键.【例题6】(2022春•范县期中)如图,正方形ABCD中,AE⊥BE,且AE=3,AB=5,则阴影部分的面积是( )A.13B.15C.18D.19【分析】利用正方形的面积减去三角形的面积即可求出阴影部分的面积.【解答】解:∵AE⊥BE,且AE=3,AB=5,∴BE=4,∴S△ABE=12AE⋅BE=12×3×4=6,∵四边形ABCD是正方形,AB=5,∴S正=5×5=25,∴S阴影=S正﹣S△ABE=25﹣6=19.故选:D.【点评】本题主要考查正方形的性质与勾股定理,解题的关键是用割补法求阴影部分的面积.【变式6-1】如图,在△ABC中,AC=BC=17,AB=16,求△ABC的面积.【分析】过C作CD⊥AB于D,根据等腰三角形的性质和勾股定理,以及三角形的面积公式即可得到结论.【解答】解:过C作CD⊥AB于D,∵AC=BC=17,AB=16,∴AD=BD=12AB=8,∵AD2+CD2=AC2,∴CD=15,∴S△ABC =12AB•CD=12×16×15=120.【点评】本题考查了勾股定理,三角形的面积的计算,等腰三角形的性质,熟练掌握勾股定理是解题的关键.【变式6-2】(2022春•桐城市期末)如图2,在△ABC 中,AC =8,AB =4,∠BAC =120°,求△ABC 的面积.【分析】过点C 作CD ⊥AB ,交BA 的延长线于点D ,由勾股定理求出CD 的长,利用三角形面积公式可求出答案.【解答】解:过点C 作CD ⊥AB ,交BA 的延长线于点D ,∵∠BAC =120°,∴∠DAC =60°,∴∠ACD =30°,∵AC =8,∴AD =12AC =4,∴CD =∴S △ABC =12AB •CD =12×=【点评】此题主要考查了勾股定理,三角形面积公式,求得出AB ,CD 的长是解题的关键.【变式6-3】如图在四边形ABCD 中,∠ABC =120°,AB ⊥AD ,BC ⊥CD ,AB =4,CD =5,求该四边形的面积.【分析】延长DA 和CB 交于O ,求出∠O =30°,根据含30度角的直角三角形性质求出OB 和OD ,根据勾股定理求出OA 和OC ,根据三角形面积公式求出即可.【解答】解:延长DA 和CB 交于O ,∵AB ⊥AD ,BC ⊥CD ,∴∠DAB =∠C =∠OAB =90°,∵∠D =60°,∴∠O =30°,∵AB =4,DC =5,∴OB =2AB =8,OD =2DC =10,由勾股定理得:OA ==OC =∴四边形ABCD 的面积是:S △OCD ﹣S △OAB =12×OC ×CD ―12×OA ×AB =12×5―12×【点评】本题考查了含30度角的直角三角形性质,勾股定理,三角形的面积的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.【变式6-4】如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =4,BD =10,BC =8,求四边形ABCD 的面积.【分析】过点D 作DE ⊥BA 的延长线于点E ,利用勾股定理和角平分线的性质可得出DE =DC =6,再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD 可求出四边形ABCD 的面积.【解答】解:过点D 作DE ⊥BA 的延长线于点E ,如图所示.∵∠BCD=90°,BD=10,BC=8,∴BD=6,∵BD平分∠ABC,∴DE=DC=6,∴S四边形ABCD =S△ABD+S△BCD,=12AB•DE+12BC•CD,=12×4×6+12×8×6,=36.【点评】本题考查了角平分线的性质以及三角形的面积,利用角平分线的性质,找出DE=8是解题的关键.【例题7】如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.【分析】(1)根据勾股定理AB2+BC2=AC2,得出AB2+BC2=2AB2,进而得出AB=BC;(2)首先证明CDEF是矩形,再根据△BAE≌△CBF,得出AE=BF,进而证明结论.【解答】证明:(1)连接AC.∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2,∴BC2=AB2,∵AB>0,BC>0,∴AB=BC.(2)过C作CF⊥BE于F.∵BE⊥AD,CF⊥BE,CD⊥AD,∴∠FED=∠CFE=∠D=90°,∴四边形CDEF是矩形.∴CD=EF.∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴在△BAE与△CBF中∴∠AEB=∠BFC ∠BAE=∠CBF AB=BC,∴△BAE≌△CBF.(AAS)∴AE=BF.∴BE=BF+EF=AE+CD.【点评】此题主要考查了勾股定理的应用以及三角形的全等证明,根据已知得出四边形CDEF是矩形以及△BAE≌△CBF是解决问题的关键.【变式7-1】已知AD是△ABC的中线,∠C=90°,DE⊥AB于点E,试说明AC2=AE2﹣BE2.【分析】根据直角三角形的性质和勾股定理可得AE2﹣BE2=(AD2﹣DE2)﹣(BD2﹣DE2)=AD2﹣BD2=AD2﹣CD2=AC2,从而证明结论.【解答】证明:∵AD是△ABC的中线,∴BD=CD.∵∠C=90°,DE⊥AB于E,∴AE2﹣BE2=(AD2﹣DE2)﹣(BD2﹣DE2)=AD2﹣BD2=AD2﹣CD2=AC2.故AC2=AE2﹣BE2.【点评】考查了直角三角形的性质和勾股定理,注意线段相互间的转化.【变式7-2】已知,如图,△ABC中,AB>AC,AD为BC边上的高,M是AD边上任意一点.求证:AB2﹣AC2=MB2﹣MC2.。
苏科版数学 八年级上册 3.3 勾股定理的简单应用 课后练习题

一、单选题1. 如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米2. 如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用()A.L1B.L2C.L3D.L43. 一架5m长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角3m,如果梯子的顶端沿墙下滑1m,那么梯脚移动的距离是()A.0.5m B.0.8m C.1m D.1.2m4. 如图,在△ABC中,CD⊥AB于D,若AD∶BD=5∶2,AC=17,BC=10,则BD 的长为()A.4 B.5 C.6 D.85. 在我国古代数学著作《九章算术》中记载了一个有趣的问题,这个问题的意思是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与一边垂直的方向拉向岸边,它的顶端恰好到达岸边的水面.则这根芦苇长为()A.12尺B.13尺C.6尺D.7尺二、填空题6. 如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行_____海里就开始有触礁的危险.7. 一个直角三角形的三边长为三个连续的整数,则这个直角三角形的斜边长为___________.8. 《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短,横之不出四尺,纵之不出二尺,斜之适出,问户斜几何,意思是:一根竿子横放,竿比门宽长出四尺;竖放,竿比门高长出二尺,斜放恰好能出去,则竿长是______尺.三、解答题9. 本题分为A,B两题,可以自由选择一题,你选择题A:如图,小明想知道学校旗杆的高度,他将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端6m处,发现此时绳子底端距离打结处2m,则旗杆的高度为多少米?B:如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两只猴子所经路程都是16m,求树高AB.10. 某校八年级学生准备测量校园人工湖的深度,他们在保证安全的情况下把一根竹竿AB垂直插到离湖边3dm的水底(即),只见竹竿高出水面OC的距离,把竹竿的顶端拉向湖边(底端不变),竿顶A和湖沿的水面C处平齐(即),求湖水的深度OB和竹竿AB的长.11. 如图,A 市气象站测得台风中心在 A 市正东方向800 千米的B处,以50千米/时的速度向北偏西60的 BF方向移动,距台风中心500千米范围内是受台风影响的区域.(1)A市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A市受这次台风影响,那么受台风影响的时间有多长?。
完整版勾股定理典型例题详解及练习附答案

典型例题知识点一、直接应用勾股定理或勾股定理逆定理例1:如图,在单位正方形组成的网格图中标有 AB CD EF GH 四条线段, 其中能构成一个直角三角形三边的线段是( B. AB 、EF 、 D. AB 、G1) sa 倾 2) 解題患跖 解答过程=屮在gJ^EAF 中.Arm, AE=3,根据勾股定理,得EF = Q 苗十上尸'* =品+F =同理 AE = 2忑、CrjV= ^/13| ID = 2爲©计算发现(心r (2罷¥ =(届厂即血U E 严=閒士,根据 勾股定理的逆左理得到l^ADs ET, GH 为辺的三角形是直®三垢形•故选 B.屮解題后ffi 思专.*L 勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形°因此5解题时一定更认真分析题目所给条皆,看是否可用匈股定理来解口 : 2. 在运用勾股定理时,要正确分析题目所给的条件,不要习惯性地认为 “匚"就是斜迫而“固执”地运用公式二/十迁 其冥,同样是厶, 丄C 不—定就等于g (K 疋不一定就是斜过,AA3C 不一定就是直®三® 孰*)GHCD EFA. CD 、EF 、GH C. AB 、CD GH +J本题考查幻股定理及勾股宦理的逆定理.4 可利用勾般定理直接求出各边长,再e 行判斷.43. 直角三角形的判定条件与勾股定理是S 逆的・区别在于勾股定理的运 用是一个从'「形''(一个三角形是直角三角形)到 嘟(十沪) 的过程,而直甬三«形的利定是一个从 懺段【一个三角影的三辺S 足 匚2 =亍+色询条件)到“形-1这个三甬形是直角三角形)的过程.44. 在应用勾股定理解题时,聲全®地琴虑间题.注意间题中存在的多种 可能性,避免漏辭.“W 1;如图,有一块直角三甬形紙椅屈C,两貢角迫月^孔皿3*沁. 现将直角边AC 沿直绘AD 折盞 便它落在斜边上.且点C 落到点E 处, fflCT 等于()4扎2 cm 1) SA 倾 本题着查勾股定理的应用仪:)龜思路,車题若直接在中运用勾股定理是无法求得仞a 匕的,因为貝知道一条边卫U 的长,由题意可知,△月CT 和△/£刀关于直 线KQ 对称,因而ZvlCD 竺△血Q ・进一歩则有 血TCMmh CL=ED, ED 丄AS,设则在Rt A ASC*中,由勾股定理可得TV A?月筋贋=1 皿,Aa=iacm,在 皿刃述中,Cio-fi ) 2= C S —X )$0 解得 益 4B.-IB 龜后的思肴:茫勾股定理说到底是一个等式,而含有未知数的等式就是方程。
第三讲 中考中的勾股定理应用

第三讲中考中的勾股定理应用【典型例题A】类型一、勾股定理及逆定理的简单应用1、已知直角三角形的两边长分别为6和8,求第三边的长.【变式】在△ABC中,AB=15,AC=13,高AD=12.求△ABC的周长.2、如图所示,△ABC中,∠ACB=90°,AC=CB,M为AB上一点.求证:.【变式】已知,△ABC中,AB=AC,D为BC上任一点,求证:.类型二、勾股定理及逆定理的综合应用3、已知如图所示,在△ABC中,AB=AC=20,BC=32,D是BC上的一点,且AD⊥AC,求BD的长.【变式】如图所示,已知△ABC中,∠B=22.5°,AB的垂直平分线交BC于D,BD=,AE⊥BC于E,求AE的长.4、如图①所示,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用表示,则不难证明.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用表示,那么之间有什么关系?(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用表示,请你确定之间的关系并加以证明.5、如果ΔABC的三边分别为,且满足,判断ΔABC的形状.类型三、勾股定理的实际应用6、如图①,一只蚂蚁在长方体木块的一个顶点A处,食物在这个长方体上和蚂蚁相对的顶点B处,蚂蚁急于吃到食物,所以沿着长方体的表面向上爬,请你计算它从A处爬到B处的最短路线长为多少?【变式】如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______.(π取3)【典型例题B】类型一、勾股定理及逆定理的应用1、如图所示,直角梯形ABCD中,AD∥BC,∠B=90°,AD=,AB=,BC,E是AB上一点,且AE=,求点E到CD的距离EF.【变式】如图所示,在△ABC中,D是BC边上的点,已知AB=13,AD=12,AC=15,BD=5,求DC的长.类型二、勾股定理与其他知识结合应用2、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC=400米,BD=200米,CD=800米,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?【变式】如图所示,正方形ABCD的AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短.求EP+BP的最小值.3、如图所示,等腰直角△ABC中,∠ACB=90°,E、F为AB上两点(E左F右),且∠ECF=45°,求证:.4、已知:如图,△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足,求AD的长.类型三、本章中的数学思想方法1.转化的思想方法:我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决.5、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长.【变式】已知凸四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,求证:2.方程的思想方法6、如图所示,已知△ABC中,∠C=90°,∠A=60°,,求、、的值.【变式】直角三角形周长为12,斜边长为5,求直角三角形的面积.【巩固练习A】一、选择题1.如图,一棵大树被台风刮断,若树在离地面3处折断,树顶端落在离树底部4处,则树折断之前高( )(1)(2)(4)A.5B.7C.8D.102.如图,从台阶的下端点B到上端点A的直线距离为( )A. B.C. D.3. 下列命题中是假命题的是()A.三个内角的度数之比为:3:4的三角形是直角三角形;B.三个内角的度数之比为::2的三角形是直角三角形;C.三边长度之比::2的三角形是直角三角形;D.三边长度之比::2的三角形是直角三角形;4. 如图所示,在△ABC中,AB=AC=5,BC=6,点E、F是中线AD上的两点,则图中阴影部分的面积是().A.6 B.12 C.24 D.305.下列三角形中,是直角三角形的是( )A.三角形的三边满足关系B.三角形的三边比为1∶2∶3C.三角形的一边等于另一边的一半D.三角形的三边为9,40,416.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价元,则购买这种草皮至少需要( )(6)(7)(8)A.450元B.225元C.150元D.300元7. 如图所示,正方形网格中的△ABC,若小方格边长为1,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对8. 已知,如图长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3B.4C.6D.12二、填空题9.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.10.若等边三角形的边长为2,则它的面积为______.11.如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC的距离是______米.(12)(13)(15)12. 下列命题中,其逆命题成立的是______________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长满足,那么这个三角形是直角三角形.13. 长为4 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______.14.在直角三角形中,一条直角边为11,另两边是两个连续自然数,则此直角三角形的周长为______.15. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是10,则其中最大的正方形的边长为______.16.如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为__________.三.解答题17. 若直角三角形两直角边的比是3:4,斜边长是20,求此三角形的面积.18.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3 千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.19.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.20. 如图,四边形ABCD是边长为9的正方形纸片,为CD边上的点,=3.将纸片沿某条直线折叠,使点B落在点处,点A的对应点为,折痕分别与AD,BC边交于点M,N.求BN的长.【巩固练习B】一、选择题1. 在△中,若,则△ABC是()A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形2. 如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°(2)(6)(8)3.在下列说法中是错误的()A.在△ABC中,∠C=∠A一∠B,则△ABC为直角三角形.B.在△ABC中,若∠A:∠B:∠C=5:2:3,则△ABC为直角三角形.C.在△ABC中,若,,则△ABC为直角三角形.D.在△ABC中,若a:b:c=2:2:4,则△ABC为直角三角形.4.若等腰三角形两边长分别为4和6,则底边上的高等于( )A. B. 或 C. D. 或5. 若三角形的三边长分别等于,则此三角形的面积为()A. B. C. D.6.如图,Rt△ABC中,∠C=90°,CD⊥AB于点D,AB=13,CD=6,则AC+BC等于( )A. 5B.C. D.7. 已知三角形的三边长为,由下列条件能构成直角三角形的是()A.B.C.D.8. 如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为()A. B. C. D. 3二、填空题9. 如图,平面上A、B两点处有甲、乙两只蚂蚁,它们都发现C处有食物,已知点C在A的东南方向,在B的西南方向.甲、乙两只蚂蚁同时从A、B两地出发爬向C处,速度都是30/min.结果甲蚂蚁用了2 min,乙蚂蚁2分40秒到达C处分享食物,两只蚂蚁原来所处地点相距_______.(9)(10)(11)10.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.11.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.12.△ABC中,AB=AC=13,若AB边上的高CD=5,则BC=______.13.如图,长方体的底面边长分别为1和3,高为6.如果用一根细线从点A开始经过四个侧面缠绕一圈到达点B,那么所用细线最短需要_____,如果从点A开始经过四个侧面缠绕圈到达点B,那么所用细线最短需要_____.(13)(15)(16)14.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,BC=_______.15. 已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为________.16. 如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,BC=________.三.解答题17. 如图所示,已知D、E、F分别是△ABC中BC、AB、AC边上的点,且AE=AF,BE=BD,CF=CD,AB =4,AC=3,,求:△ABC的面积.18.有一块直角三角形的绿地,量得两直角边长分别为6,8.现在要将绿地扩充成等腰三角形,且扩充部分是以8为直角边的直角三角形,求扩充后等腰三角形绿地的周长.19. 有一块直角三角形纸片,两直角边AC =6,BC =8,①如图1,现将纸片沿直线AD折叠,使直角边AC落在斜边AB上,且与AB重合,则CD =_________.②如图2,若将直角∠C沿MN折叠,使点C落在AB中点H上,点M、N分别在AC、BC上,则、与之间有怎样的数量关系?并证明你的结论.20. 如图1,四根长度一定的木条,其中AB=6,CD=15,将这四根木条用小钉绞合在一起,构成一个四边形ABCD(在A、B、C、D四点处是可以活动的).现固定AB边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D在BA的延长线上时,点C在线段AD上(如图2);位置二:当点C在AB的延长线上时,∠C=90°.(1)在图2中,若设BC的长为,请用的代数式表示AD的长;(2)在图3中画出位置二的准确图形;(各木条长度需符合题目要求)(3)利用图2、图3求图1的四边形ABCD中,BC、AD边的长.。
新3.3勾股定理的应用举例1-3课时

如图,有一块地,已知,AD=4m, CD=3m,∠ADC=90°,AB=13m , B BC=12m。求这块地的面积。
12
24平方米
C
3
4 A D 13
李叔叔想要检测雕塑底座正面的AD边和 BC边是否分别垂直于底边AB,但他随身 只带了卷尺.
(2)李叔叔量得AD长是30cm,AB长 是40cm.点B、D之间的距离是50cm, 边AD垂直于边AB吗?
D
C
一、台阶中的最值问题
例1、如图,是一个三级台阶,它的每一级的长、宽和 高分别等于5cm,3cm和1cm,A和B是这个台阶的两个 相对的端点,A点上有一只蚂蚁,想到B点去吃可口的 食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面 爬到B点,最短线路是多少?
A 5 A 5
1
3
C 3 1 3
B ∵ AB2=AC2+BC2=169, ∴ AB=13.
1、以下列各组线段为边长, 能构成三角形的是____________, 能构成直角三角形的是____________. (填序号) ①3,4,5 ② 1,3,4 ③ 4,4,6 ④ 6,8,10 ⑤ 5,7,2 ⑥ 13,5,12 ⑦ 7,25,24
已知:如图,四边形 ABCD 中,∠ B = 90 0 , AB = 3 , BC = 4 , CD = 12 , AD = 13,求四边形ABCD的面积?
C
A
O D
在直角三角形OCD B 中,OC=1 OD=0.8
米
CD2=OC2-OD2=12-0.82 =0.36 ∴CD=0.6 CH=2.3+0.6=2.9
H
2.3
∵2.9>2.5∴能通过
如图是一个棱长为4cm的正方体盒 子,一只蚂蚁在D1C1的中点M处, 它到BB1的中点N的最短路线是 ( )
勾股定理的应用(3种题型)

第03讲勾股定理的应用(3种题型)【知识梳理】一.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.二.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.【考点剖析】题型一.勾股定理的实际应用例1.如图,一棵树从3m处折断了,树顶端离树底端距离4m,那么这棵树原来的高度是() A.8m B.5m C.9m D.7m【变式】如图在实践活动课上,小华打算测量学校旗杆的高度,她发现旗杆顶端的绳子垂到地面后还多出1m,当她把绳子斜拉直,且使绳子的底端刚好接触地面时,测得绳子底端距离旗杆底部5m,由此可计算出学校旗杆的高度是()A.8m B.10m C.12m D.15m例2.如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【变式】小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.题型二.平面展开-最短路径问题例3.如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么用细线最短需要()A.12cm B.10cm C.13cm D.11cm例4.一个上底和下底都是等边三角形的盒子,等边三角形的高为70cm,盒子的高为240cm,M为AB的中点,在M处有一只飞蛾要飞到E处,它的最短行程多少?【变式】如图①,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)题型三:勾股定理中的折叠问题例5.如图,矩形纸片ABCD中,4AB=,3AD=,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1B.43C.32D.2【变式】如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知3CE cm=,8AB cm=,求图中阴影部分的面积.【过关检测】一.选择题1.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺2.如图,已知圆柱底面的周长为12cm,圆柱高为8cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.10cm B.20cm C.cm D.100cm3.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()A.0.8米B.2米C.2.2米D.2.7米4.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.1305.如图,圆柱的高为8cm,底面半径为2cm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径,问:蚂蚁吃到食物爬行的最短距离是cm.(π取3)6.《九章算术》中的“引葭赴岸”问题:今有池方一丈,葭(一种芦苇类植物)生其中央,出水一尺.引葭赴岸,适与岸齐,水深几何?其大意是:有一个边长为10尺的正方形池塘,一棵芦苇生长在它的正中央,高出水面1尺.如果把该芦苇拉向岸边,那么芦苇的顶部恰好碰到岸边(如图所示),则水深________尺.7.《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,未折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺,问折断处离地面的距离为.8.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB =10,BC=4,求AC的长.9.如图,一架25米长的梯子AB斜靠在一竖直的墙AO上,梯子底端B离墙AO有7米.(1)求梯子靠墙的顶端A距地面有多少米?(2)小燕说“如果梯子的顶端A沿墙下滑了4米,那么梯子的底端B在水平方向就滑动了4米.”她的说法正确吗?若不正确,请说明理由.10.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?11.我国古代的数学名著《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:尺)原处还有多高的竹子?(1丈1012.如图,一个梯子AB,顶端A靠在墙AC上,这是梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米,底端将水平滑动了8米,求滑动前梯子底端与墙的距离CB是多少?13.(2022春•蜀山区期中)在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.14.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC =7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.15.如图,A,B两村在河L的同侧,A,B到河L的距离分别为1.5km和2km,AB=1.3km,现要在河边建一供水厂,同时向A,B 1.8万元,问水厂与A村的水平距离为多远时,能使铺设费用最省,并求出总费用约多少万元.。
勾股定理应用题和答案

勾股定理应用题和答案导语:勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
以下是整理勾股定理应用题和答案的资料。
1.长方体(或正方体)面上的两点间的最短距离长方体(或正方体)是立体图形,但它的每个面都是平面.若计算同一个面上的两点之间的距离比较容易,若计算不同面上的两点之间的距离,就必须把它们转化到同一个平面内,即把长方体(或正方体)设法展开成为一个平面,使计算距离的两个点处在同一个平面中,这样就可以利用勾股定理加以解决了.所以立体图形中求两点之间的最短距离,一定要审清题意,弄清楚到底是同一平面中两点间的距离问题还是异面上两点间的距离问题.谈重点长方体表面上两点间最短距离因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况——前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.①是一个棱长为3 c的正方体,它的6个表面都分别被分成了3×3的小正方形,其边长为1 c。
现在有一只爬行速度为2 c/s的蚂蚁,从下底面的A点沿着正方体的表面爬行到右侧表面上的B点,小明把蚂蚁爬行的时间记录了下来,是2。
5 s.经过简短的思考,小明先是脸上露出了惊讶的表情,然后又露出了欣赏的目光.你知道小明为什么会佩服这只蚂蚁的举动吗?解:②,在Rt△ABD中,AD=4 c,BD=3 c。
由勾股定理,AB2=BD2+AD2=32 +42=25,AB=5 c,∴蚂蚁的爬行距离为5 c。
又知道蚂蚁的爬行速度为2 c/s,∴它从点A沿着正方体的表面爬行到点B处,需要时间为52=2。
5 s。
小明通过思考、判断,发现蚂蚁爬行的时间恰恰就是选择了这种最优的方式,所以他感到惊讶和佩服.一个三级台阶,它的每一级的长、宽和高分别为5 d,3 d 和1 d,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点的最短路程是多少?分析:由于蚂蚁是沿台阶的表面由A爬行到B,故需把三个台阶展开成平面图形解:将台阶展开成平面图形后,可知AC=5 d,BC=3×(3+1)=12 d,∠C=90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理的应用
例题讲解
例1、D
同步练习:
1、10
2、D
例2、C
同步练习:
1、B
2、画侧面展开图,如图,因为圆柱的底面周长为6 cm ,所以AC =3 cm.又因为PC =23BC ,
所以PC =23×6=4(cm).在Rt △ACP 中,AP 2=AC 2+CP 2
,得AP =5 cm.
例3、125cm
同步练习:
1、B
2、13
例4、D
同步练习:
1、1.5m
2、96
巩固练习
1-7:D ,5,C ,5,C ,13,D ,
8、【解析】(1)在Rt △ABC 中,∵AC=60m ,AB=100m ,且AB 为斜边,
根据勾股定理得:BC=80(m );
:(2)这辆小汽车没有超速.理由:∵80÷5=16(m/s ),平均速度为:16m/s ,16m/s=57.6km/h ,57.6<70,∴这辆小汽车没有超速.
9、【解析】如图所示:
在Rt △ABC 中,由勾股定理可知:BC==4米.
地毯的总长=BC+AC=4+3=7米.
地毯的面积=7×1.5=10.5平方米.地毯的总价=40×10.5=420元.故答案为:420元.10、解:经分析,如图,应把台阶看成是纸片折成的,拉平(没高度)成一张长方形(宽为3×3+2×3=15 dm,长为20 dm)的纸.所以AB2=152+202=625(dm2).所以AB=25 dm,即蚂蚁沿着台阶面爬行到B点的最短路程是25 dm.
11、设水深x尺,则荷花茎的长度为x+0.5,根据勾股定理得:(x+0.5)2=x2+4
解得:x=3.75.答:湖水深3.75尺.
12、【解析】解:∵车宽1.6米,∴卡车能否通过,只要比较距厂门中线0.8米处的高度与车高.在Rt△OEF中,由勾股定理可得:EF===0.6(m),EH=EF+FH=0.6+2.3=2.9>2.5,∴卡车能通过此门.。