变频器调速控制电路
变频器常用的控制电路

这些输入输出分配地址。这里的PLC采用三菱FX2N-48MR继电器输出型PLC,变频器
采用三菱FR-A540变频器,其起停控制的I/O分配如表4.1所示。
输入
输出
输入继电器 X0 X1 X2 X3 X4
输入元件 SB1 SB2 SB3 SB4 A-C
作用
输出继电器
接通电源按 钮
Y0
切断电源按
钮
Y1
变频器起动
即具有记忆功能;在A地按下SB5或在B地按下SB6按钮,RM端子接通,频率下降,松开按
钮,则频率保持。从而在异地控制时,电动机的转速都是在原有的基础上升降的,很好地实
现了两地控制时速度的衔接。
图4.7 升降速端子实现的两地控制电路
4.6 变频器并联控制电路
• 变频器的并联运行、比例运行多用于传送带、流水线的控制场合。 • 一、由模拟电压输入端子控制的并联运行 • 1.运行要求 • (1) 变频器的电源通过接触器由控制电路控制; • (2) 通电按钮能保证变频器持续通电; • (3) 运行按钮能保证变频器连续运行,且运行过程中变频器不能断电; • (4) 停止按钮只用于停止变频器的运行,而不能切断变频器的电源。 • (5) 任何一个变频器故障报警时都要切断控制电路,从而切断变频器的电源。 • 2.主电路的设计过程 • (1) 空气开关QF控制电路总电源,KM控制两台变频器的通、断电; • (2) 两台变频器的电源输入端并联; • (3) 两台变频器的VRF、COM端并联; • (4) 两台变频器的运行端子由继电器触点控制。
两种情况及特点:
• 2.模拟电流控制端子IRF • 大多是反馈信号或远程控制信号。
• 二、接点控制端子的通断控制
• 接点控制端子是以“通”、“断”来进行控制的,因此其控制 信号也是以“有”和“无”相区别。应用时可由以下信号进行 控制:
变频调速的基本控制方式ppt课件

28
机械特性曲线
n
可见,当频率ω1提高 时,同步转速n1随之提 n1c 高,最大转矩减小,机 n1b
械特性上移;转速降落 n1a
1c 1b 1a
随频率的提高而增大, n1N 1N
1N <1a <1b <1c 恒功率调速
特性斜率稍变大,其它
形状基本相似。如右图
所示。
2024/7/16
O Te
图6-5 基频以上恒压变频调速的机械特性29
2024/7/16
22
结论
➢在恒压频比的条件下改变频率 1 时,机械特性基本上是
平行下移 ➢当转矩增大到最大值以后,转速再降低,特性就折回来 了。而且频率越低时最大转矩值越小
➢最大转矩 Temax 是随着的 1 降低而减小的。频率很
低时,Temax太小将限制电机的带载能力,采用定子压 降补偿,适当地提高电压Us,可以增强带载能力
(U漏—漏磁阻抗压降;Us—每相电压),
当Us很大时,U漏很小;可以认为Us≈Eg 。
m
US f1
C
要改变f1实现调速,则同时应改变Us来保持Φm不变。
—恒压频比控制方式
2024/7/16
12
带定子压降补偿的恒压频比控制特性
但当f1太小时,忽略U漏则误差较大,这时可以人为增 大Us进行补偿,以减小误差。
2024/7/16
30
小结
电压Us与频率1是变频器—异步电动机调速系统的两个独立
的控制变量,在变频调速时需要对这两个控制变量进行协调 控制。 在基频以下,有两种协调控制方式。采用不同的协调控制方 式,得到的系统稳态性能不同。 在基频以上,采用保持电压不变的恒功率弱磁调速方法。
2024/7/16
变频器控制电动机正反转调速电路

变频器控制电动机正反转调速电路很多变颇器控制电动机正反转调速电路.通常都利用交流接触器来实现其正转、反转、停止,以及外接信号的控制,其优点是动作可靠、线路简单、r办企业电工人员都能掌握。
如图85所示,合上电源断路器QP,接人380v交流电源.使电路处于热备机状态。
若需要正转时,则按下正转起动按钮sBI(1—3),此时交流接触器KI线圈得电吸合且KI辅助常开触点[3—5)闭合白锁,同时KI常开触点(19—21)闭合,将FR与c〔)M连接起来、变频器正相序工作,控制电动机正转运行;欲停止时,按下停止按钮sDl(1—3),此时.交流接触器Kj线圈断电释放.Kl常开触点(19—21)断开FR与c[)M的连接,使变频器停止丁作,电动机失电停止运转。
需要反转时,按下反转起动按钮sB2(3—9),此时交流接触器K2线圈得电吸合fl K2辅助常开触点(3—9)闭合自锁,同时K2常开触点(19—23)闭合,将R只—coM连接起来,变频器反相序工作,控制电动机反转运行;欲停止时,按下停止按钮sIL(1—3).此时.交流接触器x2线圈断电释放.K2常开触点(19—23)断开RR—c()M的连接,使变频2R停止丁作,中压变频器电动机失电停止运转。
因电路中正反转交流接触器线圈回路中各串联了对方接触器的互锁常闭触点,以保证在正反转操作时,不会出现两只交流接触器同时工作的现象,起到互锁保护作用。
当需要正常停机或出现事故停机时.复位端子RST—COM(13—19)断开,变频器发出报警信号。
此时技下复位按钮sB4(17—19),将RsT与c()M端子连接起来,报警即可解除。
阐85巾,QF为保护断路器;Fu为控制回路熔断器Exl为正转控制交流接触器;K2为反转控制交流接触器,s11j为停止按钮;sB2为正转起动按钮;SB3为反转起动按钮;SB4为复泣按钮,Hz为频率表;RPl为1kn、2w的线绕式频率给定电位器;配Pg为10ko、1/2w校正电阻,用于频率调整。
PWM型变频器的基本控制方式

PWM型变频器的基本控制方式通用的PWM型变频器是一种交—直—交变频,通过整流器将工频交流电整流成直流电,经过中间环节再由逆变器将直流电逆变成频率可调的交流电,供给交流负载。
异步电动机调速时,供电电源不但频率可变,而且电压大小也必须能随频率变化,即保持压频比基本恒定。
PWM型变频器一般采用电压型逆变器。
根据供给逆变器的直流电压是可变的还是恒定的,变频器可分成两种基本控制方式。
(1)变幅PWM型变频器这是一种对变频器输出电压和频率分别进行调节的控制方式,其基本电路如图3-3所示。
中间环节是滤波电容器。
图2-3 变幅PWM型变频器晶闸管整流器用来调压,与一般晶闸管调压系统一样,采用相位控制,通过改变触发脉冲的延迟角α来获得与逆变器输出频率相对应的不同大小的直流电压。
逆变器只作输出频率控制,它一般是由6个开关器件组成,按脉冲调制方式进行控制。
图3-4所示是另一种直流电压可调的PWM变频电路。
它采用二极管不可控整流桥,把三相交流电变换为恒定的直流电。
分立斩波器电路,来改变输出直流电压的大小,通过逆变器输出三相交流电。
图2-4 利用斩波器的变频电路图以上两种调压式变频电路,都需要两极可控功率级,相比较,采用晶闸管整流桥可以获得更大功率的直流电,由于可控整流桥采用相位控制,输入功率因数将随输出直流电压的减小而降低;而斩波式调压,输入功率变流级采用的是二级管整流桥,所以输入端有很高的功率因数,代价是多了一个斩波器。
另外,就动态响应的快速性来说后者比前者好。
(2)恒幅PWM型变频器恒幅脉宽调制PWM式变频电路如图3.3所示,它由二极管整流桥,滤波电容和逆变器组成。
逆变器的输入为恒定不变的直流电压,通过调节逆变器的脉冲宽度和输出交流电压的频率,既实现调压又实现调频,变频变压都是由逆变器承担。
此系统是目前使用较普遍的一种变频系统,其主电路简单,只要配上简单的控制电路即可。
它具有下列主要优点:1)简化了主电路和控制电路的结构。
变频器控制电路设计方法(1)

控制线路的设计方法
功能添加法 较简单的控制线路 步进逻辑公式法 多个工作过程自动循环的复杂线路
功能添加法举例说明
设计要求: 1、有两台电动机,正转运行, 2、第一台电机必须先开后停,正常停车为 斜坡停车。 3、如果任何一台电机过载时,两台电机同 时快速停车。
设计两个能独立开停的控制线路
第三次添加功能——加过载同时停车 过载保护可以在Set-ttd参数设置电机热态阈值, 然后用变频器的内部继电器R1(或R2)停车, 即设置R1参数为I-O-r1=tSA(达到热态阈值)。 由于正常停车与过载停车停车模式与停车时间均 不相同,所以过载时应通过逻辑输入快速停车, 设置Fun-StC-FSt=LI5,即分配变频器的输入 端子LI5为过载停车端子
第三次添加功能后,虽然过载后两台电机 能快速停车,但停车后1KA、2KA线圈仍 处于吸合状态,无法重新起动,除非先按 下按钮2SB1和1SB1,使1KA、2KA线圈失 电,很不方便。我们可以用KA的触点使 1KA、2KA线圈自动失电,主电路不变
第四次添加功能——过载停车后,1KA、2KA线 圈自动失电
第二次添加功能——第一台电机不能先停。将 2KA的常开触点与停车按钮1SB1并联
第三次添加功能——加过载同时停车 过载保护可以在Set-ttd参数设置电机热态阈值, 然后用变频器的内部继电器R1(或R2)停车, 即设置R1参数为I-O-r1=tSA(达到热态阈值)。 由于正常停车与过载停车停车模式与停车时间均 不相同,所以过载时应通过逻辑输入快速停车, 设置Fun-StC-FSt=LI5,即分配变频器的输入 端子LI5为过载停车端子
L
N
1QS 2QSFU1SB Nhomakorabea 2SB1
PLC控制变频器多段调速电路图(七按钮)2014

FX2N-48MR
PLC各接点接线图
制图于宝水
多段频率多段频率多段频率多段频率多段频率多段频率多段频率
N
PLC 控制变频器多段调速电路图(7按钮)
变频器变频器
N
10203050t
40
多段频率多段频率多段频率变频器变频器
N
低速中速
高速
变频器变频器
N
PLC 控制变频器多段调速电路图(3按钮)三速
C11多段频率7=35Hz
PLC 控制变频器多段调速电路图(7按钮)(接触器)
L1L2L3N
上电
停电
旋转开关控制变频调速电动机正反转多段频率电路
旋转开关控制变频调速电动机正转电路
旋转开关控制变频调速电动机正反转电路
旋转开关控制变频调速电动机正反转电路
FR
旋转开关控制变频调速电动机正反转电路
FR
反转正转
C11多段频率7=35Hz
L1L2L3N
上电
停电
C11多段频率7=35Hz
L1L2L3N
上电
停电。
PWM脉宽调制变频电路

PWM脉宽调制变频电路
在图4-2b、c两种电路结构中,因采用不可控整流 器,功率因数高。而在图4-2a电路中,由于采用可控 整流,输出电压有换相电压降产生,谐波的无功功率 使得输入端功率因数降低。在图4-2a、b两种电路结构 中,独立的调压调频环节使之容易分开调试,但系统 的动态反应慢。图4-2c所示的电路结构则具有动态响 应快,功率因数高的特点。
PWM脉宽调制变频电路
变频器的分类与交—直—交变频器 的结构框图。图4-1a所示的交—交变频器在结构上没有 明显的中间滤波环节,来自电网的交流电被直接变换为 电压、频率均可调的交流电,所以称为直接变频器。而 图4-1b所示的交—直—交变频器有明显的中间滤波环节, 其工作时首先把来自电网的交流电变换为直流电,经过 中间滤波环节之后,再通过逆变器变换为电压、频率均 可调的交流电,故又称为间接变频器。
图4-10 分段同步调制
PWM脉宽调制变频电路
4.1.2 SPWM波形的开关点算法
在SPWM系统中,通常是利用三角载波与正弦参 考波进行比较以确定逆变器功率器件的开关时刻, 从而控制逆变器输出可调正弦波形。这一功能可由 模拟电子电路、数字电子电路、专用的大规模集成 电路等装置来实现,也可由计算机编程实现。SPWM 系统开关点的算法,主要分为两类:一是采样法, 二是最佳法。
形成不可调的直流电压Ud。而逆变环节则以六只功率开关
器件和辅助元件构成,这些开关器件可以选用功率晶体管 GTR,功率场效应晶体管MOSFET,绝缘门极晶体管IGBT等。 控制逆变器中的功率开关器件按一定规律导通或断开,逆 变器的输出侧即可获得一系列恒幅调宽的输出交流电压, 该电压为可调频、可调压的交流电——VVVF。
PWM脉宽调制变频电路
4.1.1 PWM脉宽调制原理
SPWM控制的变频调速

《交流调速》课程设计-—SPWM变频调速系统姓名学号:1204010323专业:电气工程班级:电气五班SPWM变频调速系统摘要:变频调速是交流调速中的发展方向。
异步电动机的调速原理是研究控制算法的基石,因文首先介绍了异步电动机的调速特性,从而展开介绍SPWM变频调速的理论基础.包括变频调速控制思想的由来,控制方法的可行性。
变频调速的控制算法也有许多,目前大部分通用变频器所采用的控制算法——恒压频比控制,给出了完整的硬件电路设计和软件程序流程设计。
本文采用了HEF4752波形控制电路产生SPWM信号具有电路简单、控制性能优良及高可靠性等特点。
关键词:变频器;恒压频比控制;正弦波脉宽调制:HEF4752控制电路。
目录一概述------------------------------------------------------------- 41.1 SPWM变频调速系统概述---------------------------------------- 41.2变频调速的优点----------------------------------------------- 41.3 SPWM变频调速的优点------------------------------------------ 4二 SPWM变频调速系统基本原理---------------------------------------- 52.1交流电动机变频调速原理--------------------------------------- 52.2 SPWM变频调速系统基本原理------------------------------------ 52.2.1单极性SPWM法------------------------------------------ 62.2.2双极性SPWM法------------------------------------------ 72.3 系统设计总方案的确定---------------------------------------- 9 三主电路设计------------------------------------------------------ 103.1主电路功能说明---------------------------------------------- 103.2 主电路设计------------------------------------------------- 103.3 主电路电路图----------------------------------------------- 11 四控制电路设计---------------------------------------------------- 124.1 控制电路设计总思路----------------------------------------- 124.2 SPWM波形产生电路------------------------------------------- 124.2.1 HEF4752芯片介绍-------------------------------------- 124.2.2 SPWM波形产生电路设计--------------------------------- 134.3 电压电流检测电路------------------------------------------- 144.4调节器设计-------------------------------------------------- 144.5 速度检测电路----------------------------------------------- 144.6保护电路设计------------------------------------------------ 154.6.1 过电流保护-------------------------------------------- 154.6.2 IGBT开关过程中的过电压保护--------------------------- 154.6.3 启动限流保护------------------------------------------ 16五 SPWM变频调速系统总设计图--------------------------------------- 16一概述1.1 SPWM变频调速系统概述PWM控制技术有许多种,并且还在不断发展中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)变频器的输出端子U、V、W、与电机的U、V、W、进行相接。 4)观查电机在RM、RH和RL状态下的变化。
维修电工中级操作技能 -PLC控制
试题Z34 变频器调速控制电路
具体考核要求:有一供水泵用于给某个水池供水,用变频器拖动 控制,控制要求如下:当水池的液位低于L1时,水泵电机以 工频(50HZ)全速运行;当水池的液位高于L1而低于L2时, 水泵电机以中速(25HZ)运行;当水池的液位高于L2时, 水泵电机以低速(10HZ)运行。进行电路并模拟调试。
电路设计:根据给定任务和要求,绘制变频器控制的电路图 安装与接线:元件在配电板上布置要合理,安装要准确紧固、美
观 熟练操作变频器键盘,并能正确设置参数 通电试验:正确使用电工工具及万用表,进行仔细检查,并注意
人身和设备安全
1、变频器说明:
2、接线图:
L
N
FU1
L1 L2
KA1
KA2
KA1 L2
F23模块 S2 S1
FU2
L
N D700
KA3
RH
U
KA1 RM KA2 RL
V
M
W
3~
STF
SD
功能 P4 P5 P6
频率 50HZ 25HZ 10HZ
速度 高速 中速 低速
水位 低于L1 高于L1,低于L2 高于L2
3、接线步骤:
1)将STF与SD短接,进入正转启动。或将STR与SD短接,进入 反转启动。