初中数学整式的运算(整式的基础概念)基础题
第二章 整式的加减(基础卷)-2021-2022学年七年级上学期数学单元测试(人教版)

整式的加减基础一、单选题(共10小题)1.下列运算正确的是()A.2a+3a=5a2B.(﹣ab2)3=﹣a3b6C.a2•a3=a6D.(a+2b)2=a2+4b22.若m2+2m=3,则4m2+8m﹣1的值是()A.11 B.8 C.7 D.123.若﹣2a m+1b3与5a3b2n﹣3是同类项,则mn的值是()A.6 B.5 C.﹣5 D.﹣64.小明周末从家里去书店,需要先步行一段路程,然后再坐公交车到书店,步行的速度为4千米每小时,汽车的速度为45千米每小时,小明先步行x分钟,再乘车y分钟,则小明家离书店的路程是()千米.A.45x+4y B.4x+45y C.4x+y D.x+y5.若(3x+1)5=ax5+bx4+cx3+dx2+ex+f,则a+b+c+d+e+f=()A.1024 B.﹣1024 C.32 D.﹣326.某商家以每件a元的价格购进了35件牛奶,每件b元的价格购进了50件洗发水,若将这两种商品都以元的价格出售,则商品卖出后,商店()A.无法确定赚与赔B.赔钱C.不赚不赔D.赚钱7.观察等式:1+2+22=23﹣1;1+2+22+23=24﹣1;1+2+22+23+24=25﹣1…若230=m,则231+232+233+…+260用含m的式子表示为()A.2m2﹣2m﹣2 B.2m2﹣2m C.2m2﹣m D.2m2+2m8.在代数式:x2,3ab,x+5,,﹣4,,a2b﹣a中,整式有()A.4个B.5个C.6个D.7个9.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x2+y2+z2是对称整式,x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式;④若某对称整式只含字母x,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4 B.3 C.2 D.110.如图,在△ABC中,∠ACB=90°,∠A=n(0°<n<45°),D、E分别为AB、AC上一点,将△BCD、△ADE分别沿CD、DE翻折,点A、B恰好重合于点F处,则∠ACF的度数用n表示为()A.90°﹣2n B.C.45°﹣n D.90°﹣n二、填空题(共6小题)11.用不等式表示“x的2倍与5的和不大于10”是.12.已知单项式﹣2x m+1y3与4x3y2n+1的和仍为单项式,则m+n的值为.13.若关于x、y的多项式2x2+3mxy﹣y2﹣xy﹣5是二次三项式,则m=.14.若关于x,y的多项式4xy3﹣2nx2﹣3xy+6x2不含x2项,则n=.15.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.16.下列图形都是由面积为1的小正方形按一定的规律无间隙且不重叠地拼接而成的.请从下面A,B两题中任选一题作答.我选择题.A.其中,第1个图形中共有9个面积为1的正方形;第2个图形中共有14个面积为1的正方形;第3个图形中共有19个面积为1的正方形;…若按照此规律,第n个图形中共有个面积为1的正方形.(用含字母n的代数式表示)B.其中,第1个图形中共有14个正方形;第2个图形中共有23个正方形;…若按照此规律,第n个图形中共有个正方形.(用含字母n的代数式表示)三、解答题(共7小题)17.计算:(1)3x2﹣2[x2﹣2(xy﹣x2)+2xy];(2)﹣12020+(1﹣0.5)2×(﹣4)÷(﹣).18.化简(1)(2x﹣3y)+(5x+4y)(2)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)]19.已知多项式A=2m2﹣4mn+2n2,B=m2+mn﹣3n2,求:(1)3A+B;(2)A﹣3B.20.先化简,再求值:4x﹣4x2+(7﹣3x)﹣(8x2+15),其中x=2.21.为加强疫情防控,某学校准备购进一批消毒湿巾,甲、乙两个药房出售这种消毒湿巾的价格均为8元/盒,在出售的过程中又有不同的优惠方案:在甲药房购买消毒湿巾,不超过100盒不打折,超过100盒的部分打九折;在乙药房购买消毒湿巾,不超过200盒不打折,超过200盒的部分打八折.(1)学校在甲药房购买120盒消毒湿巾,实际应花费元;(2)学校计划购入x盒消毒湿巾,分别写出在甲、乙两个药房采购时,实际应花费多少元(用含有x的式子表示);(3)当学校购入多少盒消毒湿巾时,在两家药房的实际花费相同.22.数学中,运用整体思想方法在求代数式的值时非常重要.例如:已知a2+2a=2,则代数式2a2+4a+3=2(a2+2a)+3=2×2+3=7.请你根据以上材料解答以下问题:(1)若x2﹣3x=4,求1﹣x2+3x的值.(2)当x=1时,代数式px3+qx﹣1的值是5,求当x=﹣1时,代数式px3+qx﹣1的值.(3)当x=2020时,代数式ax5+bx3+cx+6的值为m,直接写出当x=﹣2020时,代数式ax5+bx3+cx+6的值.(用含m的代数式表示)23.某移动电话公司给用户提供了各种手机资源套餐,其中两个如表所列:套餐使用费(单位:元/月)套餐内包含国内主叫通话时长(单位:分钟)套餐外国内主叫通话单价(单位:元/分钟)国内被叫套餐内包含国内数据流量(单位:兆)套餐外国内数据流量单价(单位:元/兆)581500.25免费300.50 883500.19免费300.50(1)如果某用户某月国内主叫通话总时长为x分钟,使用国内数据流量为y兆(字节),请分别写出两种套餐收费方式下用户应该支付的费用(假定150≤x≤350,y≥30).(2)如果某用户某月国内主叫通话总时长为250分钟,使用国内数据流量为90兆(字节),上述两种套餐中他选哪一种较为合算?整式的加减基础参考答案一、单选题(共10小题)1.【答案】B【分析】分别根据合并同类项法则,积的乘方运算法则,同底数幂的乘法法则以及完全平方公式逐一判断即可.【解答】解:A.2a+3a=5a,故本选项不合题意;B.(﹣ab2)3=﹣a3b6,正确;C.a2•a3=a5,故本选项不合题意;D.(a+2b)2=a2+4ab+4b2,故本选项不合题意.故选:B.【知识点】合并同类项、完全平方公式、同底数幂的乘法、幂的乘方与积的乘方2.【答案】A【分析】将所求代数式变形为:4(m2+2m)﹣1,再整体代入计算即可.【解答】解:∵m2+2m=3,∴4m2+8m﹣1=4(m2+2m)﹣1=4×3﹣1=11.故选:A.【知识点】代数式求值3.【答案】A【分析】根据同类项的定义:所含字母相同,且相同字母的指数也相同,求得m,n的值,再计算即可.【解答】解:根据题意,得:m+1=3,2n﹣3=3,解得m=2,n=3,∴mn=2×3=6,故选:A.【知识点】同类项4.【答案】D【分析】根据总路程=步行路程+乘车路程解答.【解答】解:根据题意知,4×+45×=x+y.故选:D.【知识点】列代数式5.【答案】A【分析】由于要计算一个两项式的五次幂,比较复杂,考虑用特殊值法.令x=1,求解即可.【解答】解:令x=1,则(3x+1)5=45=1024.∴a+b+c+d+e+f=1024.故选:A.【知识点】代数式求值6.【答案】A【分析】先列出商品的总进价的代数式,再列出按萱萱建议卖出后的销售额,然后用销售额减去总进价即可判断出该商店是否盈利.【解答】解:由题意得:商品的总进价为35a+50b;商品卖出后的销售额为:×(35+50);则×(35+50)﹣(35a+50b)=(a﹣b);因此,当a>b时,该商店赚钱;a<b时,该商店赔钱;a=b时,该商店不赚不赔;故选:A.【知识点】列代数式7.【答案】B【分析】根据题目中式子的特点,将所求式子变形,然后即可用含m的代数式表示出来,本题得以解决.【解答】解:由题意可得,231+232+233+…+260=231×(1+2+22+ (229)=231×(230﹣1)=2×230×(230﹣1),∵230=m,∴原式=2m(m﹣1)=2m2﹣2m,故选:B.【知识点】列代数式、规律型:数字的变化类8.【答案】C【分析】根据整式的定义,可得答案.【解答】解:x2,3ab,x+5,﹣4,,a2b﹣a是整式,故选:C.【知识点】整式9.【答案】B【分析】根据对称整式的定义进行逐一判断即可.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①正确;②反例:x3+y3+z3+x+y+z为对称整式,但是次数并不相同,故②不正确;③反例:xyz为单项式,但也是对称整式,故③不正确;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换,则x2y:y2x,则有一项为y2x;若z,x互换,则x2y:z2y,则有一项为z2y;若y,z互换,则x2y:x2z,则有一项为x2z;所以该多项式的项数至少为4,故④不正确.所以以上结论中错误的是②③④,三个.故选:B.【知识点】多项式、整式10.【答案】A【分析】根据折叠的性质即可得到AD=FD=BD,推出D是AB的中点,可得CD=AB=AD=BD,想办法求出∠FCB即可解决问题.【解答】解:由折叠可得,AD=FD=BD,∴D是AB的中点,∴CD=AB=AD=BD,∴∠ACD=∠A=n,∠BCD=∠B=90°﹣n,∴∠BCF=2∠BCD=180°﹣2n,∴∠ACF=180°﹣2n﹣90°=90°﹣2n,故选:A.【知识点】三角形内角和定理、列代数式二、填空题(共6小题)11.【答案】2x+5≤10【分析】根据“x的2倍与5的和不大于10”,即可得出关于x的一元一次不等式,此题得解.【解答】解:依题意得:2x+5≤10.故答案为:2x+5≤10.【知识点】列代数式、由实际问题抽象出一元一次不等式12.【答案】3【分析】直接利用合并同类项法则得出m,n的值,进而得出答案.【解答】解:∵单项式﹣2x m+1y3与4x3y2n+1的和仍为单项式,∴m+1=3,2n+1=3,解得:m=2,n=1,则m+n的值为:3.故答案为:3.【知识点】合并同类项13.【答案】 13【分析】直接利用多项式系数与次数确定方法得出3m﹣1=0,进而得出答案.【解答】解:∵关于x、y的多项式2x2+3mxy﹣y2﹣xy﹣5是二次三项式,∴3mxy﹣xy=0,则3m﹣1=0,解得:m=.故答案为:.【知识点】多项式14.【答案】3【分析】利用多项式中不含x2的项,即含x2的项系数和为0,进而得出答案.【解答】解:4xy3﹣2nx2﹣3xy+6x2=4xy3+(6﹣2n)x2﹣3xy,∵关于x,y的多项式4xy3﹣2nx2﹣3xy+6x2不含x2的项,∴6﹣2n=0,解得n=3.故答案为:3.【知识点】合并同类项15.【答案】x2-7x-6【分析】根据题意列出关系式,去括号整理即可确定出P.【解答】解:根据题意得:P=(2x2﹣4x)﹣(x2+3x+6)=x2﹣7x﹣6,故答案为:x2﹣7x﹣6【知识点】整式的加减16.【答案】【第1空】A【第2空】5n+4【第3空】9n+5【分析】根据题干给出图形,找出规律进行解答即可.【解答】解:选择A时,第1个图形中共有9个面积为1的正方形;第2个图形中共有14个面积为1的正方形;第3个图形中共有19个面积为1的正方形;…若按照此规律,第n个图形中共有5n+4个面积为1的正方形;选择B时,第1个图形中共有14个正方形;第2个图形中共有23个正方形;…若按照此规律,第n个图形中共有9n+5个正方形;故答案为:A;5n+4;9n+5.【知识点】规律型:图形的变化类、列代数式三、解答题(共7小题)17.【分析】(1)根据整式的运算法则即可求出答案.(2)根据有理数的运算法则即可求出答案.【解答】解:(1)原式=3x2﹣2(x2﹣2xy+2x2+2xy)=3x2﹣2×3x2=﹣3x2.(2)原式=﹣1+×(﹣4)×(﹣2)=﹣1﹣1×(﹣2)=﹣1+2=1.【知识点】整式的加减、有理数的混合运算18.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)(2x﹣3y)+(5x+4y)=7x+y;(2)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)]=5a2﹣a2﹣5a2+2a+2a2﹣6a=a2﹣4a.【知识点】整式的加减19.【分析】(1)把A与B代入3A+B,去括号合并同类项即可得到结果;(2)把A与B代入A﹣3B,去括号合并同类项即可得到结果.【解答】解:(1)∵A=2m2﹣4mn+2n2,B=m2+mn﹣3n2,∴3A+B=3(2m2﹣4mn+2n2)+(m2+mn﹣3n2)=6m2﹣12mn+6n2+m2+mn﹣3n2=7m2﹣11mn+3n2;(2)∵A=2m2﹣4mn+2n2,B=m2+mn﹣3n2,∴A﹣3B=(2m2﹣4mn+2n2)﹣3(m2+mn﹣3n2)=2m2﹣4mn+2n2﹣3m2﹣3mn+9n2=﹣m2﹣7mn+11n2.【知识点】整式的加减20.【分析】先去括号,根据整式加减法则进行合并同类项化为最简,再把x=2代入即可求出答案.【解答】解:原式=4x﹣4x2+7﹣3x﹣8x2﹣15=﹣12x2+x﹣8,把x=2代入﹣12x2+x﹣8中,原式=﹣12×22+2﹣8=﹣54.【知识点】整式的加减—化简求值21.【答案】944【分析】(1)利用100盒的花费+超出100盒的花费可计算求解;(2)根据甲,乙两商场的优惠方案:分段求解代数式;(3)根据所列代数式可列方程,解方程即可求解,注意分类讨论.【解答】解:(1)由题意得:100×8+(120﹣100)×8×0.9=944(元),答:学校在甲药房购买120盒消毒湿巾,实际应花费944元;故答案为944;(2)在甲商场购物:当0<x≤100时,实际花费为8x元;x>100时,实际花费为:100×8+(x﹣100)×8×0.9=7.2x+80(元);在乙商场购物:当0<x≤200时,实际花费为8x元;当x>200时,实际花费为:200×8+(x﹣200)×8×0.8=6.4x+320(元);(3)①当0<x≤100时,两个商场实际花费相同;②当x>200时,7.2x+80=6.4x+320,解得x=300.当学校购入300盒消毒湿巾时,在两家药房的实际花费相同.【知识点】列代数式、一元一次方程的应用22.【分析】(1)将1﹣x2+3x变形,再将x2﹣3x=4整体代入计算即可.(2)先由当x=1时,代数式px3+qx﹣1的值是5,得出p+q﹣1=5,进而得出p+q的值,再将x=﹣1代入px3+qx﹣1并对其变形,然后将p+q的值整体代入计算即可.(3)先由当x=2020时,代数式ax5+bx3+cx+6的值为m,得出a×20205+b×20203+c×2020+6=m,变形得出a×20205+b×20203+c×2020的值,再将x=﹣2020代入ax5+bx3+cx+6,然后变形并整体将a×20205+b×20203+c×2020的值代入计算即可.【解答】解:(1)∵x2﹣3x=4,∴1﹣x2+3x=1﹣(x2﹣3x)=1﹣4=﹣3.(2)当x=1时,代数式px3+qx﹣1的值是5,即p+q﹣1=5,∴p+q=6.∴当x=﹣1时,px3+qx﹣1=﹣p﹣q﹣1=﹣(p+q)﹣1=﹣6﹣1=﹣7.(3)∵当x=2020时,代数式ax5+bx3+cx+6的值为m,即a×20205+b×20203+c×2020+6=m,∴a×20205+b×20203+c×2020=m﹣6,∴x=﹣2020时,ax5+bx3+cx+6=a×(﹣2020)5+b×(﹣2020)3+c×(﹣2020)+6=﹣(a×20205+b×20203+c×2020)+6=﹣(m﹣6)+6=﹣m+12.【知识点】代数式求值、列代数式23.【分析】(1)利用套餐内的消费加上套餐外的消费分别列式求得答案即可;(2)把x=250,y=90代入代数式求得答案即可.【解答】解:(1)当150≤x≤350,y≥30时,第一种套餐收费:58+0.25(x﹣150)+0.5(y﹣30)=0.25x+0.5y+5.5(元);第二种套餐收费:88+0.5(y﹣30)=0.5y+73(元);(2)当x=250,y=90时,第一种套餐收费:0.25×250+0.5×90+5.5=113(元);第二种套餐收费:0.5×90+73=118(元);113<118所以选择第一种套餐较为合算.【知识点】代数式求值、列代数式。
初一数学整式试题答案及解析

初一数学整式试题答案及解析1.若2m=4,2n=8,则2m+n=.【答案】32【解析】∵2m=4,2n=8,∴2m+n=2m×2n=4×8=32,故答案为:32.【考点】同底数幂的乘法2.(1)先化简,再求值:(x+2y)(x-2y)+(x+2y)2-4xy,其中x=-1,y=.(2)已知两个单项式a m+2n b与-2a4b k是同类项,求:2m·4n·8k的值.【答案】(1)2;(2)【解析】(1)利用平方差公式把因式展开再合并同类项,把x、y的值代入求解;(2)根据同类项的性质可把m+2n和k值求出来,最后代入求解.试题解析:(1)原式=,把x=-1代入得2;(2)∵a m+2n b与-2a4b k是同类项∴m+2n=4,k=1∴【考点】1.合并同类项;2.指数幂运算性质3.计算(﹣xy2)3,结果正确的是()A.x3y5B.﹣x3y6C.x3y6D.﹣x3y5【答案】B.【解析】根据积的乘方的性质进行计算,原式=(﹣1)3x3y6=﹣x3y6.故选B.【考点】积的乘方.4.先化简再求值其中是最小的正整数.【答案】92.【解析】利用完全平方公式和平方差公式计算,进一步合并同类项,再进一步代入求得数值即可.试题解析:原式=4(a2+4a+4)﹣7(a2﹣9)+3(a2﹣2a+1)=4a2+16a+16﹣7a2+63+3a2﹣6a+3=10a+82,最小的正整数是1,则a=1,原式=10+82=92.【考点】整式的混合运算—化简求值.5.请看下面的解题过程:“比较2100与375大小,解:∵2100=(24)25,375=(33)25,又∵24=16,33=27,16<27,∴2100<375”.请你根据上面的解题过程,比较3100与560的大小。
【答案】3100>560.【解析】首先理解题意,然后可得3100=(35)20,560=(53)20,再比较35与53的大小,即可求得答案.∵3100=(35)20,560=(53)20,又∵35=243,53=125,243>125,即35>53,∴3100>560.【考点】幂的乘方与积的乘方.6.下列各式去括号错误的是()A.B.C.D.【答案】C【解析】7.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是A.x(30-2x)平方厘米B.x(30-x)平方厘米C.x(15-x)平方厘米D.x(15+x)平方厘米【答案】C【解析】由题意先根据长方形的周长公式表示出另一边的长,再根据长方形的面积公式求解即可. 由题意得该长方形的面积是x(15-x)平方厘米,故选C.【考点】长方形的周长和面积公式点评:长方形的周长和面积公式是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.若(x-5)(x+2)=,则p、q的值是A.3,10B.-3,-10C.-3,10D.3,-10【答案】B【解析】多项式乘多项式法则:把两个多项式的各项分别相乘,再把所得的积相加.∵∴故选B.【考点】多项式乘多项式法则,等式的性质点评:本题属于基础应用题,只需学生熟练掌握多项式乘多项式法则,即可完成.9.化简求值:,其中【答案】【解析】先根据平方差公式去小括号,再合并同类项,然后算除法,最后代入求值.原式把代入得:原式【考点】整式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.10.先化简,再求值:,其中【答案】1【解析】先根据完全平方公式和平方差公式去括号,再合并同类项,最后代入求值即可.原式=x2+y2+2xy-( x2 -y2)= x2+y2+2xy- x2+y2=2y2+2xy当时,原式=2×2+2×1×=1.【考点】整式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.11.观察下列数据:, , , , ,它们是按一定规律排列的,依照此规律,第n个数据是________。
七年级数学上册整式的加减基础50题(原卷+解析)

2.3整式的加减基础50题一.整式的加减(共25小题)1.(2019秋•襄州区期末)下列运算正确的是( ) A .532−=a aB .235+=a b abC .()−−=+a b b aD .2−=ab ba ab2.(2019秋•自贡期中)一个多项式加上2233−x y xy 得323−x x y ,则这个多项式是( ) A .323+x xyB .323−x xyC .32263−+x x y xyD .32263−−x x y x y3.(2018秋•东城区期末)计算2653−+a a 与2521+−a a 的差,结果正确的是( ) A .234−+a aB .232−+a aC .272−+a aD .274−+a a4.下面计算正确的是( )A .2233−=x xB .235325+=a a aC .33+=x xD .10.2504−+=ab ba5.(2016秋•海原县期中)有理数a ,b ,c 表示的点在数轴上的位置如图所示,则||||2||(+−−−+=a c c b b a ) A .3−a bB .−−a bC .32+−a b cD .2−−a b c6.(2012秋•洪湖市期中)三个连续偶数中间的一个是2n ,则三个连续偶数的和是( ) A .62+nB .62−nC .6nD .3(21)−n7.(2011秋•虎林市校级期中)加上21−x 等于233−−x x 的多项式是( ) A .234+−x xB .2334−−x xC .2332−−x xD .232++x x8.(2009•江西)化简:2(21)−+−a a 的结果是( ) A .41−−aB .41−aC .1D .1−9.(2019秋•开福区校级月考)下列说法正确的是( ) A .单项式22π−xy 的系数是2π−,次数是3B .单项式432x 的次数是7C .多项式223+a b 与227−+−ab a b 的和为22102−−a ab bD .多项式222−+x xy y 的二次项的系数和是210.(2018秋•雨花区校级期末)多项式2835−+x x 与323457−−+x mx x 多项式相加后,不含二次项,则m 的值是( ) A .2B .4C .2−D .4−11.(2018秋•天心区校级期末)已知多项式322231=−+−A x mx x ,3226=−+++B x x nx ,若−A B 的结果中不含2x 和x 项,则m ,n 的值为( ) A .1=−m ,3=nB .1=−m ,3=−nC .1=m ,3=nD .1=m ,3=−n12.(2018秋•沙洋县期中)一个多项式与234−m 的和是25−+m m ,则这个多项式为( ) A .229−+m mB .221−−+m mC .229−−+m mD .229−++m m13.(2017秋•岳麓区校级期中)减去6−a 等于2425−+a a 的代数式是( ) A .2485−+a aB .2445−+a aC .2445++a aD .2485−−+a a14.(2019秋•开福区校级期中)已知3−=−a b ,2+=c d ,则()()+−−a c b d 的值是( ) A .1−B .5−C .5D .115.若A 与B 都是二次多项式,则关于−A B 的结论,下列选项中正确的有( ) A .一定是二次式B .可能是四次式C .可能是一次式D .不可能是零16.(2016秋•永城市期中)计算2(45)(32)−−−a b a b 的结果为 .17.(2015秋•大同期末)一个多项式加上2543−−x x 得23−−x x ,则这个多项式为 .18.(2008•台州)化简:1(24)22−+=x y y .19.(2002•江西)化简:2(21)−−=a a .20.(2019秋•雨花区校级月考)设有理数a ,b 在数轴上的对应点如图所示,化简|||||1|||+−−−+−a b a b b .21.(2019秋•娄底期中)化简 (1)225(3)(96)−++−−+x x x(2)(73)2−−y z (85)−y z22.(2018秋•开福区校级期中)已知:220−−=x y . (1)2−=x y .(2)求:(546)2(1)++−+−+x y y x 的值.23.(2017秋•岳麓区校级期中)已知a ,b 为常数,且多项式2+−+x ax y b 与多项式2363−+−bx x y 的差与x 的值无关,求代数式22017a b 的值.24.(2019秋•开福区校级期中)化简下列各式: (1)2223144−−+a b ab a b ab(2)2(23)3(23)−−−a b b a25.(2019秋•天心区校级期中)某同学做一道数学题:两个多项式A 、B ,其中2234=−−B x x ,试求2−A B 的值.这位同学把“2−A B ”看成“2+A B ”,结果求出的答2582−−x x . (1)2−A B 的正确答案是多少?(2)若2=−x 时,2−A B 的值是多少?二.整式的加减—化简求值(共25小题)26.(2018秋•开福区校级期中)先化简,再求值:2332(21)(122)−+−−−+x x x x ,其中2=x .27.先化简,再求值:22226[32(13)6]−+−+x xy xy x ,其中4=x ,12=−y .28.先化简,再求值:223(2)2(3)−−−−x xy y x y ,其中1=−x ,2=y .29.先化简,再求值:2212(35)2(32)+−−+xy x xy xy x ,其中2=x ,12=y .30.(2018秋•商南县期末)先化简,再求值(1)2222222(2)(2)−+−−+a b b a a b ,其中13=a ,3=−b ;(2)2223(23)(5)+−−−x x x x x ,其中2=−x .31.(2019秋•增城区期中)先化简下式,再求值:22(234)2(54)−++−−−x x x x ,其中2=−x .32.(2019秋•沙雅县期中)先化简再求值(1)2225435256+−−−−+x x x x x ,其中3=−x .(2)2211312()()2323−−+−+x x y x y ,其中2=−x ,23=y .33.(2018秋•云梦县期末)先化简,再求值.22223(23)2(5)−−+a b ab ab a b ,其中12=a ,2=−b .34.(2020春•开福区校级期末)化简求值:已知2222=−++A a ab b ,2222=−−B a ab b ,当12=−a ,1=b 时,求2+A B 的值.35.先化简,再求值:222(3)(2)+−−a b ab ab a b ,其中2=−a ,1=b .36.先化简,再求值:2222(21)3()23+−−+−−a a a a b b ,其中1=−a ,1=b .37.(2019秋•双清区期末)先化简再求值:已知1=−a ,2=b ,求代数式222[82(4)]−+−+a ab ab a ab 的值.38.(2019秋•岳麓区)先化简,再求值:22(37)(426)−+−−+−a ab a ab ,其中1=−a ,2=b .39.先化简,再求值:222252(2)(31)−−+++−a b ab ab a b ,其中2=a ,1=−b .40.(2019春•遵义期末)先化简222(32)4(2)−−−−−x xy y x xy y ,再求值其中3=−x ,1=y .41.先化简再求值:22222(1)(333)−−−−−x y xy x y xy ,其中1=x ,2=−y42.先化简,再求值:2222(42)3()−+−−+a ab b a ab b ,其中1=−a ,12=−b .43.(2018秋•芙蓉区校级期末)先化简,再求值:22(1)2(1)−+−−x x ,其中1=−x .44.(2018秋•芙蓉区校级期中)化简求值 (1)224()3−−+x x x x ,其中1=−x .(2)22(34)[2(22)]−−+−+a ab a a ab ,其中2=−a ,2004=b .45.(2017秋•雨花区校级期中)计算:(1)235()(36)3412−+⨯−;(2)22323||[3()(2)]32−⨯−÷+−;(3)222()3()4+−−−x y xy x y xy x y(4)已知:22253=−+A a ab b ,2232=+−B a ab b ,求(2)(32)+−−A B A B 的值46.(2017秋•岳麓区校级期中) (1)2332(21)(122)−+−−++x x x x ,其中2=x(2)222221112()5()4(3)32−+−−+a b ab ab a b a b ,其中15=a ,5=−b47.先化简,再求值:222226(3)5(3)−++−ab ab a b a b ab ,其中2=a ,1=−b .48.先化简,再求值:22222(3)2(2)−+−−−a b ab a b ab a b ,其中1=a ,2=−b .49.(2019秋•雨花区期末)化简求值:22(31)3(253)−−−+a a a ,其中13=−a50.先化简,再求值:22223(2)(52)−−+x y xy x y xy ,其中1=x ,12=y .50题参考答案与试题解析一.整式的加减(共25小题)1.(2019秋•襄州区期末)下列运算正确的是( ) A .532−=a aB .235+=a b abC .()−−=+a b b aD .2−=ab ba ab【解答】解:A 、原式2=a ,错误;B 、原式不能合并,错误;C 、原式=−+a b ,错误;D 、原式=ab ,正确, 故选:D .2.(2019秋•自贡期中)一个多项式加上2233−x y xy 得323−x x y ,则这个多项式是( ) A .323+x xyB .323−x xyC .32263−+x x y xyD .32263−−x x y x y【解答】解:3222(3)(33)−−−x x y x y xy 3222333=−−+x x y x y xy 32263=−+x x y xy , 故选:C .3.(2018秋•东城区期末)计算2653−+a a 与2521+−a a 的差,结果正确的是( ) A .234−+a aB .232−+a aC .272−+a aD .274−+a a【解答】解:2(653−+a a 2)(521)−+−a a 22653521=−+−−+a a a a 274=−+a a . 故选:D .4.下面计算正确的是( )A .2233−=x xB .235325+=a a aC .33+=x xD .10.2504−+=ab ba【解答】解:A 、222323−=≠x x x ,故A 错误;B 、23a 与32a 不可相加,故B 错误;C 、3与x 不可相加,故C 错误;D 、10.2504−+=ab ba ,故D 正确.故选:D .5.(2016秋•海原县期中)有理数a ,b ,c 表示的点在数轴上的位置如图所示,则||||2||(+−−−+=a c c b b a ) A .3−a b B .−−a bC .32+−a b cD .2−−a b c【解答】解:0<<a b ,0>c ,||||||>>a b c ,0∴+<a c ,0−>c b ,0+<a b ,∴原式()()2()=−+−−++a c c b b a 22=−−−+++a c c b b a 32=+−a b c . 故选:C .6.(2012秋•洪湖市期中)三个连续偶数中间的一个是n ,则三个连续偶数的和是( ) A .62+nB .62−nC .6nD .3(21)−n【分析】根据连续偶数间相差为2,表示出前一个与后一个偶数,相加列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:三个连续偶数分别为:22−n ,2n ,22+n , 则三个连续偶数之和为222226−+++=n n n n . 故选:C .7.(2011秋•虎林市校级期中)加上21−x 等于233−−x x 的多项式是( ) A .234+−x xB .2334−−x xC .2332−−x xD .232++x x【分析】本题考查整式的加法运算,要先去括号,然后合并同类项.【解答】解:根据题意得2(33)(21)−−−−x x x 23321=−−−−x x x 2332=−−x x . 故选:C .8.(2009•江西)化简:2(21)−+−a a 的结果是( ) A .41−−aB .41−aC .1D .1−【分析】本题考查了整式的加减.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【解答】解:2(21)2211−+−=−+−=−a a a a .故选D . 9.(2019秋•开福区校级月考)下列说法正确的是( ) A .单项式22π−xy 的系数是2π−,次数是3B .单项式432x 的次数是7C .多项式223+a b 与227−+−ab a b 的和为22102−−a ab bD .多项式222−+x xy y 的二次项的系数和是2 【解答】解:A 、单项式22π−xy 的系数是2π−,次数是3,故原题说法正确;B 、单项式432x 的次数是3,故原题说法错误;C 、多项式223+a b 与227−+−ab a b 的和为210−a ab ,故原题说法错误;D 、多项式222−+x xy y 的二次项的系数和是1120+−=,故原题说法错误;故选:A .10.(2018秋•雨花区校级期末)多项式2835−+x x 与323457−−+x mx x 多项式相加后,不含二次项,则m 的值是( )A .2B .4C .2−D .4−【解答】解:原式2328353457=−++−−+x x x mx x 323(84)813=+−−+x m x x令840−=m ,2∴=m ,故选:A .11.(2018秋•天心区校级期末)已知多项式322231=−+−A x mx x ,3226=−+++B x x nx ,若−A B 的结果中不含2x 和x 项,则m ,n 的值为( )A .1=−m ,3=nB .1=−m ,3=−nC .1=m ,3=nD .1=m ,3=−n【解答】解:原式3232223126=−+−+−−−x mx x x x nx 323(22)(3)7=−++−−x m x n x , 令220+=m ,30−=n ,1∴=−m ,3=n ,故选:A .12.(2018秋•沙洋县期中)一个多项式与234−m 的和是25−+m m ,则这个多项式为( )A .229−+m mB .221−−+m mC .229−−+m mD .229−++m m【解答】解:这个多项式为22222(5)(34)53429−+−−=−+−+=−−+m m m m m m m m , 故选:C .13.(2017秋•岳麓区校级期中)减去6−a 等于2425−+a a 的代数式是( )A .2485−+a aB .2445−+a aC .2445++a aD .2485−−+a a【分析】直接利用整式的加减运算法则计算得出答案.【解答】解:减去6−a 等于2425−+a a 的代数式是:22425(6)485−++−=−+a a a a a . 故选:A .14.(2019秋•开福区校级期中)已知3−=−a b ,2+=c d ,则()()+−−a c b d 的值是( )A .1−B .5−C .5D .1【分析】直接去括号进而结合已知条件代入求出答案.【解答】解:3−=−a b ,2+=c d ,()()∴+−−a c b d =+−+a c b d ()=−++a b c d 32=−+1=−.故选:A .15.(2019秋•天心区校级期中)若A 与B 都是二次多项式,则关于−A B 的结论,下列选项中正确的有( )A .一定是二次式B .可能是四次式C .可能是一次式D .不可能是零 【解答】解:多项式相减,也就是合并同类项,而合并同类项时只是把系数相加减,字母和字母的指数不变,∴结果的次数一定不高于2次,当二次项的系数相同时,合并后结果为0,故只有选项C 符合题意.故选:C .16.(2016秋•永城市期中)计算2(45)(32)−−−a b a b 的结果为 58−a b .【分析】原式去括号合并即可得到结果.【解答】解:原式8103258=−−+=−a b a b a b ,故答案为:58−a b17.(2015秋•大同期末)一个多项式加上2543−−x x 得23−−x x ,则这个多项式为 263−++x x .【解答】解:设这个多项式是A ,则225433+−−=−−A x x x x ,222223(543)354363∴=−−−−−=−−−++=−++A x x x x x x x x x x ,故答案是263−++x x .18.(2008•台州)化简:1(24)22−+=x y y x . 【解答】解:原式22=−+=x y y x .19.(2002•江西)化简:2(21)−−=a a 1 .【解答】解:原式2211=−+=a a .20.(2019秋•雨花区校级月考)设有理数a ,b 在数轴上的对应点如图所示,化简|||||1|||+−−−+−a b a b b .【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:101<−<<<a b ,0∴+<a b ,0<a ,10−>b ,0−<b ,则原式11=−−+−++=−a b a b b b .21.(2019秋•娄底期中)化简(1)225(3)(96)−++−−+x x x ;(2)(73)2−−y z (85)−y z【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式2225396534=−+++−=−++x x x x x ;(2)原式73161097=−−+=−+y z y z y z .22.(2018秋•开福区校级期中)已知:220−−=x y .(1)2−=x y 2 .(2)求:(546)2(1)++−+−+x y y x 的值.【分析】(1)由220−−=x y ,移项即可得出22−=x y ;(2)原式去括号合并得到最简结果,把22−=x y 整体代入计算即可求出值.【解答】解:(1)220−−=x y ,22∴−=x y . 故答案为2;(2)22−=x y ,∴原式546222=+−+−+x y y x 724=+−x y 72(2)=+−x y 722=+⨯11=.23.(2017秋•岳麓区校级期中)已知a ,b 为常数,且多项式2+−+x ax y b 与多项式 2363−+−bx x y 的差与x 的值无关,求代数式22017a b 的值.【分析】根据题意列出关系式,由结果与x 值无关,求出a 与b 的值,原式去括号合并后代入计算即可求出值.【解答】解:222363(1)(3)73+−+−+−+=−++−++x ax y b bx x y b x a x y b ,结果与字母x 的值无关, 10∴−=b ,30+=a ,解得:3=−a ,1=b ,则原式22017(3)1919=−⨯=⨯=.24.(2019秋•开福区校级期中)化简下列各式:(1)2223144−−+a b ab a b ab ;(2)2(23)3(23)−−−a b b a【分析】(1)根据合并同类项的方法可以解答本题;(2)先去括号,然后合并同类项即可解答本题.【解答】解:(1)2223144−−+a b ab a b ab 212=−+a b ab(2)2(23)3(23)−−−a b b a 4669=−−+a b b a 1312=−a b .25.(2019秋•天心区校级期中)某同学做一道数学题:两个多项式A 、B ,其中2234=−−B x x ,试求2−A B 的值.这位同学把“2−A B ”看成“2+A B ”,结果求出的答2582−−x x .(1)2−A B 的正确答案是多少?(2)若2=−x 时,2−A B 的值是多少?【解答】解:(1)根据题意得:22222225822(234)58246826=−+=−−−−−=−−−++=−+A A B B x x x x x x x x x x , 则222222262(234)264683414−=−+−−−=−+−++=−++A B x x x x x x x x x x ;(2)当2=−x 时,223(2)4(2)146−=−⨯−+⨯−+=−A B .二.整式的加减—化简求值(共25小题)26.(2018秋•开福区校级期中)先化简,再求值:2332(21)(122)−+−−−+x x x x ,其中2=x .【分析】原式去括号合并得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式23322211222=−+++−=−+x x x x x ,当2=x 时,原式422=−+=−.27.先化简,再求值:22226[32(13)6]−+−+x xy xy x ,其中4=x ,12=−y . 【分析】原式去括号合并得到最简结果,将x 与y 的值代入计算即可求出值.【解答】解:22226[32(13)6]−+−+x xy xy x 222263266=−−+−x xy xy x 232=−xy ,把4=x ,12=−y 代入2213234()212−=⨯⨯−−=xy . 28.(2019秋•金牛区期末)先化简,再求值:223(2)2(3)−−−−x xy y x y ,其中1=−x ,2=y .【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:原式2233626=−−−+x xy y x y 23=−x xy ,把1=−x ,2=y 代入223(1)3(1)27−=−−⨯−⨯=x xy .29.先化简,再求值:2212(35)2(32)+−−+xy x xy xy x ,其中2=x ,12=y . 【分析】根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.【解答】解:原式22123564=+−−−xy x xy xy x 22(1256)(34)=−−+−xy xy xy x x 2=−xy x , 当2=x ,12=y 时,原式21221432=⨯−=−=−.30.(2018秋•商南县期末)先化简,再求值(1)2222222(2)(2)−+−−+a b b a a b ,其中13=a ,3=−b ; (2)2223(23)(5)+−−−x x x x x ,其中2=−x .【解答】解:(1)原式222222222=−+−−−a b b a a b 2=−b ,把3=−b 代入29−=−b(2)原式2223235=+−−+x x x x x 2=−x ,把2=−x 代入24−=x31.(2019秋•增城区期中)先化简下式,再求值:22(234)2(54)−++−−−x x x x ,其中2=−x .【解答】解:原式222341082=−++−++x x x x 611=−+x当2=−x 时,原式121123=+=.32.(2019秋•沙雅县期中)先化简再求值(1)2225435256+−−−−+x x x x x ,其中3=−x .(2)2211312()()2323−−+−+x x y x y ,其中2=−x ,23=y . 【解答】解:(1)原式2225325645=−−−++−x x x x x 1=−x当3=−x 时,原式314=−−=−.(2)原式22123122323=−+−+x x y x y 22132122233=−−++x x x y y 23=−+x y 当2=−x ,23=y 时,原式223(2)()3=−⨯−+469=+589=. 33.(2018秋•云梦县期末)先化简,再求值.22223(23)2(5)−−+a b ab ab a b ,其中12=a ,2=−b . 【解答】解: 原式222269210=−−−a b ab ab a b 2222(610)(92)=−+−−a b a b ab ab 22411=−−a b ab当12=a ,2=−b 时,原式22114()(2)11(2)22=−⨯⨯−−⨯⨯−114211442=⨯⨯−⨯⨯222=−20=− 34.(2020春•开福区校级期末)化简求值:已知2222=−++A a ab b ,2222=−−B a ab b ,当12=−a ,1=b 时,求2+A B 的值. 【解答】解:2+A B 22222(22)(22)=−+++−−a ab b a ab b 222224422=−+++−−a ab b a ab b 223=+ab b ,当12=−a ,1=b 时,原式13=−+2=.35.先化简,再求值:2=−,1=b .【解答】解:222(3)(2)+−−a b ab ab a b 22262=+−+a b ab ab a b 2(21)(62)=++−a b ab 234=+a b ab , 当2=−a ,1=b 时,原式23(2)14(2)11284=⨯−⨯+⨯−⨯=−=.36.先化简,再求值:2222(21)3()23+−−+−−a a a a b b ,其中1=−a ,1=b . 【解答】解:2222(21)3()23+−−+−−a a a a b b 224223232=+−−−+−a a a a b b 22=+−a b 当1=−a ,1=b 时,原式2(1)120=−+−=.37.(2019秋•双清区期末)先化简再求值:已知1=−a ,2=b ,求代数式222[82(4)]−+−+a ab ab a ab 的值.【解答】解:原式2222828109=−−++=−a ab ab a ab a ab ,当1=−a ,2=b 时,原式210(1)9(1)228=⨯−−⨯−⨯=.38.先化简,再求值:22(37)(426)−+−−+−a ab a ab ,其中1=−a ,2=b .【解答】解:(1)原式2237426=−++−+a ab a ab 27313=−+a ab ,当1=−a ,2=b 时,原式7613=++26=;39.先化简,再求值:222252(2)(31)−−+++−a b ab ab a b ,其中2=a ,1=−b .【解答】解:原式2222522431=−+−++−a b ab ab a b 225=−+a b ab将2=a ,1=−b 代入上式,原式410=+14=;40.(2019春•遵义期末)先化简222(32)4(2)−−−−−x xy y x xy y ,再求值其中3=−x ,1=y .【解答】解:原式22642844=−−−++x xy y x xy y 222=−+x y当3=−x ,1=y 时,原式2921=−⨯+⨯16=−41.(2019秋•天心区校级期中)先化简再求值:22222(1)(333)−−−−−x y xy x y xy ,其中1=x ,2=−y【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:原式2222222223331=−−−++=−++x y xy x y xy x y xy ,当1=x ,2=−y 时,原式2417=++=.42.先化简,再求值:2222(42)3()−+−−+a ab b a ab b ,其中1=−a ,12=−b . 【解答】解:原式222242333=−+−+−a ab b a ab b 222=+−a ab b ,当1=−a ,12=−b 时,原式11122=+−1=. 43.(2018秋•芙蓉区校级期末)先化简,再求值:22(1)2(1)−+−−x x ,其中1=−x .【解答】解:原式222221=−+−+=−x x x x ,当1=−x 时,原式110=−=.44.(2018秋•芙蓉区校级期中)化简求值(1)224()3−−+x x x x ,其中1=−x .(2)22(34)[2(22)]−−+−+a ab a a ab ,其中2=−a ,2004=b .【解答】解:(1)原式22443=−++x x x x 25=−x x当1=−x 时,原式511=⨯+6=;(2)原式2234(44)=−++−−a ab a a ab 223444=−++−−a ab a a ab 224=−−a a , 当2=−a ,2004=b 时,原式244(2)=−⨯−⨯−88=−+0=.45.(2017秋•雨花区校级期中)计算:(1)235()(36)3412−+⨯−;(2)22323||[3()(2)]32−⨯−÷+−;(3)222()3()4+−−−x y xy x y xy x y (4)已知:22253=−+A a ab b ,2232=+−B a ab b ,求(2)(32)+−−A B A B 的值【解答】解:(1)235()(36)2123953242715123412−+⨯−=−⨯+⨯−⨯=−+−=−; (2)22323242||[3()(2)](98)12832393−⨯−÷+−=⨯−⨯−=−⨯=−; (3)2222222()3()433464+−−−=+−+−=−+x y xy x y xy x y x y xy x y xy x y x y xy ;(4)22253=−+A a ab b ,2232=+−B a ab b ,2222(2)(32)2323(253)3(32)∴+−−=+−+=−+=−−+++−A B A B A B A B A B a ab b a ab b 222222253936779=−+−++−=−+−a ab b a ab b a ab b46.(2017秋•岳麓区校级期中) (1)2332(21)(122)−+−−++x x x x ,其中2=x(2)222221112()5()4(3)32−+−−+a b ab ab a b a b ,其中15=a ,5=−b 【解答】解:(1)当2=x 时,原式233221122=−++−−x x x x 3242=−−+x x 34=−(2)当15=a ,5=−b 时, 原式2222212455212=−+−−−a b ab ab a b a b 22512=+−a b ab115(5)2512255=⨯⨯−+⨯−1512=−+−8=− 47.先化简,再求值:222226(3)5(3)−++−ab ab a b a b ab ,其中12=a ,1=−b . 【解答】解:原式2222263155=−−+−ab ab a b a b ab 212=a b ,当12=a ,1=−b 时,原式112(1)4=⨯⨯−3=−. 48.先化简,再求值:22222(3)2(2)−+−−−a b ab a b ab a b ,其中1=a ,2=−b .【解答】解:原式22222222342(112)(34)=−+−−+=−−++−=−a b ab a b ab a b a b ab ab , 当1=a ,2=−b 时,原式21(2)4=−⨯−=−.49.(2019秋•雨花区期末)化简求值:22(31)3(253)−−−+a a a ,其中13=−a 【解答】解:原式226261592198=−−+−=−−a a a a a ,把13=−a 代入,原式21121()9()87181633=⨯−−⨯−−=−−−=−. 50.先化简,再求值:22223(2)(52)−−+x y xy x y xy ,其中1=x ,12=y . 【分析】直接去括号进而合并同类项,再把已知数据代入求出答案.【解答】解:原式22226352=−−−x y xy x y xy 225=−x y xy ,当1=x ,12=y 时,原式22113151()224=⨯−⨯⨯=−.。
人教版七年级数学(上)第一章《整式》经典例题及练习含答案

人教版七年级数学(上)第一章《整式》经典例题及练习一. 教学内容:整式1. 单项式的有关概念,如何确定单项式的系数和次数;2. 多项式的有关概念,如何确定多项式的系数和次数;3. 什么是整式;4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力.二. 知识要点:1. 用字母表示数时,应注意以下几点:(1)加、减、乘、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.(2)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a.(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作.(4)代数式中大于1的分数系数一般写成假分数,例如2. 单项式(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意:①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式(x+1)3不是单项式.②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.(2)单项式的系数:是指单项式中的数字因数,如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1.(3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点:①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是4.②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式-2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.④单独一个非零数字的次数是零.3. 多项式(1)多项式:是指几个单项式的和. 其含义有:①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,(2)多项式的项:是指多项式中的每个单项式. 其中不含字母的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号).另外,一个多项式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.(3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.4. 单项式与多项式统称为整式.三. 重点难点:1. 重点:单项式和多项式的有关概念.2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.【典型例题】例1. (1)(2008年宁夏)某市对一段全长1500米的道路进行改造. 原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.(2)(2008年全国数学竞赛广东初赛)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是()A. a(1+m%)(1-n%)元B. am%(1-n%)元C. a(1+m%)n%元D. a(1+m%·n%)元分析:(1)修这条路实际用的天数等于这条路的全长1500米除以实际每天的工作量,原计划每天修x米,实际施工时,每天比原计划的2倍还多35米,即(2x+35)米. 用1500除以(2x+35)就可以了. (2)每件衬衣进价为a元,零售价比进价高m%,那么零售价就是a(1+m%),后来零售价调整为原来的n%,也就是a(1+m%)n%.评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号省略,如果是除法写成分数的形式,系数是代分数时写成假分数,数字和字母写在括号的前面等)例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.单独一个数字是单项式,它的次数是0.8a3x的系数是8,次数是4;-1的系数是-1,次数是0.评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系,如果含有加、减、除的关系,那么它就不是单项式.例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断.解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab+ac+bc+ac+bc). 它们都是整式;abc是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式.评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式.故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2.解:2评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数最高的项的次数决定的.例5. 把代数式2a2c3和a3x2的共同点填写在下列横线上.例如:都是整式.(1)都是____________________;(2)都是____________________.分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母a.解:(1)五次式;(2)都含有字母a.评析:主要观察单项式的特征.例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.分析:多项式不含x3和x项,则x3和x项的系数就是0. 根据这两项的系数等于0就可以求出a和b 的值了.解:因为多项式不含x3项,所以其系数-(a-1)=0,所以a=1.因为多项式也不含x项,所以其系数-(b+3)=0,所以b=-3.答:a的值是1,b的值是-3.评析:多项式不含某项,则某项的系数为0.【方法总结】1. “用字母表示数”是代数学的基础,这种符号化的表示方法随着学习的深入会逐渐加深数学抽象化的程度,我们要体会这种抽象化,它更接近数学的本质,也是有效地解决数学问题的工具.2. 在学习多项式的时候,要注意和单项式的概念进行比较,通过比较两者之间的相同点和不同点,掌握两个概念之间的联系与区别,突出概念的本质,帮助我们理解多项式的概念.【模拟试题】(答题时间:40分钟)一. 选择题1. 在代数式中单项式共有()A. 2个B. 4个C. 6个D. 8个*2. 下列说法不正确的是()C. 6x2-3x+1的项是6x2,-3x,1D. 2πR+2πR2是三次二项式3. 下列整式中是多项式的是()4. 下列说法正确的是()A. 单项式a的指数是零B. 单项式a的系数是零C. 24x3是7次单项式D. -1是单项式5. 组成多项式2x2-x-3的单项式是下列几组中的()A. 2x2,x,3B. 2x2,-x,-3C. 2x2,x,-3D. 2x2,-x,3*7. 下列说法正确的是()B. 单项式a的系数为0,次数为2C. 单项式-5×102m2n2的系数为-5,次数为58. 下列单项式中的次数与其他三个单项式次数不同的是()**9. (2007年华杯初赛)如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式. 例如:x3+2xy2+2xyz+y3是3次齐次多项式. 若x m+2y2+3xy3z2是齐次多项式,则m等于()A. 1B. 2C. 3D. 4二. 填空题1. (2007年云南)一台电视机的原价为a元,降价4%后的价格为__________元.三. 解答题*1. 下列代数式中哪些是单项式,并指出其系数和次数.2. 说出下列多项式是几次几项式:(1)a3-ab+b3(2)3a-3a2b+b2a-1(3)3xy2-4x3y+12(4)9x4-16x2y2+25y2+4xy-1四. 综合提高题**3. 一个关于字母a、b的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若a、b满足︱a+b︱+(b-1)2=0,求你写出的多项式的值.【试题答案】一. 选择题1. B2. D3. B4. D5. B6. C7. D8. B9. B二. 填空题三. 解答题2. (1)三次三项式(2)三次四项式(3)四次三项式(4)四次五项式四. 综合提高题1. 由题意可知m+2+1=8,∴m=52. (1)四次六项式,最高次项是-3x3y,最高次项系数是-3,常数项是1(2)三次三项式,最高次项是y3,最高次项系数是1,常数项是-0.53. 最多有5项(可以含有a3,b3,a2b,ab2),如a3+a2b+ab2+b3+1(答案不唯一). 因为︱a+b ︱+(b-1)2=0,所以b=1,a=-1,所以原式=-1+1-1+1+1=1。
中考数学真题解析代数式、整式及单项式、多项式的有关概念(含答案)

全国中考真题解析代数式、整式及单项式、多项式的有关概念一、选择题1. 已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.5 考点:代数式求值.专题:计算题.分析:将所求代数式前面两项提公因式2,再将a ﹣b =1整体代入即可.解答:解:∵a ﹣b =1,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×1﹣3=﹣1.故选A .点评:本题考查了代数式求值.关键是分析已知与所求代数式的特点,运用整体代入法求解.2. 若(7x ﹣a )2=49x 2﹣bx+9,则|a+b|之值为何( )A 、18B 、24C 、39D 、45考点:完全平方公式;代数式求值。
专题:计算题。
分析:先将原式化为49x 2﹣14ax+a 2=49x 2﹣bx+9,再根据各未知数的系数对应相等列出关于a 、b 的方程组,求出a 、b 的值代入即可.解答:解:∵(7x ﹣a )2=49x 2﹣bx+9,∴49x 2﹣14ax+a 2=49x 2﹣bx+9,∴⎩⎨⎧=-=-9142a b a , 解得⎩⎨⎧-=-=⎩⎨⎧==423423b a b a 或, 当a=3,b=42时,|a+b|=|3+42|=45;当a=﹣3,b=﹣42时,|a+b|=|﹣3﹣42|=45;故选D .点评:本题是一个基础题,考查了完全平方公式以及代数式的求值,要熟练进行计算是解此题的关键.3.当a=3,b=2时,a2+2ab+b2的值是()A、5B、13C、21D、25考点:代数式求值;完全平方公式。
专题:计算题。
分析:先运用完全平方公式将a2+2ab+b2变形为:(a+b)2,再把a、b的值代入即可.解答:解:a2+2ab+b2=(a+b)2,当a=3,b=2时,原式=(3+2)2=25,故选:D.点评:此题考查的是代数式求值,并渗透了完全平方公式知识,关键是运用完全平方公式先将原式因式分解再代入求值.4.“比a的2倍大1的数”用代数式表示是()A.2(a+1)B.2(a-1)C.2a+1 D.2a-1考点:列代数式。
整式的运算基础练习题

整式的运算基础练习题整式的运算是数学中的一个重要分支,它涉及到各种基本运算规则,如加法、减法、乘法和除法等。
下面是一些关于整式运算的基础练习题,可以帮助大家巩固和加深对整式运算的理解。
1、单项式的加法1)计算:2x + 3x = __x2)计算:5a - 2a = __a答案:(1)5x;(2)3a2、多项式的加法1)计算:2x - 3x + 4x = __x2)计算:5a + 2b + 3a = __a + __b答案:(1)3x;(2)8a;2b3、单项式的乘法1)计算:2x × 3x = __x²2)计算:5a × 4b = __ab²答案:(1)6x2(2)20ab24、多项式的乘法1)计算:(2x + 3y) × (x - y) = __x² - __xy + __y²2)计算:(3a - 2b) × (4a + 5b) = __a×__b² + __a×__b - __a ×__b² - __a×__b答案:(1)x2xy+3y2(2)12a×4b+5a×2b−3a×5b−2a×4b即48ab+10ab−15ab−8ab,最终结果为45ab。
整式的运算测试题一、选择题1、下列哪个选项是整式?()A. 2/3B. 4x/3yC. x + 2yD. √22、下列哪个选项是整式的乘法?()A. 3(x + y)B. 4x^2yC. (x + 2y)(x - 2y)D. x + 2y = 03、下列哪个选项是整式的除法?()A. (x + y)/2B. (x + 2y)(x - 2y)C. x \div 2yD. 2x^2 - x = y二、填空题1、如果 a和 b是整数,那么 a + b的值是____。
2、如果 x和 y是整数,那么 x - y的值是____。
七年级上册数学整式加减计算题

七年级上册数学整式加减计算题一、整式加减基础运算题(1 - 10)1. 计算:(3a + 2b)-(a - b)- 解析:- 去括号法则:括号前是正号,把括号和它前面的正号去掉后,原括号里各项的符号都不改变;括号前是负号,把括号和它前面的负号去掉后,原括号里各项的符号都要改变。
- 所以(3a + 2b)-(a - b)=3a + 2b - a + b。
- 然后合并同类项,3a - a+2b + b = 2a+3b。
2. 计算:2(x^2-3x + 1)-3(2x^2+x - 4)- 解析:- 先使用乘法分配律去括号,2(x^2-3x + 1)=2x^2-6x + 2,3(2x^2+x -4)=6x^2+3x - 12。
- 然后进行整式的减法:(2x^2-6x + 2)-(6x^2+3x - 12)=2x^2-6x + 2 - 6x^2-3x + 12。
- 合并同类项得(2x^2-6x^2)+(-6x - 3x)+(2 + 12)= - 4x^2-9x + 14。
3. 计算:(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2)- 解析:- 先去括号,(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2) = 5a^2-3b^2+a^2+b^2-5a^2-3b^2。
- 再合并同类项,(5a^2+a^2-5a^2)+(-3b^2+b^2-3b^2)=a^2-5b^2。
4. 计算:3x^2y-(2xy - 2(xy-(3)/(2)x^2y)+xy)- 解析:- 先去小括号,3x^2y-(2xy - 2(xy-(3)/(2)x^2y)+xy)=3x^2y-(2xy-2xy +3x^2y+xy)。
- 再去中括号,3x^2y - 2xy + 2xy - 3x^2y - xy=-xy。
5. 计算:(4m^3-2m^2+m - 1)-(2m^3+3m^2-m + 2)- 解析:- 去括号得4m^3-2m^2+m - 1 - 2m^3-3m^2+m - 2。
七年级数学下第一章整式的运算试题

2、在代数式:x5+5,-1,x2-3x,π,,x+整式的有()
A.3个B.4个C.5个D.6个
3.若5x|m|y2—(m-2)xy-3x是四次三项式,则m=___
4、计算:
5.已知a=,b=,c=,求1234a+2468b+
617c的值.
6.已知:A=2x2+3ax-2x-1, B=-x2+ax-1且
(4)运算结果不是最简形式运算结果中有同类项时,要合并同类项,化成最简形式.
(5)忽略符号而致错在运算过程中和计算结果中最容易忽略“一”号而致错.
二、经典考题剖析:
【考题2-1】(2004、鹿泉,2分)下列计算中,正确的是()
A.2a+3b=5ab B.a·a3=a3
C、a6÷a2=a3D、(-ab)2=a2b2
a b2c,-,-a3b2
12.若出为互为相反数,求多项式a+2a+3a+…+
100a+100b+99b+…+2b+b的值.
13.已知代数式2x2+3x+7的值是8,则代数式4x2
+ 6x+ 200=___________
14.证明代数式16+a-{8a-[a-9-(3-6a〕}的值与a的取值无关.
(2)按题目要求写出一个与上述不同的代数恒.等式,画出与所写代数恒等生对应的平面几何图形即可(答案不唯一).
点拨:本题是一道阅读理解题,是中考的热点题型.
三、针对性训练:( 30分钟) (答案:219 )
1、下列两个多项式相乘,可用平方差公式().
(1)(2a-3b)(3b-2a);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学整式的运算(整式的基础概念)基础题一、单选题(共10道,每道10分)
1.在下列各式x2-3x,2πx2y,,-5,a,0,,中,单项式的个数是()
A.3
B.4
C.5
D.6
答案:C
试题难度:三颗星知识点:单项式概念
2.若-x2y6与3x1-m y3n的和仍为单项式,则m n的值为()
A.1
B.-1
C.2
D.-2
答案:A
试题难度:三颗星知识点:同类项
3.-π3a2b2的系数和次数分别为()
A.-1,4
B.-1,5
C.-π3,4
D.-π,7
答案:C
试题难度:三颗星知识点:单项式系数与次数
4.在下列各式,,y+2,n-5m,中多项式的个数是()
A.1
B.2
C.3
D.4
答案:C
试题难度:三颗星知识点:多项式的概念
5.多项式-3x2y2+6xyz+3xy2-35的次数是()
A.2
B.3
C.4
D.5
答案:C
试题难度:三颗星知识点:多项式的次数
6.多项式(a+1)x4y-x b y2+3x2y-2xy+1是关于x,y的四次多项式,则a、b的值为()
A.1,2
B.-1,-2
C.1,-2
D.-1,2
答案:D
试题难度:三颗星知识点:已知多项式的次数求系数的值
7.如果一个多项式的次数是6,则这个多项式的任何一项的次数都()
A.小于6
B.等于6
C.不大于6
D.不小于6
答案:C
试题难度:三颗星知识点:多项式次数
8.多项式的项-3x2y2+6xyz+3xy2-35的最高次项是()
A.3x2y2
B.-3x2y2
C.35
D.-35
答案:B
试题难度:三颗星知识点:多项式的最高次项
9.若x2+x-1=0,则代数式2x2+2x-6的值为()
A.-4
B.-2
C.0
D.2
答案:A
试题难度:三颗星知识点:整体带入
10.当x=2,y=-1时,5x2-(3y2+5x2)+(3y2+xy)的值为()
A.2
B.1
C.-1
D.-2
答案:D
试题难度:三颗星知识点:代入求值。