数学高一上册函数与方程专项练习
高一数学一元二次函数、方程与不等式重难点突破练习题含答案

高一数学 一元二次函数、方程与不等式考试时间:90分钟 满分:100分A 组 基础巩固(60分)一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.(2022·陕西渭南·高一期末)若集合{}{}|0,|23A x x B x x =>=-<<,则A B =( ) A .{}|0x x >B .{}|20x x -<<C .{}|03x x <<D .{}|2x x >-2.(2022·上海·华东师范大学第一附属中学高一阶段练习)如果0a b <<,那么下列不等式成立的是( ) A .11a b < B .2ab b < C .2ab a -<- D .11a b-<- 3.(2022·山东省胶州市第一中学高一期末)对于任意实数a b c d ,,,,以下四个命题中的真命题是( ) A .若a b <,0c ≠,则ac bc <B .若0a b >>,c d >,则ac bd >C .若a b >,则22a b >D .若22ac bc >,则a b >4.(2022·河北·石家庄外国语学校高一期中)已知0x >,0y >,且2x y xy +=,则2x y +的最小值为( )A .8B .C .9D .5.(2022·辽宁鞍山·高一阶段练习)设a<b<0,则下列不等式中不一定正确的是( )A .22a b > B .ac <bc C .|a|>-b D >6.(2022·辽宁鞍山·高一阶段练习)设x ∈R ,则“20x -≥”是“11x +≤”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 7.(2022·广东·新会陈经纶中学高一阶段练习)已知不等式220ax bx +-<的解集为{}12x x -<<,则不等式()2130ax b x +-->的解集为( )A .RB .∅C .{}13x x -<<D .{1x x <-或}3x >8.(2021·山东聊城一中高一阶段练习)若0x >,0y >,1x y +=,且14x m x y+>恒成立,则实数m 取值范围( )A .(),3-∞B .(),6-∞C .(),5-∞D .(),9-∞二、多选题:本大题共2小题,每个小题5分,共10分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.(2022·山东省胶州市第一中学高一期末)已知正数a ,b 满足22a b ab +=,则下列说法一定正确的是( ) A .24a b +≥B .4a b +≥C .8ab ≥D .2248a b +≥10.(2022·辽宁鞍山·高一阶段练习)下列说法正确的是( )A .“对任意一个无理数x ,2x 也是无理数”是真命题B .“0xy >”是“0x y +>”的充要条件C .命题“2R,10x x ∃∈+=”的否定是“2R,10x x ∀∈+≠”D .若“13x <<”的必要不充分条件是“22m x m -<<+”,则实数m 的取值范围是[1,3]三、填空题:本大题共2小题,每小题5分,共10分.把答案填在答题卡中的横线上.11.(2022·山东省胶州市第一中学高一期末)设α:13x ≤≤,β:124m x m +≤≤+(m ∈R ).若β是α的必要条件,则m 的取值范围是______.12.(2022·四川省泸县第四中学高一阶段练习)已知0,0x y >>且1x y +=,则14x y+的最小值为______________.B 组 能力提升(40分)四、解答题:本大题共4小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.13.(2022·上海·华东师范大学第一附属中学高一阶段练习)已知集合{}22|1,|352021x A x B x x x x -⎧⎫=≥=-++>⎨⎬-⎩⎭. (1)求A 、B ;(2)求A B ⋂、A .14.(2022·山东省胶州市第一中学高一期末)命题p :“[]1,2x ∀∈,20x x a +-≥”,命题q :“R x ∃∈,2320x x a ++-=”.(1)写出命题p 的否定命题p ⌝,并求当命题p ⌝为真时,实数a 的取值范围;(2)若p 和q 中有且只有一个是真命题,求实数a 的取值范围.15.(2022·辽宁鞍山·高一阶段练习)已知不等式()21460a x x +--<的解集是{}13x x -<<.(1)求常数a 的值;(2)若关于x 的不等式240ax mx ++≥的解集为R ,求m 的取值范围.16.(2021·山东聊城一中高一阶段练习)如图,学校规划建一个面积为2300m的矩形场地,里面分成两个部分,分别作为铅球和实心球的投掷区,并且在场地的左侧,右侧,中间和前侧各设计一条宽2m的通道,问:这个场地的长,宽各为多少时,投掷区面积最大,最大面积是多少?一元二次函数、方程与不等式参考答案考试时间:90分钟 满分:100分A 组 基础巩固(60分)一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.(2022·陕西渭南·高一期末)若集合{}{}|0,|23A x x B x x =>=-<<,则A B =( ) A .{}|0x x >B .{}|20x x -<<C .{}|03x x <<D .{}|2x x >- 【答案】C【分析】根据集合交集的定义求解即可.【详解】因为{}|0A x x =>,{}|23B x x =-<<,所以{}|03A B x x =<<,故选:C 2.(2022·上海·华东师范大学第一附属中学高一阶段练习)如果0a b <<,那么下列不等式成立的是( ) A .11a b < B .2ab b < C .2ab a -<- D .11a b-<- 1b ,代入各个选项检验,只有,1b,可得不正确.不正确.3.(2022·山东省胶州市第一中学高一期末)对于任意实数a b c d ,,,,以下四个命题中的真命题是( ) A .若a b <,0c ≠,则ac bc <B .若0a b >>,c d >,则ac bd >C .若a b >,则22a b >D .若22ac bc >,则a b >【答案】D【分析】根据不等式的基本性质,结合特值法,对每个选项进行逐一分析,即可容易求得结果.【详解】解:对于A ,若a b <,当0c <时,ac bc >,A 选项错误;对于B ,取2,1,1,2a b c d ===-=-,则ac bd =,B 选项错误;对于C ,取1,1a b ==-,则22a b =,C 选项错误;对于D ,若22ac bc >,显然0c ≠,故可得2()0c a b ->,又20c >,所以a b >,D 选项正确,故选:D.4.(2022·河北·石家庄外国语学校高一期中)已知0x >,0y >,且2x y xy +=,则2x y +的最小值为( )A .8B .C .9D .5.(2022·辽宁鞍山·高一阶段练习)设a<b<0,则下列不等式中不一定正确的是( )A .22a b > B .ac <bc C .|a|>-b D >6.(2022·辽宁鞍山·高一阶段练习)设x ∈R ,则“20x -≥”是“11x +≤”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.(2022·广东·新会陈经纶中学高一阶段练习)已知不等式220ax bx +-<的解集为{}12x x -<<,则不等式()2130ax b x +-->的解集为( )A .RB .∅C .{}13x x -<<D .{1x x <-或}3x >8.(2021·山东聊城一中高一阶段练习)若0x >,0y >,1x y +=,且m x y+>恒成立,则实数m 取值范围( )A .(),3-∞B .(),6-∞C .(),5-∞D .(),9-∞二、多选题:本大题共2小题,每个小题5分,共10分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.(2022·山东省胶州市第一中学高一期末)已知正数a ,b 满足22a b ab +=,则下列说法一定正确的是( ) A .24a b +≥B .4a b +≥C .8ab ≥D .2248a b +≥ 4b (当且仅当2ab (当且仅当22448a b ab +(当且仅当10.(2022·辽宁鞍山·高一阶段练习)下列说法正确的是( )A .“对任意一个无理数x ,2x 也是无理数”是真命题B .“0xy >”是“0x y +>”的充要条件C .命题“2R,10x x ∃∈+=”的否定是“2R,10x x ∀∈+≠”D .若“13x <<”的必要不充分条件是“22m x m -<<+”,则实数m 的取值范围是[1,3]三、填空题:本大题共2小题,每小题5分,共10分.把答案填在答题卡中的横线上.11.(2022·山东省胶州市第一中学高一期末)设α:13x ≤≤,β:124m x m +≤≤+(m ∈R ).若β是α的必要条件,则m 的取值范围是______.12.(2022·四川省泸县第四中学高一阶段练习)已知0,0x y >>且1x y +=,则x y+的最小值为______________.【答案】9【详解】试题分析:因为0,0x y >>且1x y +=,所以取得等号,故函数的最小值为9.,答案为9.B 组 能力提升(40分)四、解答题:本大题共4小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤. 13.(2022·上海·华东师范大学第一附属中学高一阶段练习)已知集合{}22|1,|352021x A x B x x x x -⎧⎫=≥=-++>⎨⎬-⎩⎭. (1)求A 、B ;(2)求A B ⋂、A . 【答案】(1)1|12A x x ⎧⎫-≤<⎨⎩=⎬⎭;1|23B x x ⎧⎫=-<<⎨⎬⎩⎭(2)11|32A B x x ⎧⎫=-<<⎨⎬⎩⎭;|1{x A x =<-或1}2x ≥ 【分析】(1)解出分式不等式和二次不等式即可;(2)由(1)利用集合交集和补集运算即可.【详解】(1)由2121x x -≥⇔-21021x x --≥-()()221021x x x ---⇔≥- ()()121011002121210x x x x x x x ⎧+-≤--+⇔≥⇔≤⇔⎨---≠⎩11121122x x x ⎧-≤≤⎪⎪⇔⇔-≤<⎨⎪≠⎪⎩, 所以集合1|12A x x ⎧⎫-≤<⎨⎩=⎬⎭; 由2213520352023x x x x x -++>⇔--<⇔-<<, 所以集合1|23B x x ⎧⎫=-<<⎨⎬⎩⎭. (2)由(1)1|12A x x ⎧⎫-≤<⎨⎩=⎬⎭,1|23B x x ⎧⎫=-<<⎨⎬⎩⎭所以11|32A B x x ⎧⎫=-<<⎨⎬⎩⎭; |1{x A x =<-或1}2x ≥.14.(2022·山东省胶州市第一中学高一期末)命题p :“[]1,2x ∀∈,20x x a +-≥”,命题q :“R x ∃∈,2320x x a ++-=”.(1)写出命题p 的否定命题p ⌝,并求当命题p ⌝为真时,实数a 的取值范围;(2)若p 和q 中有且只有一个是真命题,求实数a 的取值范围.15.(2022·辽宁鞍山·高一阶段练习)已知不等式()21460a x x +--<的解集是{}13x x -<<.(1)求常数a 的值;(2)若关于x 的不等式240ax mx ++≥的解集为R ,求m 的取值范围. 【答案】(1)1a =(2)[]4,4-【分析】(1)由题意可得-1和3是方程()21460a x x +--=的解,将=1x -代入方程中可求出a 的值;(2)由240x mx ++≥的解集为R ,可得0∆≤,从而可求出m 的取值范围【详解】(1)因为不等式()21460a x x +--<的解集是{}13x x -<<.所以-1和3是方程()21460a x x +--=的解,把=1x -代入方程解得1a =.经验证满足题意(2)若关于x 的不等式240ax mx ++≥的解集为R ,即240x mx ++≥的解集为R ,所以2160m ∆=-≤,解得44m -≤≤,所以m 的取值范围是[]4,4-.16.(2021·山东聊城一中高一阶段练习)如图,学校规划建一个面积为2300m 的矩形场地,里面分成两个部分,分别作为铅球和实心球的投掷区,并且在场地的左侧,右侧,中间和前侧各设计一条宽2m 的通道,问:这个场地的长,宽各为多少时,投掷区面积最大,最大面积是多少?【答案】长为30m ,宽为10m 时,投掷区面积最大为2192m .【解析】设场地的长为x ,宽为y ,投掷区域面积为S ,则()3000,0xy x y =>>,()(6)2S x y =--展开后利用基本不等式即可求最值.【详解】设场地的长为x ,宽为y ,投掷区域面积为S ,则()3000,0xy x y =>>,()(6)2122(x 3)3122(x 3y)S x y xy y =--=+-+=-+31222331243300312430192x y ≤-⨯⋅=-⨯=-⨯=,当且仅当3003xyx y=⎧⎨=⎩,即3010xy=⎧⎨=⎩时等号成立,所以这个场地的长为30m,宽为10m时,投掷区面积最大,最大面积是2192m.【点睛】本题主要考查了基本不等式的应用,利用基本不等式求最值解决实际问题.。
高一数学函数与方程试题

高一数学函数与方程试题1.已知一元二次方程的两个实根为,且,则的取值范围是()A.B.C.D.【答案】A【解析】由程的二次项系数为1>0,故函数图象开口方向朝上又∵方程的两根满足0<x1<1<x2,则,即,即其对应的平面区域如下图阴影示:∵表示阴影区域上一点与原点边线的斜率,由图可知∈故选A.【考点】一元二次方程的根的分布与系数的关系;线性规划.2.函数的图象与轴的交点个数是()A.4B.3C.1D.0【答案】B.【解析】首先将函数化简为,然后根据函数与方程的关系知,要求“函数的图像与轴的交点的个数”就转化为求“方程的实数根的个数”,于是对其进行分类讨论:①当时,令,解得,,此时方程有两个实数根满足题意;②当时,令,解得,,因为,不满足,故舍去,所以此时方程有且仅有一个实数根满足题意. 综上所述,方程的实数根的个数有3个,即函数的图像与轴的交点的个数有3个,故选B.【考点】函数与方程.3.一艘船上午在A处,测得灯塔S在它的北偏东300处,且与它相距海里,之后它继续沿正北方向匀速航行,上午到达B处,此时又测得灯塔S在它的北偏东750,此船的航速是()海里/小时。
A.B.C.D.【答案】D【解析】由题意得在三角形中,,由正弦定理得,即,得,因此航行的速度.【考点】正弦定理在三角形中的应用.4.函数的零点个数为.【答案】【解析】函数的零点,就是方程的根,转化为与的图象交点的横坐标,结合图象知有两个交点,故零点个为2个.【考点】函数的零点,数形结合的数学思想.5.方程的解所在的区间是()A.B.C.D.【答案】C【解析】设,则由指数函数与一次函数的性质可知,函数与的上都是递增函数,所以在上单调递增,故函数最多有一个零点,而,,根据零点存在定理可知,有一个零点,且该零点处在区间内,故选答案C.【考点】函数与方程.6.二次函数中,,则函数的零点个数是()A.0个B.1个C.2个D.无法确定【答案】C【解析】令=0,二次函数的零点就是相应一元二次方程的根。
高一数学竞赛:函数与方程

高一数学竞赛:函数与方程模块一:易错试题精选【例1】若,a b c <<则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间()A (),a b 和(),b c 内()B (),a -∞和(),a b 内()C (),b c 和(),c +∞内()D (),a -∞和(),c +∞内【例2】若函数()⎩⎨⎧>≤+=0,ln 0,1x x x x x f ,函数()1y f f x ⎡⎤=+⎣⎦的零点个数是___________.【例3】已知函数()x f 是定义在R 上的奇函数,且当()+∞∈,0x 时,()x x f x2017log 2017+=,则函数()x f 的零点个数是A .1B .2C .3D .4【例4】奇函数f (x )、偶函数g (x )的图象分别如图1、2所示,方程f (g (x ))=0、g (f (x ))=0的实根个数分别为a 、b ,则a +b 等于()A.14B.10C.7D.3【例5】设函数11,(,2)()1(2),[2,)2x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,则函数()()1F x xf x =-的零点的个数为A .4B .5C .6D .7【例6】函数322,2()log (2),2x x f x x x ⎧-≤⎪=⎨->⎪⎩,若函数()2–41()g x a f x x =-++有6个不同的零点,则a 的取值范围为()A.()0,2 B.(]0,2 C.(]0,1 D.()0,1【例7】设函数()4310{log 0x x f x x x +≤=>,,,若关于x 的方程()()()2230f x a f x -++=恰好有六个不同的实数解,则实数a 的取值范围为()A.()22-B.322⎛⎤- ⎥⎝⎦, C.3,2⎡⎫+∞⎪⎢⎣⎭D.()2,-+∞【例8】已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x m =有四个不同的解a b c d ,,,,且a b c d <<<,则的()21a b c c d++取值范围为()A.(]1,1- B.[)1,1- C.(1,)-+∞ D.(,1)-∞【例9】已知定义在R 上的函数()f x 满足(4044)4()f x f x -=-,若函数220192022x y x +=-与()y f x =的图象有m 个交点(,)(1,2,3)i i x y i m =L ,则1()miii x y =+=∑()(注111221()()()()mim m i x y xy x y x y =+=++++++∑L )A.2022mB.2019mC.2021mD.2024m模块二:培优试题精选【例1】已知定义在R 上的函数()f x 满足()()2f x f x +=,当[]1,1x ∈-时,()2f x x =,函数()()log 1,12,1a x x x g x x ⎧->=⎨≤⎩,若函数()()()h x f x g x =-在区间[]5,5-上恰有8个零点,则a 的取值范围为()A .(2,4)B .(2,5)C .(1,5)D .(1,4)【例2】关于x 的方程()242200x m x m ++++=有两个正根()1212,x x x x <,下列结论错误的是()A .102x <<B .226x <<C .1212x x x x +的取值范围是{01}xx <<∣D .2212x x +的取值范围是{440}xx <<∣【例3】设函数21,0()ln ,0ax ax x f x x x ⎧++≤⎪=⎨>⎪⎩,若函数()y f x a =+在R 上有4个不同的零点,则实数a 的取值范围是()A .4,3⎛⎫-+∞ ⎪⎝⎭B .(),0∞-C .[)1,0-D .4,13⎛⎤-- ⎥⎝⎦【例4】已知函数()()()2,0,2ln ,0,x x f x g x x x x x ⎧==-⎨>⎩,若方程()()()0f g x g x m +-=的所有实根之和为4,则实数m 的取值范围是()A .1m >B .1mC .1m <D .1m【例5】已知函数()2,1,121,11,,1,1xx x f x x x x x x ⎧<-⎪+⎪=--≤≤⎨⎪⎪>-⎩方程()()()()2220f x a f x a a R -++=∈的不等实根个数不可能是()A .2个B .3个C .4个D .6个【例6】已知函数()f x 是定义在R 上的奇函数,当0x >时,()()211,0212,22x x f x f x x ⎧--<≤⎪=⎨->⎪⎩,则函数()()1g x xf x =-在[)6,-+∞上的所有零点之和为()A .8B .32C .0D .18【例7】已知函数23e ,0()2,0x x x f x x x x ⎧-≤=⎨->⎩,()()2g x f x kx x =--有两个零点,则k 的可能取值为()A .2-B .1-C .0D .1【例8】设函数()f x 定义域为R ,(1)f x -为奇函数,(1)f x +为偶函数,当(1,1]x ∈-时,2()1f x x =-+,则下列结论正确的是()A .7324f ⎛⎫=-⎪⎝⎭B .(7)f x +为奇函数C .()f x 在(6,8)上为减函数D .方程()lg 0f x x +=仅有6个实数解【例9】已知函数()()211x xf x x x =->-,()()2log 11x g x x x x =->-的零点分别为α,β,给出以下结论正确的是()A .αββα=+B .22log ααββ+=+C .4αβ+>D .1αβ->-【例10】设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若方程()f x m =有四个不相等的实根()1,2,3,4i x i =,则()2221234x x x x +++的取值范围为___________.【例11】设a ∈R ,对任意实数x ,记(){}2min 2,35f x x x ax a =--+-.若()f x 至少有3个零点,则实数a 的取值范围为______.【例12】已知偶函数()f x 满足()()33f x f x +=-,且当[0,3]x ∈时,()221f x x x =-++,若关于x 的方程()()230f x tf x --=在[150,150]-上有300个解,则实数t 的取值范围是_____.【例13】已知函数()f x 定义城为(]0,12,恒有(4)4()f x f x +=,(]0,4x ∈时2()22x f x -=-;若函数2()()()g x f x t f x =+⋅有4个零点,则t 的取值范围为________.【例14】已知函数212,2()2ln(1),2x x x f x x x ⎧-+<≤⎪=⎨⎪->⎩,当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,函数1()()4g x f f x m ⎛⎫=+- ⎝⎭有6个不同的零点,求m 的取值范围___________.【例15】已知函数2|2|,0,()|log |,0,x x f x x x +≤⎧=⎨>⎩若关于x 的方程()0f x k -=有4个不相等的实数根a ,b ,c ,d ,则+++a b c d 的取值范围是___________,abcd 的取值范围是___________.【例16】已知函数()1ln ,1121,1x f x x x x ⎧⎛⎫-<-⎪ ⎪=+⎝⎭⎨⎪+-⎩,则函数()f x 的零点是__________;若函数()()()g x f f x a =-,且函数()g x 有三个不同的零点,则实数a 的取值范围是__________.【例17】已知函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩,若存在互不相等的实数a ,b ,c ,d 使得()()()()f f b f d m a c f ====,则(1)实数m 的取值范围为_________;(2)+++a b c d 的取值范围是_________.【例18】已知函数()()2ln ,068,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,则函数()f x 的各个零点之和为______;若方程1f x mx ⎛⎫+= ⎪⎝⎭恰有四个实根,则实数m 的取值范围为______.模块三:全国高中数学联赛试题精选【例1】(全国竞赛题)已知定义在+R 上的函数)(x f 为⎩⎨⎧--=x x x f 41log )(39,90,>≤<x x ,设c b a ,,是三个互不相同的实数,满足)()()(c f b f a f ==,求abc 的取值范围。
高一数学第2章 一元二次函数、方程和不等式 章末测试(提升)(解析版)

第2章 一元二次函数、方程和不等式 章末测试(提升)第I 卷(选择题)一、单选题(每题5分,8题共40分)1.(2022·全国·专题练习)“不等式20x x m -+>在R 上恒成立”的充要条件是( ) A .14m >B .14m <C .1m <D . 1m【答案】A【解析】∵不等式20x x m -+>在R 上恒成立, ∵24(10)m ∆--<= ,解得14m >, 又∵14m >,∵140m ∆=-<,则不等式20x x m -+>在R 上恒成立, ∵“14m >”是“不等式20x x m -+>在R 上恒成立”的充要条件,故选:A. 2.(2022·四川成都)下列函数中,最小值为2的函数是( ) A .()10y x x x=+≠ B .222y x x -=+C .()230y x x x =+≥D .2211y x x =++【答案】D【解析】A.当0x <时,()()1122⎛⎫=--+≤--⋅=- ⎪--⎝⎭y x x x x ,当且仅当1x x-=-,即1x =-时,等号成立;当0x >时,112y x x x x=+≥⋅=,当且仅当1x x =,即1x =时,等号成立;故错误;B. ()2222111y x x x =-+=-+≥,故错误; C. ())223023123=+≥=+=+≥y x x x xx x ,故错误;D. 22221121211y x x x x +≥+⋅=++2211x x ++0x =时,等号成立,故正确故选:D3.(2022·安徽·合肥已知正数x ,y 满足21133x y x y+=++,则x y +的最小值( )A 322+B .324C 322+D .328+【答案】A【解析】令3x y m +=,3x y n +=,则211m n+=, 即()()()334m n x y x y x y +=+++=+,∵211212324442444444m n m n m n m n x y m n n m n m +⎛⎫⎛⎫+==++=+++≥⋅ ⎪⎪⎝⎭⎝⎭ 322324422==, 当且仅当244m n n m=,即22m =21n =时,等号成立, 故选:A.4.(2021·江苏·高一专题练习)下列说法正确的是( ) A .若2x >,则函数11y x x =+-的最小值为3 B .若0x >,0y >,315x y +=,则54x y +的最小值为5C .若0x >,0y >,3x y xy ++=,则xy 的最小值为1D .若1x >,0y >,2x y +=,则12y+的最小值为322+【答案】D【解析】选项A :1111121?13111y x x x x x x =+=-++-=---,当且仅当()211x -=时可以取等号, 但题设条件中2x >,故函数最小值取不到3,故A 错误;选项B :若0x >,0y >,315x y+=,则()1311512151219415545419192?555x y x y x y x y x y y x y x ⎛⎛⎫⎛⎫++=++=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝512x y y x =时不等式可取等号,故B 错误;选项C :32230xy x y xy xy xy -=+⇒+-当且仅当x y =时取等号,()0xy t t =,2230t t +-,解得31t -,即01xy ,故xy 的最大值为1,故C 错误; 选项D :2x y +=,()11x y -+=,()()()21211212·11232?3221111x x y y x y x y x y x y x y --⎛⎫⎡⎤+=+-+=++++=+ ⎪⎣⎦----⎝⎭ 当且仅当22y x =又因为2x y +=,故222x y ⎧=⎪⎨=⎪⎩即121x y+-最小值可取到322+, 故D 正确. 故选:D .5.(2022·北京·101)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是( ) A .30 B .60C .900D .1800【答案】B【解析】23300010()Q C f Q Q Q+==,3300010Q Q =+ ,3300022306010Q Q ≥⋅⨯=,当且仅当3300010Q Q =,即当100Q =时等号成立.所以f (Q )的最小值是60.故选:B.6.(2022·山西现代双语学校南校)已知关于x 的不等式()()()2233100,0a m x b m x a b +--->>>的解集为1(,1)(,)2-∞-+∞,则下列结论错误的是( )A .21a b +=B .ab 的最大值为18C .12a b+的最小值为4D .11a b+的最小值为322+【答案】C【解析】由题意,不等式()()223310a m x b m x +--->的解集为(]1,1,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭,可得230a m +>,且方程()()223310a m x b m x +---=的两根为1-和12,所以131223111223b m a m a m -⎧-+=⎪⎪+⎨⎪-⨯=-⎪+⎩,所以232a m +=,31b m -=-,所以21a b +=,所以A 正确;因为0a >,0b >,所以2122a b ab +=≥18ab ≤,当且仅当122a b ==时取等号,所以ab 的最大值为18,所以B 正确; 由121244()(2)44448b a b aa b a b a b a b a b+=++=++≥+⋅+=, 当且仅当4b a a b =时,即122a b ==时取等号,所以12a b+的最小值为8,所以C 错误; 由()111122233232b a b a a b a b a b a b a b⎛⎫+=++=++≥+⋅ ⎪⎝⎭ 当且仅当2b aa b=时,即2b a 时,等号成立, 所以11a b+的最小值为322+D 正确. 故选:C .7.(2022·广东深圳·高一期末)设a ,b ∈R ,0a b <<,则( ) A .22a b < B .b aa b> C .11a b a>- D .2ab b >【答案】D【解析】因为0a b <<,则0a b ->->,所以()()22a b ->-,即22a b >,故A 错误; 因为0a b <<,所以0ab >,则10ab>, 所以11a b ab ab⋅<⋅,即11b a <,∵1a a b a >=,1b b b a =>,即b aa b<,故B 错误; ∵由()()()11a a b b a b a a b a a b a---==---,因为0,0a b a -<<,所以()0a b a ->,又因为0b <,所以110a b a -<-,即11a b a<-,故C 错误; 由0a b <<可得,2ab b >,故D 正确. 故选:D.8.(2022·福建·厦门一中高一期中)已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是( ) A .0a > B .不等式20ax cx b ++>的解集为{|2727}x x < C .0a b c ++< D .不等式0ax b +>的解集为{}|3x x >【答案】B【解析】因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以0a <,所以选项A 错误;由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,2727x x x --<∴<+所以选项B正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误; 不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误. 故选:B二、多选题(每题至少有两个选项为正确答案,少选且正确得2分,每题5分。
人教A版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷含答案解析(33)

人教A版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷(共22题)一、选择题(共10题)1.若不等式x2+mx+1>0的解集为R,则m的取值范围是()A.R B.(−2,2)C.(−∞,−2)∪(2,+∞)D.[−2,2]2.某公司一年购买某种货物600吨,每次都购买x吨,运费为3万元/次,一年的总存储费用为2x万元,若要使一年的总运费与总存储费用之和最小,则每次需购买( )吨.A.20B.30C.40D.153.已知a,b∈R,且a−3b+6=0,则2a+18b的最小值为( )A.14B.4C.52D.34.若关于x的不等式kx2−kx<1的解集是全体实数,则实数k的取值范围是( )A.(−4,0)B.(−4,0]C.(−∞,−4)∪(0,+∞)D.(−∞,−4)∪[0,+∞)5.在R上定义运算“⊙”: a⊙b=ab+2a+b,则满足x⊙(x−2)<0的实数x则的取值范围为( )A.(0,2)B.(−2,1)C.(−∞,−2)∪(1,+∞)D.(−1,2)6.当1≤x≤4时,若关于x的不等式2x2−8x−4−a>0有解,则实数a的取值范围是( )A.{a∣ a<−4}B.{a∣ a>−4}C.{a∣ a>−12}D.{a∣ a<−12}7.为不断满足人民日益增长的美好生活需要,实现群众对舒适的居住条件、更优美的环境、更丰富的精神文化生活的追求,某大型广场正计划进行升级改造.改造的重点工程之一是新建一个长方形音乐喷泉综合体A1B1C1D1,该项目由长方形核心喷泉区ABCD(阴影部分)和四周绿化带组成.规划核心喷泉区ABCD的面积为1000m2,绿化带的宽分别为2m和5m(如图所示).当整个项目占地A1B1C1D1面积最小时,则核心喷泉区BC的长度为( )A . 20 mB . 50 mC . 10√10 mD . 100 m8. 已知 x >0,y >0,满足 x 2+2xy −1=0,则 2x +y 的最小值是 ( ) A .√22B . √2C .√32D . √39. 不等式组 {−2(x −3)>10,x 2+7x +12≤0 的解集为 ( )A . [−4,−3]B . [−4,−2]C . [−3,−2]D . ∅10. 已知 x ,y 为正实数,则 4xx+3y +3y x的最小值为 ( )A . 53B .103C . 32D . 3二、填空题(共6题) 11. 已知 m =a +1a−2(a >2),n =22−b 2(b ≠0),则 m n .12. 已知 a <b ,若二次不等式 ax 2+bx +c ≥0 对任意实数 x 恒成立,则 M =a+2b+4c b−a的最小值为 .13. 已知 a >0,b >−1,且 a +b =1,则 a 2+2a+b 2b+1的最小值为 .14. 已知 a,b,c ∈R +,且 ab +2ac =4,则 2a +2b+2c +8a+b+2c的最小值是 .15. 已知 a >0,b >0,则 22a+√2b的最小值为 .16. 若正实数 a ,b 满足 a +b =4,则 1a+1+4b+1 的最小值是 .三、解答题(共6题)17.已知a>0,b>0,且2a+b=1.求S=2√ab−4a2−b2的最大值.18.(1) 若a∈R,解关于x的不等式:(x+a−2)(x+2a2−4a)≥0.(2) 若−1≤a≤2时,不等式(x+a−2)(x+2a2−4a)≥0恒成立,求x的取值范围.19.已知函数f(x)=mx2−mx−1.若对于x∈[1,3],存在x,使f(x)<5−m成立,如何求m的取值范围?20.已知不等式ax2−3x+b<0的解集为(1,2),设函数f(x)=ax2+(c−b)x−bc.(1) 求a,b的值;(2) 求f(x)<0的解集.21.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙用砖,每米长造价45元,顶部每平方米造价20元.计算:(1) 仓库底面积S的最大允许值是多少?(2) 为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?22.解下列关于x的不等式.(1) log2(x2−4x)<5.(2) ax2−(a+1)x+1<0(a∈R).答案一、选择题(共10题) 1. 【答案】B【解析】【分析】利用一元二次不等式的解法即可得出.【解析】解:∵不等式x 2+mx +1>0的解集为R ,∴△=m 2−4<0,解得−2<m <2. ∴m 的取值范围是(−2,2). 故选:B .【点评】熟练掌握一元二次不等式的解法是解题的关键.2. 【答案】B【知识点】均值不等式的实际应用问题3. 【答案】C【知识点】均值不等式的应用4. 【答案】B【解析】当 k =0 时,0<1 恒成立,当 k ≠0 时,要使 kx 2−kx −1<0 的解集是全体实数, 只需满足 {k <0,Δ=(−k )2+4k <0,解得 −4<k <0.故实数 k 的取值范围是 (−4,0]. 【知识点】二次不等式的解法5. 【答案】B【解析】根据给出的定义得 x ⊙(x −2)=x (x −2)+2x +(x −2)=x 2+x −2=(x +2)(x −1),由 x ⊙(x −2)<0 得 (x +2)(x −1)<0,解得 −2<x <1,故该不等式的解集是 (−2,1). 【知识点】二次不等式的解法6. 【答案】A【解析】原不等式 2x 2−8x −4−a >0 可化为 a <2x 2−8x −4,由题意,可知只需当 1≤x ≤4 时,a 小于 y =2x 2−8x −4 的最大值,易得当 1≤x ≤4 时,y =2x 2−8x −4 的最大值是 −4,所以 a <−4. 【知识点】二次不等式的解法7. 【答案】B【解析】设 BC =x ,则 CD =1000x,所以,S平行四边形A1B1C1D1=(x+10)(1000x+4)=1040+(4x+10000x)≥1040+2√4x⋅10000x =1440,当且仅当4x=10000x,即x=50时,取“=”号,所以当x=50时,S平行四边形A1B1C1D1最小.【知识点】均值不等式的实际应用问题8. 【答案】D【解析】因为正实数x,y满足x2+2xy−1=0,所以y=12x −x2,所以2x+y=2x+12x −x2=32x+12x=12(3x+1x)≥12×2√3x⋅1x=√3,当且仅当x=√33时取等号,所以2x+y的最小值为√3,故选D.【知识点】均值不等式的应用9. 【答案】A【解析】{−2(x−3)>10,x2+7x+12≤0⇒{x−3<−5,(x+3)(x+4)≤0⇒{x<−2,−4≤x≤−3⇒−4≤x≤−3.【知识点】二次不等式的解法10. 【答案】D【解析】因为x,y为正实数,所以4xx+3y +3yx=41+3yx+(1+3yx)−1≥2⋅√41+3yx⋅(1+3yx)−1=3,当且仅当41+3yx =1+3yx时,即“x=3y”时“=”成立.【知识点】均值不等式的应用二、填空题(共6题)11. 【答案】>【解析】因为a>2,所以a−2>0,又因为m=a+1a−2=(a−2)+1a−2+2≥2√(a−2)⋅1a−2+2=4,当且仅当a−2=1a−2,即(a−2)2=1,又a−2>0,所以a−2=1,即a=3时取等号.所以m≥4.因为b≠0,所以b2≠0,所以2−b2<2,所以22−b2<4,即n<4,所以m>n.【知识点】均值不等式的应用12. 【答案】8【解析】由条件知a>0,b−a>0.由题意得Δ=b2−4ac≤0,解得c≥b24a,所以M=a+2b+4cb−a≥a+2b+4⋅b2 4ab−a=a2+2ab+b2a(b−a)=[2a+(b−a)]2a(b−a)=(b−a)2+4a(b−a)+4a2a b−a=b−aa +4ab−a+4≥2√b−aa ⋅4ab−a+4=4+4=8,当且仅当b=3a时等号成立,所以M的最小值为8.【知识点】均值不等式的应用13. 【答案】3+2√22【解析】a2+2a+b2b+1=a+2a+(b+1)2−2(b+1)+1b+1=a+2a+b+1−2+1b+1,又a+b=1,a>0,b+1>0,所以a+2a +b+1−2+1b+1=2a+1b+1=(2a+1b+1)(a2+b+12)=32+b+1a+a2(b+1)≥32+2√b+1a⋅a2(b+1)=3+2√22,当且仅当b+1a =a2(b+1)即a=4−2√2,b=2√2−3时取等号,所以a 2+2a+b2b+1的最小值为3+2√22.【知识点】均值不等式的应用14. 【答案】4【知识点】均值不等式的应用15. 【答案】2【知识点】均值不等式的应用16. 【答案】 32【解析】因为 a >b ,b >0,且 a +b =4, 则 a +1+b +1=6, 所以 a+16+b+16=1,所以1a+1+4b+1=(1a+1+4b+1)(a+16+b+16)=16+23+2(a+1)3(b+1)+b+16(a+1)≥56+2√2(a+1)3(b+1)⋅(b+1)6(a+1)=32,当且仅当 2(a+1)3(b+1)=b+16(a+1) 时,等号成立, 即 b +1=2(a +1),即 a =1,b =3 时,1a+1+4b+1取得最小值为 32.【知识点】均值不等式的应用三、解答题(共6题)17. 【答案】因为 a >0,b >0,2a +b =1,所以 4a 2+b 2=(2a +b )2−4ab =1−4ab ,且 1=2a +b ≥2√2ab , 即 √ab ≤√24,ab ≤18,所以 S =2√ab −4a 2−b 2=2√ab −(1−4ab )=2√ab +4ab −1≤√2−12, 当且仅当 a =14,b =12 时,等号成立.因此,当 a =14,b =12 时,S 的最大值为 √2−12. 【知识点】均值不等式的应用18. 【答案】(1) 原不等式即:[x −(2−a )]×[x −(4a −2a 2)]≥0,方程 [x −(2−a )]×[x −(4a −2a 2)]=0 的二根为 2−a ,4a −2a 2, 令 2−a <4a −2a 2 即 2a 2−5a +2<0,解得 12<a <2,所以当 12<a <2 时,原不等式解集为 {x∣ x ≥4a −2a 2或x ≤2−a}.令 2−a =4a −2a 2 即 2a 2−5a +2=0,解得 a =12 或 a =2, 所以当 a =12 或 a =2 时,原不等式解集为 R .令 2−a >4a −2a 2 即 2a 2−5a +2>0,解得 a <12或 a >2,所以当 a <12或 a >2 时,原不等式解集为 {x∣ x ≥2−a 或x ≤4a −2a 2}.(2) 因为 −1≤a ≤2, 所以 0≤2−a ≤3,因为 4a −2a 2=−2(a −1)2+2, 所以 −6≤4a −2a 2≤2,所以当 −1≤a ≤2 时,2−a ,4a −2a 2 二式的最小值为 −6,最大值为 3. 所以欲使 −1≤a ≤2 时,不等式 [x −(2−a )]×[x −(4a −2a 2)]≥0 恒成立, 应有 x ≤−6 或 x ≥3.【知识点】恒成立问题、二次不等式的解法19. 【答案】由题意知 f (x )<5−m 有解,即 m <6x 2−x+1有解,则 m <(6x 2−x+1)max,又 x ∈[1,3],得 m <6,即 m 的取值范围为 (−∞,6). 【知识点】二次不等式的解法20. 【答案】(1) 因为不等式 ax 2−3x +b <0 的解集为 (1,2), 所以 1 和 2 是关于 x 的方程 ax 2−3x +b =0 的两个根, 由根与系数的关系得 {1+2=−−3a,1×2=ba ,所以 a =1,b =2.(2) 由(1)知 f (x )=ax 2+(c −b )x −bc =x 2+(c −2)x −2c , f (x )=(x −2)(x +c )<0,不等式对应的方程的两根为 2 和 −c . 当 c >−2,即 −c <2 时,−c <x <2; 当 c =−2,即 −c =2 时,(x −2)2<0 无解; 当 c <−2,即 −c >2 时,2<x <−c .综上所述,当 c >−2 时,不等式的解集为 {x∣ −c <x <2}; 当 c =−2 时,不等式的解集为 ∅;当 c <−2 时,不等式的解集为 {x∣ 2<x <−c }. 【知识点】二次不等式的解法21. 【答案】(1) 设正面铁栅长 x m ,侧面长为 y m ,总造价为 z 元,则 z =40x +2×45y +20xy =40x +90y +20xy ,仓库底面积 S =yx m 2.由题意知 z ≤3200,即 4x +9y +2xy ≤320. 因为 x >0,y >0,所以 4x +9y ≥2√4x ⋅9y =12√xy , 当且仅当 4x =9y 时,等号成立,所以 6√S +S ≤160,即 (√S)2+6√S −160≤0, 所以 0<√S ≤10, 所以 0<S ≤100.故 S 的最大允许值为 100 m 2.(2) 当 S =100 m 2 时,4x =9y ,且 xy =100. 解得 x =15,y =203.故正面铁栅长应设计为 15 m . 【知识点】均值不等式的实际应用问题22. 【答案】(1) 因为 log 2(x 2−4x )<5,所以 {x 2−4x >0,x 2−4x <32 即 {x <0或x >4,−4<x <8,解得 −4<x <0 或 4<x <8,故不等式 log 2(x 2−4x )<5 的解集为 (−4,0)∪(4,8). (2) ax 2−(a +1)x +1<0 等价于 (ax −1)(x −1)<0, 当 a >0 时,若 0<a <1,则 1a >1,此时 1<x <1a ; 若 a =1,则不等式为 (x −1)2<0,此时无解; 若 a >1,则1a<1,此时1a<x <1,当 a =0 时,不等式为 −x +1<0,此时 x >1; 当 a <0 时,1a<0,此时,x <−1a或 x >1,综上,当 0<a <1 时,解集为 (1,1a );当 a =1 时,解集为 ∅; 当 a >1 时,解集为 (1a ,1); 当 a =0 时,解集为 (1,+∞);)∪(1,+∞).当a<0时,解集为(−∞,−1a【知识点】简单的对数方程与不等式(沪教版)、二次不等式的解法11。
高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)

高一数学必修一第二章一元二次函数、方程和不等式单元测试试卷 (3)数学第二章测试卷A卷本试卷满分100分,考试时间80分钟。
一、单项选择题(本大题共5小题,每小题5分,共计25分。
在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案填涂在答题卡相应位置上)1.若$a+b+c=0$,且$a<b<c$,则下列不等式一定成立的是A。
$ab<bc$B。
$ab<ac$XXX<bc$D。
$ab<bc$2.已知正数$a$、$b$满足$\frac{22}{1194}+\frac{a}{b}=1$,则$\frac{a}{b}+\frac{b}{a}$的最小值是A。
6B。
12C。
24D。
363.已知二次函数$f(x)=x^2+bx+c$的两个零点分别在区间$(-2,-1)$和$(-1,0)$内,则$f(3)$的取值范围是A。
$(12,20)$B。
$(12,18)$C。
$(18,20)$D。
$(8,18)$4.若$x>0$,$y>0$,且$\frac{2}{x+1}+\frac{1}{x+2y}=1$,则$2x+y$的最小值为A。
2B。
$\frac{2}{3}$C。
$2+\frac{2}{3}$D。
$3$5.关于$x$的不等式$(ax-1)<x$恰有2个整数解,则实数$a$的取值范围是A。
$-\frac{34}{43}<a\leq-\frac{3}{4}$或$\frac{4}{3}<a\leq\frac{43}{34}$B。
$-\frac{3}{4}<a\leq-\frac{2}{3}$或$\frac{2}{3}<a\leq\frac{3}{4}$C。
$-\frac{34}{43}\leq a<-\frac{3}{4}$或$\frac{4}{3}\leq a<\frac{43}{34}$D。
$-\frac{3}{4}\leq a<-\frac{2}{3}$或$\frac{2}{3}\leq a\leq\frac{3}{4}$二、多项选择题(本大题共2小题,每小题5分,共计10分。
第二章《一元二次函数、方程和不等式》单元测试A卷——高一上学期数学人教A版(2019)必修第一册含答

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第二章《一元二次函数、方程和不等式》单元测试A 卷(答卷时间:40分钟,满分:100分)一、单选题(本题共 7 小题,每小题 5 分,共 35 分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知a b >,c R Î则下列结论正确的是( )A .22a b > B .22ac bc > C .a c b c +>+ D .ac bc<2.若0x >,则1x x +的最小值为( )A .2B .3C .D .43.不等式2230x x --<的解集为( )A .{}|31x x -<< B .{}|13x x -<<C .{}|13x x x <->或D .{}|31x x x <->或4.已知01x <<,则(1)x x -的最大值为( )A .13 B .12 C .14 D .235.已知25,1,4A x B x =+=+则A 和B 的大小关系是( )A .A B > B .A B < C .A B ³ D .无法确定6.已知不等式230ax bx +->的解集为{}|13x x <<,则a b -=( )A .3- B .1- C .3 D .5-7.若1x >,则函数411y x x =-+-取得最小值时x 的值为 ()A .2B .32C .3D .4二、多选题(本题共 3小题,每小题 5 分,共 15 分.在每小题给出的四个选项中,有多个选项符合题目要求,完全正确得5分,选对部分得3分,出现错误选项得0分)8. 设,a b 为任意两个非零实数,那么“不等式11a b<成立”的一个充分不必要条件是 ( )A .0a b <<B .0a b -<C .0a b >>D .a b>9.已知0,0,a b >>下列说法一定成立的是 ( )A .222a b ab +³2a b+£C .a b +> D.22433a a +++()的最小值为410.对于任意实数x ,不等式230x ax -+>恒成立,则实数a 可以是 ( )A .2B .3C .D .4三、填空题(本题共 4小题,每小题 5 分,共 20分,其中14题第一个空2分,第二个空3分)11.不等式201x x ->+的解集是________.12.已知0,a >1,a b +=则a b a a ++的最小值是________.13.设,,a b c R Î则“a b >”是“22ac bc >”的_______________条件.14.已知0,0,m n >>且m 和n 的算术平均数不小于它们的几何平均数,则此不等关系的表达式为______________,8m n +=时,mn 的最大值为____________.四、解答题(本题共 3道大题,每道大题 10分,共 30分.解答应写出必要的文字说明、证明过程或演算步骤.)15.解下列一元二次不等式(1)23100x x -->; (2)22950x x --+>.16.已知,x R Î21,4M x =+N x =,比较M 和N 的大小关系,写出详细过程.17. 若0,a b >>0c d <<求证:(1)11a b<; (2)a c b d->-第二章《一元二次函数、方程和不等式》单元测试A 卷参考答案一、单选题(本题共 7 小题,每小题 5 分,共 35 分.在每小题给出的四个选项中,只有一项符合题目要求)1.C.解析:A 选项中当22()()a b a b a b -=+-无法判断a b +的正负所以无法确定2a 与2b 的大小关系,另外也可以根据不等式的性质中只有满足条件0a b >³,才能得到22a b >因此A 错误;B 选项中当0c =时22ac bc =,0c ¹时22ac bc >,因此B 错误;C 选项中由于a b >,不等式两边同时加上同一实数c ,不等号的方向不变(同向可加性)因此C 正确;D 选项中由于不清楚实数c 的正负,无法通过a b >得到ac 和bc 的大小关系, 故选C.2.A.解析:基本不等式:0,0a b >>2a b +£,当且仅当a b =时等号成立.其中式子2a b +£可变形为a b +³.由于0x >则10x >,因此1x x +³即12x x +³, 当且仅当1x x =即1x =时12x x +=,等号成立,所以1x x +的最小值为2, 故选A.(注意利用基本不等式求最大值或最小值需要满足的条件)3.A.解析:解一元二次方程2230x x --=得1213x x =-=,, 且二次函数223y x x =--的图象开口向上,由此该二次函数的图象如图.通过对该函数图象的观察,得到不等式2230x x --<的解集为{}|13x x -<<, 故选A. (注意借助二次函数与一元二次方程、不等式之间的联系,是求解一元二次不等式的一般性方法).x02a b +£,当且仅当a b =时等号成立.变形得2()2a b ab +£.由01x <<可知0x >,10x ->,则211(1)(24x x x x +--£=,当且仅当1x x =-即12x =时等号成立,所以当12x =时1x x =-有最大值14,故选C.5.C. 分析:比较两项的大小关系,在性质特征不是很明显的情况下通常采用作差法,如果不能直接看出差值与0的大小关系,可将作差的结果进行适当变形,从而得出结论. 解析:22251110442A B x x x x x -=+-+-+=-³()=(),所以0A B -³,因此A B ³,故选C.6.D. 解析:因为不等式230ax bx +->的解集为{}|13x x <<,所以1和3是方程230ax bx +-=的两个解.解法一:将1x =和3x =分别代入230ax bx +-=得{2211303330a b a b +-=+-=g g g g 即{309330a b a b +-=+-=解得{14a b =-=所以5a b -=-,故选D.解法二:方程230ax bx +-=的两个解1和3,说明方程230ax bx +-=是一元二次方程, 0a ¹,则可利用根与系数的关系得到方程组13313ba a +=--´=-ìíî解得{14a b =-=所以5a b -=-,故选D.7.C. 解析:1x >则410,01x x ->>-,所以4141y x x =-+³=-,当且仅当且仅当411x x -=-,即3x =时411y x x =-+-取得最小值4, 所以411y x x =-+-取得最小值时3x =,故选C.二、多选题(本题共 3小题,每小题 5 分,共 15 分.在每小题给出的四个选项中,有多个选项符合题目要求,完全正确得5分,选对部分得3分,出现错误选项得0分)8.AC.思路:题中考查选项中哪几个是“不等式11a b <成立”的充分不必要条件,则该条件成立时可以推出11a b <,而当11a b<成立时无法推出该条件成立.本题考查不等式相关知识,因此注重利用不等式性质及作差法的运用技巧.解析:A 选项,充分性:当0a b <<成立时11a b <也成立,因此充分性成立;必要性:当11a b<成立时无法判断0a b <<成立,因此必要性不成立.所以 “0a b <<”是“不等式11a b<成立”的充分不必要条件. B 选项,充分性:当0a b -<成立时11b a a b ab --=,由于无法确定ab 的符号,因此无法确定11a b<是否成立,因此充分性不成立;必要性:当11a b <成立时110b a a b ab--=<,由于无法确定ab 的符号,无法判断0a b -<成立,因此必要性不成立.所以 “0a b -<”是“不等式11a b<成立”的既不充分也不必要条件.C 选项,充分性:当0a b >>成立时10,ab>利用不等式的性质可知11,a b ab ab >g g 因此11b a >,即11a b <成立,因此充分性成立;必要性:当11a b<成立时无法判断0a b >>成立,因此必要性不成立.所以 “0a b >>”是“不等式11a b<成立”的充分不必要条件. D 选项,充分性:1111,,a b ab b ab a==g g 当a b >成立时由于无法确定1ab 的正负,所以无法确定1a ab g 和1b ab g 的大小关系,即无法确定11a b<成立,因此充分性不成立;必要性:同理当11a b<成立时无法确定a b >成立,因此必要性不成立.所以 “a b >”是“不等式11a b<成立”的既不充分也不必要条件.综上所述可知正确选项为AC.9.AB.解析:因为0,0,a b >>重要不等式222a b ab +³2a b +£均成立,故A,B 正确,当且仅当a b =2a b +=即a b +=,所以a b +>成立,C 错误, 由于2330a +³>,2403a >+则224343a a ++³=+() 当且仅当22433a a =++()成立时等号成立,由于22433a a =++()时21a =-无解,所以22433a a +++()无法取得最小值4,因此D 错误. 综上所述可知正确选项为AB.本题考查对基本不等式的理解及对是否符合利用基本不等式求最值条件的判定能力.10.ABC. 解析:任意实数x ,不等式230x ax -+>恒成立,则函数23y x ax =-+的最小值2min 413041a y ´´-=>´,解得a -<<则选项中满足该条件的实数a 可以是故选ABC.点评:将一元二次不等式恒成立问题转化为函数的最值问题是常见的解题策略,即若0(0)y y ><恒成立则只需min max 0(0)y y ><,这一结论是解决这类问题的关键,也是解决恒成立问题的总的思考方向.三、填空题(本题共 4小题,每小题 5 分,共 20分,其中14题第一个空2分,第二个空3分)11. {}|12x x x <->或解析:本道题考查分式不等式的等价转换.不等式201x x ->+等价于2)(1)0x x -+>(,解得12x x <->或,所以201x x ->+的解集为{}|12x x x <->或,注意解集要写成集合或区间的形式,区间形式将会在下一章学习到.12.2解析:本道题考查基本不等式的构造思维能力和对运用基本不等式求最值方法的掌握.1,a b +=则1=a b a a a a +++,因为10,0a a >>则1=a b a a a a +++³,当且仅当1=a a ,即=1a 时等号成立,因此a b a a++的最小值为2.13.必要不充分条件解析:充分性:,,a b c R Î,当a b >,0c =时2=0c ,22==0ac bc ,因此a b >Þ/22ac bc >,充分性不成立; 必要性:22ac bc >时说明20c ¹,那么一定有20c >,210c >,由不等式的性质可知此时222211ac bc c c>g g ,即a b >,因此22ac bc a b >Þ>必要性成立.综上所述“a b >”是“22ac bc >”的必要不充分条件.14. 第一空:+2m n ³第二空:16解析:0,0,m n >>且m 和n 的算术平均数是+2m n ,m 和n ,因此“m 和n 的算术平均数不小于它们的几何平均数”的符号表达式为+2m n ³+2m n ³变形可知2+(2m n mn £,当且仅当=m n 时等号成立, 8m n +=,mn £28(2=16,所以当且仅当4m n ==时mn 的最大值16.四、解答题(本题共 3道大题,每道大题 10分,共 30分.解答应写出必要的文字说明、证明过程或演算步骤.)15. 解:(1)解一元二次方程2310=0x x --得1=2x -,2=5x 则一元二次函数2=310y x x --的图象如图}5>.(2)不等式22950x x --+>的等价不等式为22+950x x -<解一元二次方程22+95=0x x -得15x =-,21=2x 则22+950x x -<的解集为1|52x x ìü-<<íýîþ即一元二次不等式22950x x --+>的解集为1|52x x ìü-<<íýîþ.方法指导:解一元二次不等式可以从解一元二次方程的根入手,了解一元二次方程与相应二次函数图象的联系,画出二次函数的图象,能根据具体函数图象得到相应一元二次不等式的解集.另外在学习本节课内容之后可以用课堂上推广的一般结论,解决相关问题.注意要明确课本上一般结论的推广过程,理解知识本质,体会数形结合和函数思想的应用,以及具体到抽象,特殊到一般的研究问题的基本方法.16. 分析:比较两项的大小关系,在性质特征不是很明显的情况下通常采用作差法,如果不能直接看出差值与0的大小关系,可将作差的结果进行适当变形,从而得出结论.解:221144M N x x x x -=+-=-+2211222x x =-+g (21=()2x - 因为,x R Î所以21(02x -³所以0M N -³,即M 和N 的大小关系是M N ³.17. 分析:通过观察不难发现两个小问均可采用作差法或利用不等式的性质直接证明.解:(1)0a b >>则10ab>由不等式的性质可知11a b ab ab >g g ,即11b a >,所以11a b<(2)0c d <<则0c d ->->又0a b >>Q ()()a cb d \+->+-ac bd \->-。
高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年数学高一上册函数与方程专项练习方程,是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,通常在两者之间有一等号=。
精品准备了数学高一上册函数与方程专项练习,具体请看以下内容。
一、选择题:
1.(2019课标全国)在下列区间中,函数f(x)=ex+4x-3的零点所在的区间为( )
A.(,0)
B.(0,) C ) D.(,) 444224
2.方程|x2-2x|=a2+1 (a0)的解的个数是( )
A.1 B 2 C.3 D.4
3.(2019福建)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m 的取值范围是
A.(-1,1)
B.(-2,2) C (-,-2)(2,+) D.(-,-1)(1,+)2??x+2x-3,x0,4.函数f(x)=?的零点个数为()?-2+lnx,x0?
A.3 B 2 C.1 D.0
5.已知三个函数f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零点依次为a,b,c,则( )
A.a
二、填空题(每小题5分,共15分)
116若函数f(x)=x2-ax-b的两个零点是2和3,则函数
g(x)=bx2-ax-1的零点是_______.(答案- 23
7.已知函数f(x)=ln x-x+2有一个零点所在的区间为(k,k+1) (kN*),则k的值为________.(答案3)
8.定义在R上的奇函数f(x)满足:当x0时,f(x)=2014x+log2 014x,则在R 上,函数f(x)
零点的个数为________.答案3
9. (2019深圳模拟)已知函数f(x)=x+2x,g(x)=x+ln x,h(x)=x-x-1的零点分别为x1,
x2,x3,则x1,x2,x3的大小关系是______________.答案x1
2??x-x-1,x2或x-1,10.若f(x)=?则函数g(x)=f(x)-x的零点为____________.答案12或1 ?1,-1
11.(13分)已知函数f(x)=4x+m2x+1有且仅有一个零点,求m的取值范围,并求出该零点.
(m=-2时,f(x)有唯一零点,该零点为x=0.)
12.下列说法正确的有________:
①对于函数f(x)=x2+mx+n,若f(a)0,f(b)0,则函数f(x)在区间(a,b)内一定没有零点. ②函数f(x)=2x-x2有两个零点. ③若奇函数、偶函数有零点,其和为0.
④当a=1时,函数f(x)=|x2-2x|-a有三个零点.
B组专项能力提升
一、选择题(每小题5分,共15分)
1x1.已知函数f(x)=log2x-??3,若实数x0是方程f(x)=0的解,且0
A恒为负B.等于零C.恒为正D.不小于零
二、填空题(每小题4分,共12分)
2.用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间
[1.4,1.5],则要达到精确度要求至少需要计算的次数是________.答案7
3.已知函数y=f(x) (xR)满足f(-x+2)=f(-x),当x[-1,1]时,f(x)=|x|,则y=f(x)与y=log7x的交点
的个数为________答案6
x??2-1,x0,4. (2019海淀调研)已知函数f(x)=?2若函数g(x)=f(x)-m有3个零点,?-x-2x,x0,?
则实数m的取值范围是________.答案(0,1)
5.(1) m为何值时,f(x)=x2+2mx+3m+4.
①有且仅有一个零点;(m=4或m=-1.)②有两个零点且均比-1大;(m的取值范围为(-5,-1).)
(2)若函数f(x)=|4x-x|+a有4个零点,求实数a的取值范围.(-4,0).
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的数学高一上册函数与方程专项练习,希望
大家喜欢。