多元线性回归模型习题及答案
计量经济学章节练习题(第三章 多元线性回归模型)已改

第三章 多元线性回归模型一、单项选择题1、决定系数2R 是指【 】A 剩余平方和占总离差平方和的比重B 总离差平方和占回归平方和的比重C 回归平方和占总离差平方和的比重D 回归平方和占剩余平方和的比重2、在由n=30的一组样本估计的、包含3个解释变量的线性回归模型中,计算的多重决定系数为0.8500,则调整后的决定系数为【 】A 0.8603B 0.8389C 0.8 655D 0.83273、设k 为模型中的参数个数,则回归平方和是指【 】 A 21)(Y Yn i i -∑= B 21)ˆ(in i i Y Y -∑= C 21)ˆ(Y Y n i i-∑= D )1/()(21--∑=k Y Y n i i4、下列样本模型中,哪一个模型通常是无效的【 】A i C (消费)=500+0.8i I (收入)B d i Q (商品需求)=10+0.8i I (收入)+0.9i P (价格)C s i Q (商品供给)=20+0.75i P (价格)D i Y (产出量)=0.656.0i L (劳动)4.0iK (资本) 5、对于iki k i i i e X X X Y +++++=ββββˆˆˆˆ22110 ,统计量∑∑----)1/()ˆ(/)ˆ(22k n Y Y k Y Y i i i 服从【 】 A t(n-k) B t(n-k-1) C F(k-1,n-k) D F(k,n-k-1)6、对于iki k i i i e X X X Y +++++=ββββˆˆˆˆ22110 ,检验H 0:0=i β),,1,0(k i =时,所用的统计量)ˆvar(ˆi it ββ=服从【 】A t(n-k-1)B t(n-k-2)C t(n-k+1)D t(n-k+2)7、调整的判定系数 与多重判定系数 之间有如下关系【 】A 1122---=k n n R RB 11122----=k n n R R C 11)1(122---+-=k n n R R D 11)1(122-----=k n n R R 8、用一组有30 个观测值的样本估计模型i i i i u X X Y +++=22110βββ后,在0.05的显著性水平下对的显著性作t 检验,则1β显著地不等于零的条件是其统计量t 大于【 】 A 05.0t (30) B 025.0t (28) C (27) D 025.0F (1,28)9、如果两个经济变量X 与Y 间的关系近似地表现为当X 发生一个绝对量变动(∆X )时,Y 有一个固定地相对量(∆Y/Y )变动,则适宜配合的回归模型是【 】A i i i u X Y ++=10ββB ln i i i u X Y ++=10ββC i ii u X Y ++=110ββ D ln i i i u X Y ++=ln 10ββ 10、对于iki k i i i e X X X Y +++++=ββββˆˆˆˆ22110 ,如果原模型满足线性模型的基本假设,则在零假设j β=0下,统计量)ˆ(/ˆjj s ββ(其中s(j β)是j β的标准误差)服从【 】 A t (n-k ) B t (n-k-1) C F (k-1,n-k ) D F (k ,n-k-1)11、下列哪个模型为常数弹性模型【 】A ln i i i u X Y ++=ln ln 10ββB ln i i i u X Y ++=10ln ββC i i i u X Y ++=ln 10ββD i ii u X Y ++=110ββ 12、模型i i i u X Y ++=ln 10ββ中,Y 关于X 的弹性为【 】1β025.0tA iX 1β B i X 1β C i Y 1β D i Y 1β 13、模型ln i i i u X Y ++=ln ln 10ββ中,的实际含义是【 】A X 关于Y 的弹性B Y 关于X 的弹性C X 关于Y 的边际倾向D Y 关于X 的边际倾向14、关于经济计量模型进行预测出现误差的原因,正确的说法是【 】A.只有随机因素B.只有系统因素C.既有随机因素,又有系统因素D.A 、B 、C 都不对15、在多元线性回归模型中对样本容量的基本要求是(k 为解释变量个数):【 】A n ≥k+1B n<k+1C n ≥30或n ≥3(k+1)D n ≥3016、用一组有30个观测值的样本估计模型i i i i u X X Y +++=22110βββi ,并在0.05的显著性水平下对总体显著性作F 检验,则检验拒绝零假设的条件是统计量F 大于【 】A F 0.05(3,30)B F 0.025(3,30)C F 0.05(2,27)D F 0.025(2,27)17、对小样本回归系数进行检验时,所用统计量是( )A 正态统计量B t 统计量C χ2统计量D F 统计量18、在多元回归中,调整后的判定系数2R 与判定系数2R 的关系有【 】A 2R <2RB 2R >2RC 2R =2RD 2R 与2R 的关系不能确定 19、根据判定系数2R 与F 统计量的关系可知,当2R =1时有【 】A F =-1B F =0C F =1D F =∞20、回归分析中,用来说明拟合优度的统计量为【 】A 相关系数B 判定系数C 回归系数D 标准差21、对于二元线性回归模型的总体显著性检验的F 统计量,正确的是【 】。
(完整版)多元线性回归模型习题及答案

多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( D )A. 0.8603B. 0.8389C. 0.8655D.0.8327 2.下列样本模型中,哪一个模型通常是无效的(B ) A.iC (消费)=500+0.8iI (收入)B. di Q (商品需求)=10+0.8i I (收入)+0.9i P (价格) C. si Q (商品供给)=20+0.75i P (价格)D. iY (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t ty b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C )A.)30(05.0t B.)28(025.0t C.)27(025.0t D.)28,1(025.0F4.模型tt t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)7. 调整的判定系数 与多重判定系数之间有如下关系( D )A.2211n R R n k -=-- B. 22111n R R n k -=---C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=----8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。
多元线性回归模型习题及答案

多元线性回归模型习题及答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为,则调整后的多重决定系数为( D )2.下列样本模型中,哪一个模型通常是无效的(B )A. i C (消费)=500+i I (收入)B. d i Q (商品需求)=10+i I (收入)+i P (价格)C. s i Q (商品供给)=20+i P (价格)D. iY (产出量)=0.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在的显着性水平上对1b 的显着性作t 检验,则1b 显着地不等于零的条件是其统计量t 大于等于( C )A. )30(05.0tB. )28(025.0tC. )27(025.0tD. )28,1(025.0F4.模型t t t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向 5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( C )(n-k+1) (n-k-2)(n-k-1) (n-k+2)7. 调整的判定系数 与多重判定系数 之间有如下关系( D ) A.2211n R R n k -=-- B. 22111n R R n k -=--- C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=---- 8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。
回归习题二

回归习题二:多元线性回归模型1、某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为214 .0210.0131.0094.036. 102321=++-= RXXXY其中,Y为劳动力受教育的年数,X1为劳动力家庭中兄弟姐妹的人数,X2和X3分别为母亲和父亲受教育的年数。
问:(1)X1是否具有预期的影响?为什么?若X2和X3保持不变,为了使预测的受教育水平减少一年,需要X1增加多少?(2)请对X2的系数给予适当的解释。
(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数为12年,另一个父母受教育的年数为16年,则两人受教育的年数预期相差多少?2、以企业研发支出(R&D )占销售额的比重为被解释变量Y,以企业销售额X1和利润占销售额的比重X2为解释变量,一个容量为32的样本企业的估计结果如下:099 .0)046.0()22.0() 37 .1(05.0log32.0472.022 1=+ += RX XY其中括号中为系数估计值和标准差。
(1)解释logX1的系数。
如果X1增加10%,估计Y会变化多少个百分点?这在经济上是一个很大的影响吗?(2)针对R&D强度随着销售额的增加而提高这一备择假设,检验它不随着X1而变化的假设。
分别在5%和10%的显着性水平上进行这个检验。
(3) 利润占销售额的比重X2对R&D 强度Y 是否在统计上有显着的影响。
3、下表为有关经批准的私人住房单位及其决定因素的4个模型的估计量和相关统计值(括号内为p 值,即以对应的t 统计量为临界值的置性度α)(如果某项为空,则意味着模型中没有此变量)。
数据为美国40个城市的数据。
模型如下:μββββββββ++++++++=776655443322110X X X X X X X Y其中,Y 为实际颁发的建筑许可证数量,X1为每平方英里的人口密度,X2为自有房屋的均值(单位:百美元),X3为平均家庭的收入(单位:千美元),X4为1980~1992年的人口增长百分比,X5为失业率,X6为人均交纳的地方税,X7为人均交纳的州税。
第三章多元线性回归模型习题答案

&第三章 多元线性回归模型一、单项选择题1、C2、A3、B4、A5、C6、C7、A8、D9、B 10、D一、单项选择题1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明( C ) A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著】C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。
则对回归模型进行总体显著性检验(F 检验)时构造的F 统计量为 ( A )A 、(1)ESS k F RSS n k =--B 、(1))ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、已知二元线性回归模型估计的残差平方和为2800i e =∑,估计用样本容量为23n =,则随机误差项t μ的方差的OLS 估计值为( B )!A 、B 、 40C 、D 、4、在多元回归中,调整后的决定系数2R 与决定系数2R 的关系为 ( A )A 、22R R <B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定5、下面说法正确的有 ( C )A 、时间序列数据和横截面数据没有差异B 、对回归模型的总体显著性检验没有必要C 、总体回归方程与样本回归方程是有区别的:D 、决定系数2R 不可以用于衡量拟合优度6、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞7、线性回归模型的参数估计量ˆβ是随机向量Y 的函数,即1ˆ()X X X Y β-''=。
ˆβ是 ( A )A 、随机向量B 、非随机向量C 、确定性向量D 、常量8、下面哪一表述是正确的 ( D )A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ ;B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系9、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 ( B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --10、下列说法中正确的是 ( D )。
多元线性回归模型(习题与解答)

多元线性回归模型(习题与解答)第三章多元线性回归模型一、习题(一)基本知识类题型3-1.解释下列概念:1)多元线性回归2)虚变量3)正规方程组4)无偏性5)一致性6)参数估计量的置信区间7)被解释变量预测值的置信区间8)受约束回归9)无约束回归10)参数稳定性检验3-2.观察下列方程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?1)i i i X Yεββ++=3102)i i i X Yεββ++=log103)i i i X Yεββ++=log log104)i i i X Yεβββ++=)(2105)i ii X Yεββ+=106)i i i X Yεββ+−+=)1(1107)i i i i X X Yεβββ+++=10221103-3.多元线性回归模型与一元线性回归模型有哪些区别?3-4.为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计的条件是什么?3-5.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?3-6.请说明区间估计的含义。
(二)基本证明与问答类题型3-7.什么是正规方程组?分别用非矩阵形式和矩阵形式写出模型:i ki k i i i u x x x y+++++=ββββL22110,n i,,2,1L =的正规方程组,及其推导过程。
3-8.对于多元线性回归模型,证明:(1)∑=0i e(2)0)ˆˆˆ(ˆ110=+++=∑∑iki k i i i e x x e yβββL3-9.为什么从计量经济学模型得到的预测值不是一个确定的值?预测值的置信区间和置信度的含义是什么?在相同的置信度下如何才能缩小置信区间?为什么?3-10.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?3-11.设有模型:u x x y+++=22110βββ,试在下列条件下:(1)121=+ββ(2)21ββ=分别求出1β和2β的最小二乘估计量。
元线性回归模型习题及答案解析

一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。
DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。
CA 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
BA i i ˆˆ0Y Y 0σ∑=时,(-)=B 2iiˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i iˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。
DA ()()()i i 12iX X Y -Y ˆX X β--∑∑=B()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii122iX Y -nXY ˆX -nXβ∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
第三章(多元线性回归模型)3-3答案(可编辑修改word版)

ESS kRSS (n - k -1) n3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元), 会影响 t 统计量和 R 2 的数值。
( F )2、在多元线性回归中,t 检验和 F 检验缺一不可。
( T) 3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。
( F )4、多元线性回归中,可决系数 R 2 是评价模型拟合优度好坏的最佳标准。
(F )二 、单项选择1、在模型Y t = 0 + 1 X 1t + 2 X 2t + 3 X 3t + t 的回归分析结果中,有 F = 462.58 ,F 的p 值= 0.000000 ,则表明(C )A 、解释变量 X 2t 对Y t 的影响不显著B 、解释变量 X 1t 对Y t 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量 X 2t 和 X 1t 对Y t 的影响显著2、设k 为回归模型中的实解释变量的个数, n 为样本容量。
则对回归模型进行总体显著性 检验( F 检验)时构造的 F 统计量为 (A )A 、 F =B 、 F =C 、 F =ESS RSSD 、 F = 1-RSS TSS3、在多元回归中,调整后的可决系数 R 2与可决系数 R 2 的关系为 ( A )A 、 R 2 < R 2 C 、 R 2= R 2B 、 R 2 > R 2D 、 R 2 与 R 2 的关系不能确定4、根据调整的可决系数 R 2 与 F 统计量的关系可知,当 R 2 = 1 时,有 (C ) A 、F=0B 、F=-1C 、F→+∞D 、F=-∞5、下面哪一表述是正确的 (D )1 nA 、线性回归模型Y i = 0 + 1 X i + i 的零均值假设是指∑i= 0i =1ESS (k -1)RSS (n - k )0 1 1i 2 2ik ki i B 、对模型Y i = 0 + 1 X 1i + 2 X 2i + i 进行方程显著性检验(即 F 检验),检验的零假 设是 H 0 : 0 = 1 = 2 = 0C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于Y i = ˆ +ˆ X +ˆ X+… +ˆ X + e ,如果原模型满足线性模型的基本假设则 在零假设 j = 0 下, 统计量 ˆj (B ) s (ˆj ) ( 其中 s (ˆj ) 是 j 的标准误差) 服从A 、t (n - k )B 、t (n - k -1)C 、 F (k -1, n - k )D 、 F (k , n - k -1)6、在由 n = 30 的一组样本估计的、包含 3 个解释变量的线性回归模型中,计算得多重可决系数为 0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.8327 7、可决系数 R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型 y t= b 0 + b 1 x 1t + b 2 x 2t + ...... + b k x kt + u tH 0 : b t = 0(i = 0,1, 2,...k ) 时,所用的统计量服从(C )中,检验A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型Y i = 0 + 1 X 1i + 2 X 2i + i 进行总体显著性检验,如 果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、1 = 2 = 0 C 、1 ≠ 0,2 ≠ 0 E 、1= 0,2 = 0B 、1 ≠ 0,2 = 0 D 、1= 0,2 ≠ 02、设 k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所用的 F 统计量可以表示为( BC )∑(Y ˆ - Y )2/(n - k )∑(Y ˆ - Y )2/(k - 1)A 、 ii 2 ( ) B 、 ii 2 ( ) ∑e i / k- 1 ∑e i/ n- k R 2 /(k - 1)C 、(1 - R 2 )/(n - k )(1 - R 2 )/(n - k )D 、R 2/(k - 1)R2/(n -k )E、(1 -R2)/(k -1)3、在多元回归分析中,调整的可决系数R2与可决系数R2之间(AD )A、R2<R2B、R2≥R2C、R2只可能大于零D、R2可能为负值E、R2不可能为负值四、简答题1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数R2的值往往会变大,从而增加了模型的解释功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、单项选择题1.在由n 30的一组样本估计的、包含 3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( D ) A. 0.8603 B. 0.8389 C. 0.8655 D.0.8327 2. 下列样本模型中,哪一个模型通常是无效的( B )C IA. Ci (消费)=500+0.8 打(收入)B. Qd (商品需求)=10+0.8 I i (收入)+0.9 P (价格)3.用一组有30个观测值的样本估计模型 y tb o b i^tdX 2t U t 后,在0.05的显著性水平上对b1的显著性作 t 检验,则 b1显著地不等于零的条件是其统计量t大于等于(C )A 10.05 (30)Bt 0.025(28)Ct 0.025 (27 )DF 0.025 (1,28)4.模型 ln y t lnb 0 b 1 In x t U t中,bl 的实际含义是(B )A. x 关于y 的弹性B.y 关于x 的弹性C. x关于y的边际倾向 D.y关于X 的边际倾向5、 在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明 模型中存在(C) A.异方差性 B.序列相关 C.多重共线性D .高拟合优度6. 线性回归模型 y tb ) b 1x 1t b 2x 2t ........ b k x kt u t 中,检验 H °:b t 0(i 0,1,2,...k )时,所用的统计量 A.t (n-k+1) B.t (n-k-2)多元线性回归模型C.D.Q i(商品供给)=20+0.75 P(价格)(产出量)=0.65 L i(劳动)K i 0.4(资本)服从(C )C. t (n-k-1)D.t (n-k+2)7.调整的判定系数&关于经济计量模型进行预测出现误差的原因,正确的说法是( A. 只有随机因素 B. 只有系统因素 C.既有随机因素,又有系统因素 D.A 、B 、C 都不对 9•在多元线性回归模型中对样本容量的基本要求是 (k 为解释变量个数):(C )A n > k+1B *k+1C n > 30 或 n > 3 ( k+1)D n > 30 10、下列说法中正确的是: (D )2A 如果模型的R 很高,我们可以认为此模型的质量较好_2B 如果模型的R 较低,我们可以认为此模型的质量较差C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量 11.半对数模型丫 011 nX中,参数1的含义是(A. R 2C. R 2 n 1 2R 2n k 1“ n 1 一 J 、 1 (1 R) D.n k 1B.R 2 1R 2 1之间有如下关系丄丄R 2 n k 1 丄^(1 n k 1R 2)与多重判定系数C )。
A. X的绝对量变化,引起Y的绝对量变化B. Y 关于X 的边际变化C. X 的相对变化,引起 Y 的期望值绝对量变化D. Y 关于X 的弹性 12.半对数模型lnY 0l X中,参数1的含义是(A )。
A. X 的绝对量发生一定变动时,引起因变量 Y 的相对变化率B. Y 关于X 的弹性C. X 的相对变化,引起 Y 的期望值绝对量变化D. Y 关于X 的边际变化13.双对数模型lnY 0 l lnX 中,参数1的含义是(D )。
A. X 的相对变化,引起 Y 的期望值绝对量变化B. Y 关于X 的边际变化C. X 的绝对量发生一定变动时,引起因变量 Y 的相对变化率D. Y 关于X 的弹性 、多项选择题 1. 将非线性回归模型转换为线性回归模型,常用的数学处理方法有( C. 被解释变量的变差中,回归方程不能做出解释的部分 D. 被解释变量的总变差与回归平方和之差E. 被解释变量的实际值与回归值的离差平方和 5.回归变差(或回归平方和)是指(BCD )A. 被解释变量的实际值与平均值的离差平方和B. 被解释变量的回归值与平均值的离差平方和C. 被解释变量的总变差与剩余变差之差D. 解释变量变动所引起的被解释变量的变差E. 随机因素影响所引起的被解释变量的变差 3.设k 为回归模型中的参数个数(包括截距项) ,则总体线性回归模型进行显著性检验时所 用的F 统计量可表示为()。
A.直接置换法 D. 广义最小二乘法B.对数变换法E.加权最小二乘法)C.级数展开法2.在模型lnY iln1In X ii中(ABCDA. Y 与X 是非线性的 C. InY 与1是线性的 E. Y 与In X 是线性的B. Y 与1是非线性的 D.In Y 与InX 是线性的3.对模型y t b o blX 1t b 2X 2t U t 进行总体显著性检验, 则有( BCD)A b 1b 2 0 B. bi 0,b 2D b 1 0,b 2 0 E.bi b 2 04.剩余变差是指( ACDE)bi 0, b 2 0A. 随机因素影响所引起的被解释变量的变差B. 解释变量变动所引起的被解释变量的变差如果检验结果总体线性关系显著,C.(Y? Y)2 (n k) (Y? Y)2 (k 1)A. e2/(k 1)B. e2/( n k)R2(k 1) (1 R2)(n k) C.(1 R2)5 k) D.R2(k 1)R 2 (n k) E. (1 R 2V(k 1)7.在多元线性回归分析中,修正的可决系数2 2A. R <RB.C. R 2只能大于零D.三、名词解释偏回归系数;回归变差、剩余变差;多重决定系数、调整后的决定系数、偏相关系数 名词解释答案 1. 偏回归系数:2. 回归变差:简称 ESS,表示由回归直线(即解释变量)所解释的部分,表示 x 对y 的线性影响。
3. 剩余变差:简称RSS 是未被回归直线解释的部分,是由解释变量以外的因素造成的影响。
4. 多重决定系数:在多元线性回归模型中, 回归平方和与总离差平方和的比值,也就是在被解释变量的总变差中能由解释变量所解释的那部分变差的比重,我们称之为多重决定系数, 仍用R 表示。
5. 调整后的决定系数:又称修正后的决定系数,记为 解释变量的增加而增大的缺陷提出来的,6.偏相关系数:在Y 、X 、X 2三个变量中,当 X 既定时(即不受 X 的影响),表示Y 与X 之间 相关关系的指标,称为偏相关系数,记做 R Y2.1。
四、简答1.给定二元回归模型:y t b o bx jt b 2x 2t U t ,请叙述模型的古典假定。
解答:(1)随机误差项的期望为零,即E(u t ) 0。
(2)不同的随机误差项之间相互独立,即 cov(U t ,U s ) E[(u t E(uJ)(U s E(U s )] E(gU s ) 0。
3)随机误差项的方差与 t 无关, 为一个常数,即var(u t )2。
即同方差假设。
(4)随机误差项与解释变量不相关,即cov(X jt ,U t ) 0 (j 1,2,…,k)。
通常假定X jt 为非随机变量,这个假设自动成立。
(5)随机误差项U t 为服从正态分布的随机变量,即U t : N(0, 2)。
(6)解释变量之间不存在多重共线性,即假定各解释变量之间不存在线性关系,即不存在多重共线性。
2. 在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优 度?解答:因为人们发现随着模型中解释变量的增多,多重决定系数 R 2的值往往会变大,从而增加了模型的解释功能。
这样就使得人们认为要使模型拟合得好,就必须增加解释变量。
但是,在样本容量一定的情况下, 增加解释变量必定使得待估参数的个数增加, 从而损失自由 度,而实际中如果引入的解释变量并非必要的话可能会产生很多问题, 比如,降低预测精确 度、引起多重共线性等等。
为此用修正的决定系数来估计模型对样本观测值的拟合优度。
23. 修正的决定系数R 及其作用。
解答:_e 2 / n k 1R 2 1E 2,其作用有:(1 )用自由度调整后,可以消除拟合优度(y t y)2/n 1评价中解释变量多少对决定系数计算的影响; (2)对于包含解释变量个数不同的模型,可以用调整后的决定系数直接比较它们的拟合优度的高低, 但不能用原来未调整的决定系数来比较。
2 2R 与可决系数R 之间()。
2 2 R > R2R 可能为负值R 2,是为了克服多重决定系数会随着其公式为:R 21e 2/(n k 1) (y t y)/(n 1)4. 常见的非线性回归模型有几种情况? 解答:常见的非线性回归模型主要有 (1)对数模型 lny t b 0 b In x t u t⑵ 半对数模型 y t b 0 b In x t u t 或 In y t b 0 b 1x tu t111 ⑶倒数模型y b 0 b | - u 或一 b 0 b 1 - ux yx2k⑷多项式模型yb 0 dx b 2x ... dx u⑸成长曲线模型包括逻辑成长曲线模型y t匕飞7和Gompertz 成长曲线模型1 b 0e b1t5. 观察下列方程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。
3① y t b ° bx t U t② y t b ° d log 人 U t ③ log y t b ° bjogx t U t④ y ^/⑴人)U t解答:①系数呈线性,变量非线性;②系数呈线性,变量非呈线性;③系数和变量均为非线 性;④系数和变量均为非线性。
6. 观察下列方程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。
③ y t 6/(6冷)U t ④ y t 1 b °(1 x,) U t 解答:①系数呈线性,变量非呈线性;②系数非线性,变量呈线性③系数和变量均为非线性; ④ 系数和变量均为非线性。
五、计算和分析题1. 根据某地1961 —1999年共39年的总产出Y 、劳动投入L 和资本投入K 的年度数据,运用 普通最小二乘法估计得出了下列回归方程:(0.237) (0.083) (0.048)y tK b o b① y t b ° b 1 log 人 U t ② y t 5 bidx t ) U t式下括号中的数字为相应估计量的标准误。
(1) 解释回归系数的经济含义;(2) 系数的符号符合你的预期吗?为什么?解答:(1)这是一个对数化以后表现为线性关系的模型,lnL 的系数为1.451意味着资本投入K 保持不变时劳动一产出弹性为 1.451 ;lnK 的系数为0.384意味着劳动投入L 保持不变 时资本一产出弹性为 0.384.(2)系数符号符合预期,作为弹性,都是正值。