第4章模糊函数汇编
模糊集合

精确集合
X 6
1
X 6
A 0
A 1
X 6
模糊集合
13
A ( x) 1
A ( x) [0 1]
1
6
13
2) 连续形式: 令X = R+ 为人类年龄的集合, 模糊集合 B = “年龄在50岁左右”则表示为:
B { x, B ( x ) | x X } 1 式中: B ( x) x 50 4 1 ( ) 10
112121xfxfxxf??它的定义比模糊凸的定义严格不符合凸函数条件1x2x语言变量5元组为特征?????????规则与各值含义有关的语法值名称的句法规则产生论域术语的集合变量的名称
基于模糊推理的智能控制
1)模糊集合与模糊推理
2)模糊推理系统
3)模糊控制系统
0. 模糊概念
天气冷热
雨的大小
风的强弱
Trig(x;20,60,80)
Trap(x;10,20,60,90)
g(x;50,20)
bell(x:20,4,50)
隶属函数的参数化:
以钟形函数为例, bell ( x; a, b, c) a,b,c,的几何意义如图所示。
1
1
x c 2b a
斜率=-b/2a
c-a
c
c+a
改变a,b,c,即可改变隶属函数的形状。
R(U ,V ) {( x, y, R ( x, y)) | ( x, y) U V } U ,V 是二个论域。
同 一 空 间
R ( x, y) [0,1]
y1 y2 y3 y4
x1 0.8 1.0 0.1 0.7 0 x2 0 0.8 0 x3 0.9 1.0 0.7 0.8
模糊关系及其合成

2.2 模糊集合论基础
15
五、模糊关系及其合成 例3:假如设身高 X {140,150,160,170,180} ,体重 Y {40,50,60,70,80} ,定义体重和身高的模糊关系为 R,则R是定义在笛卡儿积上的子集。有 :
40 50 60 70 80
140
150 160
1
0.8 0.2
2.2 模糊集合论基础
5
五、模糊关系及其合成 3、模糊矩阵的合成 0.2 例:设有模糊矩阵: Q 求其合成运算。
(0.2 0.5) (0.5 1) (1 0.9) (0.2 0.6) (0.5 0.4) (1 0.1) S Q R (0.7 0.6) (0.1 0.4) (0.8 0.1) (0.7 0.5) (0.1 1) (0.8 0.9)
2.2 模糊集合论基础 10
其中:1表示有关系R,0表示没有关系R。
五、模糊关系及其合成 定义:所谓笛卡儿积 X Y {( x, y) x X , y Y} 上的模糊 关系R,是指以 X Y 为论域的一个模糊子集。 笛卡儿积上的模糊关系,表示两个集合的元素间 所具有的某种关系的程度,是普通关系的推广。 当论域为有限集时,模糊关系可以用矩阵来表示, 称为模糊矩阵。 模糊关系的运算服从模糊子集的法则,如并、交、 补等。
1 0.7 1 0.5 0.3 0.5 R 1 0 . 9 1 0 . 2 0 . 1 0 . 8
3
2.2 模糊集合论基础
五、模糊关系及其合成 2、模糊矩阵的运算:并,交,补
注: 维数相同的矩阵才能进行并、交运算。 并交运算可以推广到多个矩阵。 模糊矩阵是向量表示法的推广。
模糊集合及其运算

40
31 0.78 110 85 0.75
50
39 0.78 120 95 0.79
60
47 0.78 129 101 0.78
70
53 0.76
由表 1可见,隶属频率随试验次数 n 的增加而呈现
稳定性,稳定值为 0.78,故有 [青年人] (27) = 0.78。
模糊统计与概率统计的区别: 模糊统计:变动的圆盖住不动的点 概率统计:变动的点落在不动的圆内
(2)随着n的增大,频率呈现稳定,此稳定值即为
u 0 对A的隶属度:
* u A 的次数 0 A ( u )lim 0 n n
例 取年龄作论域 X,通过模糊试验确定 x0= 27(岁)
对模糊集“青年人” A 的隶属度。
张南伦曾对 129 名学生进行了调查试验,要求
每个被调查者按自己的理解确定“年青人” (即 A)
0.1 0.2 0.2 B A 0.3 0.3 0.3 0.4 0.5 0.5
(3)模糊矩阵的转置
T ( a ) , 定义:设 A 称 A (aji )nm为A的 ij m n
转置矩阵。 (4)模糊矩阵的 截矩阵 定义:设 A 对任意的 称 [ 0 , 1 ], ( a ) , ij m n
1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1
A0 .5
0 0 0 0 0 1 1 0 1 1
A0 .8
三、隶属函数的确定 1、模糊统计法
模糊统计试验的四个要素:
(1)论域U; (2)U中的一个固定元素 u 0 ;
* A (3)U中的一个随机运动集合 ;
~
A 称为 A 隶属函 确定了一个U上的模糊子集 A 。映射 ~ ~ ~
模糊控制实例

x2 2 x5 A1 ( x ) 3 , 8 x 5 x 8 3
y 5 B1 ( y ) 3 11 y 3 z 1 C1 ( z ) 3 7 z 3 5 y 8 , 8 y 11
计算机控制算法
属函数 C ( z ) 为:
(1)以连续型重心法作为解模糊化机构:首先找出
因此
z 1 1 z 3 3 2 3 z 5 3 7 z C ( z ) 5 z 6 3 1 6 z 8 3 9 z 8 z9 3 3 z 1 52 67 z 81 99 z zdz zdz zdz zdz zdz 1 3 5 6 8 3 3 3 3 3 z 3 z 1 52 67 z 81 99 z dz dz dz dz 1 3 3 3 5 3 6 3 8 3 dz 28 16 49 28 25 18 3 18 6 18 2 4 1 2 1 3 3 2 3 6 4.7
{负大,负中,负小,负零,正零,正小,正中,正大}
{NB,NM,NS,NO,PO,PS,PM,PB}
第3章
计算机控制算法
2.变量的模糊化
基本论域:某个变量变化的实际范围 误差的基本论域为 [ xe , xe ] 误差变化的基本论域为[ xc , xc ] 输出变量的基本论域为[ yu , yu ]
变量的模糊子集论域 {n, n 1,
,0,
, n 1, n}
基本论域到模糊子集论域的转换公式
2n a b y x ba 2
模糊化就是将清晰的某个输入变量按隶属度转换到与 之相对应的模糊量的过程。
第3章
计算机控制算法
二、模糊计算

§2.3 模糊集合的运算 2.3.1 模糊集合的基本运算 一、模糊集合并、交、补运算定义2.3.1 模糊集合的包含、相等设A ~、B ~为论域X 上的两个模糊集合,对于X 中每一个元素x ,都有)()(~~x x BAμμ≥,则称A ~包含B ~,记作B A ~~⊇。
如果B A ~~⊇,且A B ~~⊇,则说A ~与B ~相等,记作B A ~~=。
由于模糊集合是通过隶属函数来表征的,模糊集合相等也可用隶属函数来定义。
若对于X 上的所有元素x ,都有)()(~~x x BAμμ=,模糊集合A ~与B ~相等。
定义2.3.2 模糊空集设A ~为论域X 上的模糊集合,对于X 中每一个元素x ,都有0)(~=x Aμ,则称A ~为模糊空集,记作φ=A ~。
定义2.3.3 模糊集合并、交、补基本运算设A ~、B ~为论域X 上的两个模糊集合,令B A ~~ 、B A ~~ 、C A ~分别表示模糊集合A ~与B ~的并集、交集、补集,对应的隶属函数分别为B A~~ μ、B A ~~ μ、C A~μ,对于X 的任一元素x ,定义: )(V )()(B ~A ~B ~A~x x x μμμ∆ (2.3.1) )()()(B ~A~B ~A~x x x μμμΛ∆ (2.3.2)补算子 (2.3.3) 式中“V ”表示取大运算,“Λ”表示取小运算,称其为Zadeh 算子。
在此定义下,两个模糊集合的并、交实质是在做下面的运算①)](,)(max[B ~A ~B ~A~x x μμμ= 并算子 (2.3.4) )](,)(min[B ~A~B ~A~x x μμμ= 交算子 (2.3.5) 为了加深对模糊集合并、交、补基本运算的理解,现在给出模糊集合A ~和B ~,见图2.3.1(a)。
其中A ~为高斯分布,B ~为三角分布,二者的并、交运算结果如图2.3.1(b)的图2.3.1(c)所示,当然模糊集合的并、交运算可以推广到任意个模糊集合。
神经网络与模糊控制考试题及答案汇编

一、填空题1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成2、一个单神经元的输入是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输入是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 13、神经网络的学习方式有导师监督学习、无导师监督学习和灌输式学习4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。
7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。
8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和。
9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1) ;(2) 。
10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
11.控制论的三要素是:信息、反馈和控制。
12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。
知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和。
知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和。
判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为 推理、 和 推理。
15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为 和 。
第4章模糊函数

4、对称型
ϕ (τ , ξ ) =
∞ ∗
∫
∞
−∞
u (t − τ
2
)u (t + τ
∗
2
dt
= ∫ u ( f + ξ ) u ( f − ξ ) e − j 2 π fτ df 2 2 −∞
2
4.2 模糊函数与分辨力的关系
一、模糊函数的图形 1、概述
主峰、边峰和小突起(自杂波/旁瓣)
2、主峰 χ (τ , ξ ) ≤ χ (0,0) = 4 E 2
ξ 1、 τ 、 为正
ϕ (τ , ξ ) =
=
∫
∞
−∞
u (t )u (t + τ )e
∗ − j 2 π fτ
j 2 πξ t
2
dt
∫
∞
−∞
u ( f )u ( f − ξ ) e
∗
2
df
− j 2 πξ t 2
τ 2、 为正, ξ 为负 ϕ (τ , ξ ) =
=
∫
∞
−∞
u (t )u (t + τ ) e
χ (τ , ξ ) = V (−τ , ξ )
2 ∞ −∞
2
V (τ , ξ ) = ∫ u ∗ ( f )u ( f − ξ )e j 2πfτ df
χ ∗ (τ , ξ ) = χ ∗ (τ , ξ ) • [ χ ∗ (τ , ξ )]∗ = χ (τ , ξ ) χ (τ , ξ ) =
4 模糊函数
4.1 模糊函数的推导 4.2 模糊函数与分辨力的关系 4.3 模糊函数与匹配滤波器输出响应的关系 4.4 模糊函数的主要性质 4.5 模糊图的切割 4.6 模糊函数与精度的关系 4.7 利用模糊函数对单载频矩形脉冲雷达 信号进行分析
模糊算法的基本原理与应用

模糊算法的基本原理与应用模糊算法是20世纪60年代提出的一种新的数学分析方法,具有广泛的应用领域,如控制理论、人工智能、模式识别、决策分析等。
本文将介绍模糊算法的基本原理以及在实际应用中的一些案例。
一、模糊算法的基本原理模糊算法的核心思想是将不确定性和模糊性考虑进来,将数据分为模糊集合,不再是传统意义上的精确集合。
模糊集合是指一个元素可能属于这个集合的程度,它用隶属度函数来表示。
举个例子,一个人的身高不可能绝对的是1米80,可能是1米78或者1米82,那么身高就可以看成一个模糊集合,每个身高值对应一个隶属度。
隶属度函数一般用μ(x)表示,μ(x)的取值范围是[0,1],它表示元素x属于该模糊集合的程度。
为了使模糊算法具有可操作性,需要建立一套模糊集合运算规则。
常用的包括交运算和并运算。
1. 交运算:模糊集合A和B的交集,定义为:A ∩B = { (x, min(μA(x), μB(x))) | x∈X }其中X是数据集合。
这个公式的意思是,对于集合A和B中都出现的元素x,它们的隶属度的最小值就是A∩B中x的隶属度。
2. 并运算:模糊集合A和B的并集,定义为:A ∪B = { (x, max(μA(x), μB(x))) | x∈X }其中X是数据集合。
这个公式的意思是,对于集合A和B中出现的元素x,它们的隶属度的最大值就是A∪B中x的隶属度。
二、模糊算法在实际应用中的案例1. 模糊控制系统模糊控制系统是模糊算法应用最广泛的领域之一。
传统的控制系统需要建立数学模型,对系统进行分析和设计。
而模糊控制系统则是基于经验的,采用模糊集合来描述系统状态,从而规划控制策略。
比如在家电产品中,智能洗衣机的控制系统就采用了模糊控制算法,根据衣物的不同湿度、污渍程度、质地等因素,自动调整洗涤方案,达到最佳的洗涤效果。
2. 模糊识别系统模糊识别系统是指通过对事物进行模糊描述和抽象,进行模式匹配和分类的一类智能系统。
它可以处理各种类型的信息,比如图像、声音、文本等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、模糊函数的表示法
1、 、 为正
( , ) u(t)u (t )e j2 t dt 2
u ( f )u( f )e j2f df 2
2、 为正, 为负 ( , ) u(t)u (t )e j2 t dt 2
二、变换关系
1、组合关系 若:(t) 1(t) 2(t)
( , ) 1 ( , ) 2 ( , ) 12 ( , )
* 12
(
,
)e
j
2
2、共轭关系 若:(t) 1*(t) ,( f ) 1*( f )
(
,
)
* 1
(
,
)
e
j
2
1
(
,
)
,
(
,
)
* 1
(
,
)
e
j 2
* 1
(
,
)
3、比例关系
A目标回波:uA (t) u(t A )e j2 A(t A)
hAm (t)
u
A
(t
0
t
A )e
j 2
A (t0 t A )
B目标回波:uB (t) u(t B )e j2 B (t B )
匹配滤波器输出:
gC (t)
Hale Waihona Puke 1 2u( ' )u ( '
t)e j2
'
d
'
e
j
2
At
V ( , ) u(t)u (t )e j2tdt
(t) 1(at)
( , )
1 a
1
(
a
,
a
)
( f ) 1(af )
( , )
1 a
1
(
a
,
a
)
4、时间、频率偏移的影响
(t) 1(t 0 )e j20 (t0 ) ( , ) e j2 (0 0 ) 1 ( , )
5、时/频域平方相位的影响
(t) 1(t)e jbt2
( , ) e jb 2 1 ( , b )
4 模糊函数
4.1 模糊函数的推导 4.2 模糊函数与分辨力的关系 4.3 模糊函数与匹配滤波器输出响应的关系 4.4 模糊函数的主要性质 4.5 模糊图的切割 4.6 模糊函数与精度的关系 4.7 利用模糊函数对单载频矩形脉冲雷达
信号进行分析
4.1 模糊函数的推导
1、为什么要研究模糊函数?
分辨力、精度、模糊度、抑制杂波能力,统一数学工具。
5、体积分布的限制
( , ) 2 d ( ,0) e2 j2 d
( , ) 2 d (0, ) 2 e j2 d
( ,0) 2
t * t dt 2
f
2 e j2 f df 2
(0, ) 2 f * f df 2 t 2 e j2tdt 2
C 2 (0)
A
(0, )
2
u(t)u (t )e j2t dt
K ( ) 2
(0, )
(0, ) 2 dd K ( ) 2 d
(0,0) 2
K 2 (0)
A
4.3 模糊函数与匹配滤波器输出响应的关系
研究的目的:
➢ 运算
➢ 检测、估计、分辨
➢ 物理意义
➢ 信号处理与AF关系
2、模糊函数(平均模糊函数)的概念
在感兴趣的时间间隔和多普勒频移上的固有“模糊性”的 度量,对随机信号采用平均模糊函数。
3、研究模糊函数的条件
➢ 窄带信号 ➢ 点目标 ➢ 无加速度 ➢ fd<<f0
一、从二维分辨力导出
1、条件
➢ 距离速度不同(二维) ➢ 目标2大于1 ➢ 距离速度取正 ➢ 不考虑噪声(分辨) ➢ 回波强度一样
2、准则(均方差)
2
2
sr1(t) sr 2 (t) dt
4E 2 ( , ) cos[2 f0 arctg ( , )]
( , ) u(t)u (t )e j2t dt u ( f )u( f )e j2 f df
( , ) ( , ) 2 ( , ) • ( , )
u ( f )u( f )e j2f df 2
3、 为负, 为正 ( , ) u(t)u (t )e j2t dt 2
u ( f )u( f )e j2f df 2
4、对称型
( , )
u(t
2)u (t
2)e
j 2 t dt
2
u( f
2 )u( f
模糊度图:
等效模糊面 等差图:
( A ,0) 2 ( B ,0) 2 ( C ,C ) 2 ( A , A ) 2
模糊度图
三、模糊函数与一维分辨力的关系
( ,0)
2
u(t)u (t )e j2 t dt
C( ) 2
( ,0)
( ,0) 2 dd C( ) 2 d
(0,0) 2
➢ 体积是固定的,与能量有关,与信号形式无关 ➢ 不同信号形式只能改变模糊图表面形状
二、模糊函数与二维分辨力的关系
( , ) 2
1
(0,0) 2
组合时间-频率分辨常数:
( , ) ( , ) 2 dd
(0,0) 2 ( , ) 1
雷达模糊原理:改变发射信号形式→ 改变模糊曲面→ 不能改变组合分辨常数→即距离速度组合分辨力受限→ 模糊图体积无论哪个轴减小另一必增大!
2 )e j 2f df
2
4.2 模糊函数与分辨力的关系
一、模糊函数的图形 1、概述
主峰、边峰和小突起(自杂波/旁瓣)
2、主峰 ( , ) 2 (0,0) 2 4E 2
距离、速度均相同, 2 最小,即(0,0) 最大,无法分辨。
3、模糊图的体积
(体积不变性) ( , ) 2 dd (2E)2
( , ) 2 V ( , ) 2
V ( , ) u( f )u( f )e j2f df
( , ) 2 ( , ) • [ ( , )] ( , ) 2
( , ) 2 u (t)u(t )e j2t dt 2 u( f )u ( f )e j2f df 2
4.4 模糊函数的主要性质
一、本身的性质 1、原点对称性 ( , ) 2 ( , ) 2 2、峰值在原点 ( , ) 2 (0,0) 2 (2E)2
3、体积不变性 ( , ) 2 dd (2E)2
4、自变换性 ( , ) 2 e j2Z e j2Y d d (Z ,Y ) 2 模糊函数的二维付氏变换仍为模糊函数。