数学第21章-27章检测试卷01
人教版九年级数学上册《第二十一章 一元二次方程》检测题-带答案

人教版九年级数学上册《第二十一章 一元二次方程》检测题-带答案核心知识1一元二次方程及其根1.(2022春•任城区期末)若关于x 的一元二次方程220(0)ax bx a ++=≠有一根为2022x = 则一元二次方程2(1)2a x bx b -+-=-必有一根为( ) A .2020B .2021C .2022D .2023【分析】对于一元二次方程2(1)(1)20a x b x -+-+= 设1t x =-得到220at bt ++= 利用220at bt ++=有一个根为2022t =得到12022x -= 从而可判断一元二次方程2(1)(1)2a x b x -+-=-必有一根为2023x =. 【解答】解:对于一元二次方程2(1)2a x bx b -+-=-即2(1)(1)20a x b x -+-+= 设1t x =- 所以220at bt ++=而关于x 的一元二次方程220(0)ax bx a ++=≠有一根为2022x = 所以220at bt ++=有一个根为2022t = 则12022x -= 解得2023x =所以一元二次方程2(1)2a x bx b -+-=-必有一根为2023x =. 故选:D .【点评】本题考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.(2022春•平桂区期末)下列方程中 不是一元二次方程的是( ) A .21x x =+B .276x x -=C .24573x x -=-D .2650x --=【分析】根据一元二次方程的定义解决此题.【解答】解:A .根据一元二次方程的定义 21x x =+是一元二次方程 那么A 不符合题意.B .根据一元二次方程的定义 276x x -=是一元二次方程 那么B 不符合题意.C .根据一元二次方程的定义 24573x x -=-不是一元二次方程 那么C 符合题意.D .根据一元二次方程的定义 2650x --=是一元二次方程 那么D 不符合题意.故选:C .【点评】本题主要考查一元二次方程的定义 熟练掌握一元二次方程的定义是解决本题的关键. 3.(2022春•桐城市期末)若a 为方程2240x x +-=的解 则2368a a +-的值为( ) A .4B .2C .4-D .12-【分析】由题意可得224a a += 再由223683(2)8a a a a +-=+- 代入求值即可. 【解答】解:a 为方程2240x x +-=的解 2240a a ∴+-= 224a a ∴+=223683(2)83484a a a a ∴+-=+-=⨯-= 故选:A .【点评】本题考查一元二次方程的解 熟练掌握一元二次方程的解与一元二次方程的关系是解题的关键. 4.(2022春•瑶海区期末)如果关于x 的一元二次方程210ax bx ++=的一个解是1x = 则代数式a b +的值为( ) A .1-B .1C .2-D .2【分析】把1x =代入方程210ax bx ++= 即可得到a b +的值. 【解答】解:关于x 的一元二次方程210ax bx ++=的一个解是1x = 10a b ∴++= 1a b ∴+=-.故选:A .【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.(2022春•包河区期末)一元二次方程(2)(3)0x x -+=化为一般形式后 常数项为( ) A .6B .6-C .1D .1-【分析】方程整理为一般形式 找出常数项即可.【解答】解:方程整理得:260x x +-= 则常数项为6-. 故选:B .【点评】此题考查了一元二次方程的一般形式 一元二次方程的一般形式是:20(ax bx c a ++= b c 是常数且0)a ≠.在一般形式中2ax 叫二次项 bx 叫一次项 c 是常数项.其中a b c 分别叫二次项系数一次项系数 常数项.核心知识2.解一元二次方程6.(2022春•张店区期末)用配方法解一元二次方程22210x x --= 下列配方正确的是( ) A .213()44x -=B .213()42x -=C .213()24x -=D .213()22x -=【分析】方程整理后 利用完全平方公式配方得到结果 即可作出判断. 【解答】解:方程22210x x --= 整理得:212x x -=配方得:21344x x -+= 即213()24x -=. 故选:C .【点评】此题考查了解一元二次方程-配方法 熟练掌握完全平方公式是解本题的关键. 7.(2022春•姜堰区期末)用配方法解一元二次方程2430x x --= 配方正确的是( ) A .2(2)7x -=B .2(2)6x -=C .2(4)3x -=D .2(4)9x -=【分析】利用解一元二次方程-配方法 进行计算即可解答. 【解答】解:2430x x --= 243x x -= 24434x x -+=+2(2)7x -= 故选:A .【点评】本题考查了解一元二次方程-配方法 熟练掌握解一元二次方程-配方法是解题的关键. 8.(2021秋•陵水县期末)将一元二次方程2230x x --=化成2()x h k +=的形式 则k 等于( ) A .1B .2C .3D .4【分析】利用配方法进行计算即可解答. 【解答】解:2230x x --= 223x x -=22131x x -+=+2(1)4x -= 4k ∴=故选:D .【点评】本题考查了解一元二次方程-配方法 熟练掌握解一元二次方程-配方法是解题的关键.9.(2022春•莱芜区期末)以x =( ) A .240x x c --=B .240x x c +-=C .240x x c -+=D .240x x c ++=【分析】根据求根公式逐一判断即可.【解答】解:A .此方程的根为x =符合题意;B .此方程的根为x =不符合题意;C .此方程的根为x =不符合题意;D .此方程的根为x =不符合题意;故选:A .【点评】本题主要考查解一元二次方程—公式法 解题的关键是掌握求根公式.10.(2022•山西模拟)在用配方法解方程2340x x +-=时 可以将方程转化为2325()24x += 其中所依据的一个数学公式是( ) A .22()()a b a b a b -=+-B .2222()a ab b a b ++=+C .2222()a ab b a b -+=-D .x =【分析】利用完全平方公式判断即可.【解答】解:在用配方法解方程2340x x +-=时 可以将方程转化为2325()24x += 其中所依据的一个数学公式是2222()a ab b a b ++=+. 故选:B .【点评】此题考查了解一元二次方程-公式法 熟练掌握求根公式的推导过程是解本题的关键. 11.(2022春•泰山区期末)下列一元二次方程最适合用因式分解法来解的是( )A .(2)(5)1x x -+=B .223(2)4x x -=-C .2310x x -+=D .29(1)5x -=【分析】本题可对方程进行化简 看能否将方程化为左边是两个式子相乘 右边是0的形式 即可应用因式分解法来解.【解答】解:A 、(2)(5)1x x -+=适合于公式法解方程 故本选项不符合题意;B 、由原方程得到2680x x -+= 适合于因式分解法解方程 故本选项符合题意;C 、2310x x -+=适合于公式法解方程 故本选项不符合题意;D 、由原方程得到29(1)5x -= 最适合于直接开平方法解方程 故本选项不符合题意;故选:B .【点评】本题考查了解一元二次方程--因式分解法.因式分解法就是先把方程的右边化为0 再把左边通过因式分解化为两个一次因式的积的形式 那么这两个因式的值就都有可能为0 这就能得到两个一元一次方程的解 这样也就把原方程进行了降次 把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).12.(2022•临沂)方程22240x x --=的根是( ) A .16x = 24x =B .16x = 24x =-C .16x =- 24x =D .16x =- 24x =-【分析】利用十字相乘法因式分解即可. 【解答】解:22240x x --= (6)(4)0x x -+= 60x -=或40x +=解得16x = 24x =- 故选:B .【点评】本题考查了利用因式分解法解一元二次方程 掌握十字相乘法因式分解是解答本题的关键.核心知识3.根的判别与韦达定理13.(2022•息县模拟)若关于x 的方程260x mx -+=没有实数根 则m 的值可以是( ) A .7B .6C .5D .4【分析】先根据根的判别式的意义得到△2()460m =--⨯< 然后对各选项进行判断. 【解答】解:根据题意得△2()460m =--⨯<即224m < 所以m 可以取4. 故选:D .【点评】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与△24b ac =-有如下关系:当△0>时 方程有两个不相等的实数根;当△0=时 方程有两个相等的实数根;当△0<时 方程无实数根. 14.(2022•虞城县三模)关于x 的方程2230x mx --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定【分析】先计算根的判别式的值 利用非负数的性质得到△0> 然后根据根的判别式的意义判断方程根的情况.【解答】解:△22()42(3)240m m =--⨯⨯-=+>∴方程有两个不相等的实数根.故选:A .【点评】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与△24b ac =-有如下关系:当△0>时 方程有两个不相等的实数根;当△0=时 方程有两个相等的实数根;当△0<时 方程无实数根. 15.(2022•洛阳模拟)关于x 的一元二次方程2210ax x +-=有两个实数根 则a 的取值范围是( ) A .1a -且0a ≠B .1a -且0a ≠C .1a <D .1a >-【分析】根据一元二次方程的定义和根的判别式的意义得到0a ≠且△224(1)0a =-⨯- 然后求出两不等式的公共部分即可.【解答】解:根据题意得0a ≠且△224(1)0a =-⨯- 解得1a -且0a ≠. 故选:B .【点评】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与△24b ac =-有如下关系:当△0>时 方程有两个不相等的实数根;当△0=时 方程有两个相等的实数根;当△0<时 方程无实数根. 16.(2022•荆门)若函数21(y ax x a =-+为常数)的图象与x 轴只有一个交点 那么a 满足( ) A .14a =B .14aC .0a =或14a =-D .0a =或14a =【分析】由题意分两种情况:①函数为二次函数 函数21y ax x =-+的图象与x 轴恰有一个交点 可得△0= 从而解出a 值;②函数为一次函数 此时0a = 从而求解. 【解答】解:①函数为二次函数 21(0)y ax x a =-+≠∴△140a =-=14a ∴=②函数为一次函数 0a ∴= a ∴的值为14或0; 故选:D .【点评】此题考查根的判别式 一次函数的性质 对函数的情况进行分类讨论是解题的关键.17.(2022春•栖霞市期末)若一元二次方程22(23)0x m x m -++=有两个不相等的实数根1x 2x 且1212x x x x += 则m 的值是( )A .1-B .3C .2或1-D .3-或1【分析】由根与系数的关系 可得1223x x m +=+ 212x x m ⋅= 又由1212x x x x +=⋅ 即可求得m 的值. 【解答】解:关于x 的一元二次方程22(23)0x m x m -++=的两个不相等的实数根∴△22(23)41290m m m =+-=+>34m ∴>-1223x x m +=+ 212x x m ⋅=又1212x x x x +=⋅223m m ∴+=解得:1m =-或3m = 34m >-3m ∴=故选:B .【点评】此题考查了一元二次方程根与系数的关系与判别式的应用.此题难度适中 注意掌握如果1x 2x 是一元二次方程20ax bx c ++=的两根 那么有12b x x a +=- 12cx x a=的应用.18.(2022春•丽水期末)已知关于x 的一元二次方程230x mx ++=的一个根是1 则方程的另一个根是() A .3-B .2C .3D .4-【分析】设方程的一个根11x = 另一个根为2x 再根据根与系数的关系进行解答即可. 【解答】解:设方程的一个根11x = 另一个根为2x 根据题意得: 123x x ⨯=将11x =代入 得23x =. 故选:C .【点评】本题考查了根与系数的关系 熟练掌握根与系数的关系的相关知识是解题的关键.19.(2022春•海阳市期末)若1x 2x 是方程2420220x x --=的两个实数根 则代数式211222x x x -+的值等于( ) A .2022B .2026C .2030D .2034【分析】先根据一元二次方程的定义得到21142022x x =+ 则211222x x x -+可化为1220222()x x ++ 再根据根与系数的关系得到124x x += 然后利用整体代入的方法计算. 【解答】解:1x 是方程2420220x x --=的实数根211420220x x ∴--= 21142022x x ∴=+21121121222420222220222()x x x x x x x x ∴-+=+-+=++ 1x 2x 是方程2420220x x --=的两个实数根 124x x ∴+=2112222022242030x x x ∴-+=+⨯=. 故选:C .【点评】本题考查了根与系数的关系:若1x 2x 是一元二次方程20(0)ax bx c a ++=≠的两根时 12b x x a +=- 12cx x a=.也考查了一元二次方程的解.20.(2022•牟平区一模)已知一元二次方程2202210x x -+=的两个根分别为1x 2x 则21220221x x -+的值为( ) A .1-B .0C .2022-D .2021-【分析】先根据一元二次方程根的定义得到21112022x x += 则21220221x x -+变形为12212022x x x -⨯ 再根据根与系数的关系得到121x x = 然后利用整体的方法计算即可. 【解答】解:1x x =为方程2202210x x -+=的根211202210x x ∴-+= 21112022x x ∴+= 21211222120222022120222022x x x x x x x -∴-+=-=⨯ 方程2202210x x -+=的两个根分别为1x 2x 121x x ∴=2122202211120220x x x -∴-+=⨯=. 故选:B .【点评】本题考查了根与系数的关系:若1x 2x 是一元二次方程20(0)ax bx c a ++=≠的两根 则12b x x a +=- 12cx x a=.核心知识4.一元二次方程的应用21.(2022•定远县模拟)某农机厂四月份生产零件50万个 第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为x 那么x 满足的方程是( ) A .250(1)182x +=B .25050(1)50(1)182x x ++++=C .250(1)50(1)182x x +++=D .5050(1)182x ++=【分析】由题意根据增长后的量=增长前的量(1⨯+增长率) 如果该厂五、六月份平均每月的增长率为x 那么可以用x 分别表示五、六月份的产量 进而即可得出方程.【解答】解:设该厂五、六月份平均每月的增长率为x 那么得五、六月份的产量分别为50(1)x +、250(1)x +根据题意得:25050(1)50(1)182x x ++++=. 故选:B .【点评】本题考查由实际问题抽象出一元二次方程的增长率问题 注意掌握其一般形式为2(1)a x b += a 为起始时间的有关数量 b 为终止时间的有关数量 x 为增长率.22.(2022•南通)李师傅家的超市今年1月盈利3000元 3月盈利3630元.若从1月到3月 每月盈利的平均增长率都相同 则这个平均增长率是( ) A .10.5%B .10%C .20%D .21%【分析】设该商店的月平均增长率为x 根据等量关系:1月份盈利额(1⨯+增长率)23=月份的盈利额列出方程求解即可.【解答】解:设从1月到3月 每月盈利的平均增长率为x 由题意可得:23000(1)3630x +=解得:10.110%x == 2 2.1x =-(舍去) 答:每月盈利的平均增长率为10%. 故答案为:B .【点评】此题主要考查了一元二次方程的应用 属于增长率的问题 增长率=增长数量/原数量100%⨯.如:若原数是a 每次增长的百分率为x 则第一次增长后为(1)a x +;第二次增长后为2(1)a x + 即 原数(1⨯+增长百分率)2=后来数.23.(2022春•仓山区校级期末)一份摄影作品【七寸照片(长7英寸 宽5英寸)】 现将照片贴在一张矩形衬纸的正中央 照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的2倍.设照片四周外露衬纸的宽度为x 英寸(如图) 下面所列方程正确的是( )A .2(7)(5)75x x ++=⨯B .(7)(5)275x x ++=⨯⨯C .2(72)(52)75x x ++=⨯D .(72)(52)275x x ++=⨯⨯【分析】根据关键语句“矩形衬纸的面积为照片面积的3倍”列出方程求解即可.【解答】解:设照片四周外露衬纸的宽度为x 英寸 根据题意得:(72)(52)275x x ++=⨯⨯ 故选:D .【点评】本题考查了由实际问题抽象出一元二次方程的知识解题的关键是表示出大矩形的长与宽.24.(2022春•启东市期末)某校“研学”活动小组在一次野外实践时发现一种植物的主干长出若干数目的支干每个支干又长出同样数目的小分支主干、支干和小分支的总数是57 则这种植物每个支干长出的小分支个数是()A.8 B.7 C.6 D.5【分析】设这种植物每个支干长出的小分支个数是x根据主干、支干和小分支的总数是57 即可得出关于x的一元二次方程解之取其正值即可得出结论.【解答】解:设这种植物每个支干长出的小分支个数是x依题意得:2157x x++=整理得:2560x x+-=解得:17x=28x=-(不合题意舍去)∴这种植物每个支干长出的小分支个数是7.故选:B.【点评】本题考查了一元二次方程的应用找准等量关系正确列出一元二次方程是解题的关键.25.(2022春•蜀山区期末)某超市销售一种商品其进价为每千克30元按每千克45元出售每天可售出300千克为让利于民超市采取降价措施当售价每千克降低1元时每天销量可增加50千克若每天的利润要达到5500元则实际售价应定为多少元?设售价每千克降低x元可列方程为() A.(4530)(30050)5500x x--+=B.(30)(30050)5500x x-+=C.(30)[30050(45)]5500x x-+-=D.(45)(30050)5500x x-+=【分析】根据利润=销售量⨯(售价-进价)即可列出一元二次方程.【解答】解:设售价每千克降低x元由题意得:(4530)(30050)5500x x--+=故选:A.【点评】本题主要考查了一元二次方程的应用掌握利润=销售量⨯(售价-进价)是解决问题的关键.26.(2022•泰安)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱遣人去买几株椽.每株脚钱三文足无钱准与一株椽.”其大意为:现请人代买一批椽这批椽的价钱为6210文.如果每株椽的运费是3文那么少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱试问6210文能买多少株椽?设这批椽的数量为x株则符合题意的方程是()A.3(1)6210x x-=B.3(1)6210x-=C.(31)6210x x-=D.36210x=【分析】设这批椽的数量为x 株 则一株椽的价钱为3(1)x -文 利用总价=单价⨯数量 即可得出关于x 的一元二次方程 此题得解.【解答】解:这批椽的数量为x 株 每株椽的运费是3文 少拿一株椽后 剩下的椽的运费恰好等于一株椽的价钱∴一株椽的价钱为3(1)x -文.依题意得:3(1)6210x x -=.故选:A .【点评】本题考查了由实际问题抽象出一元二次方程 找准等量关系 正确列出一元二次方程是解题的关键.27.(2022•沙坪坝区校级模拟)小北同学在学习了“一元二次方程”后 改编了苏轼的诗词《念奴娇⋅赤壁怀古》:“大江东去浪淘尽 千古风流人物.而立之年督东吴 早逝英年两位数.十位恰小个位三 个位平方与寿同.哪位学子算得快 多少年华数周瑜?”大意为:“周瑜去世时年龄为两位数 该数的十位数字比个位小3 个位的平方恰好等于该数.”若设周瑜去世时年龄的个位数字为x 则可列方程( )A .210(3)x x x ++=B .210(3)(3)x x x -+=-C .210(3)x x x -+=D .210(3)(3)x x x ++=-【分析】根据“该数的十位数字比个位小3 个位的平方恰好等于该数”列方程即可.【解答】解:根据题意 可得210(3)x x x -+=故选:C .【点评】本题考查了一元二次方程的实际应用题 理解题意并根据题意找到等量关系是解题的关键.。
人教版九年级数学上册第21章测试题含答案

九上数学第二十一章检测题(RJ)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共36分)一、选择题(共12小题,每小题3分,共36分)1.下列方程中,是关于x 的一元二次方程的是 ( C )A .x 2+3x =0 B .y 2-2x +1=0 C .x 2-5x =2 D .x 2-2=(x +1)22.方程x 2-2x =0的解为 ( C )A .x 1=1,x 2=2B .x 1=0,x 2=1C .x 1=0,x 2=2D .x 1=12,x 2=23.关于x 的一元二次方程ax 2+bx +1=0(a ≠0)的一个解为x =-1,则2 018-a +b 的值是 ( C )A .2 017B .2 018 C. 2 019 D .2 0204.(泰安中考)一元二次方程x 2-6x -6=0配方后化为 ( A )A .(x -3)2=15B .(x -3)2=3C .(x +3)2=15D .(x +3)2=35.(上海中考)方程x 2-6x +10=0的根的情况是 ( C )A .两个实数根之和是6B .两个实数根之积是10C .没有实数根D .有两个相等的实数根6.(新疆中考)已知关于x 的方程x 2+x -a =0的一个根为2,则另外一个根是 ( A )A .-3B .-2C .3D .67.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是(C) A.a<2 B.a>2 C.a<2且a≠1 D.a<-2 8.(攀枝花中考)已知一元二次方程x2-3x-1=0的两个根分别是x1,x2,则x21x2+x1x22的值为(A) A.-3 B.3 C.-6 D.6 9.(潍坊中考)等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2-12x+k=0的两个根,则k的值是(B)A.27 B.36 C.27或36 D.1810.某景点参观人数逐年增加,据统计,2016年为10.8万人次,2018年为16.8万人次,设参观人数年平均增长率为x,则(C) A.10.8(1+x)=16.8B.16.8(1-x)=10.8C.10.8(1+x)2=16.8D.10.8[1+(1+x)+(1+x)2]=16.811.已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为(C) A.-10 B.4 C.-4 D.1012.★菱形ABCD的边长是5,两条对角线交于O点,且AO,BO的长分别是关于x的方程x2+(2m-1)x+m2+3=0的根,则m的值为(A) A.-3 B.5 C.5或-3 D.-5或3第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.把方程(2x +1)(x -3)=x 2+1化为一般式x 2-5x -4=0,二次项系数、一次项系数、常数项的和为 -8 .14.已知关于x 的一元二次方程ax 2-2x -1=0有两个不相等的实数根,则a 的取值范围是 a >-1且a ≠0 .15.若a ,b ,c 是△ABC 的三边,且a 2+b 2+c 2+50=6a +8b +10c ,则这个三角形的形状是 直角三角形 .16.如图有一个长24米的篱笆,一面利用墙(墙的最大长度为10米)围成中间隔有一道篱笆的长方形花圃.当AB =__5__米时,花圃的面积是45米2.17.癌症是人类的一个很可怕的敌人,因为癌细胞的繁殖速度惊人,一个癌细胞经过两轮分裂后就共有12 100个癌细胞,则每轮分裂中一个细胞分裂出__109__个细胞,若以相同分裂速度再经过两轮分裂,则分裂后共有__1.464__1×__108__个癌细胞.18.★(临沂中考)对于实数a ,b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab (a ≥b ),ab -b 2(a <b ),例如:4*2,因为4>2,所以4*2=42-4×2=8,若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2=__3或-3 .三、解答题(本大题共8小题,共66分)19.(6分)用适当的方法解下列方程: (1)2x 2-4x =42;(2)(7x +3)2=14x +6.解:x 1=-37,x 2=-17.20.(6分)(珠海中考)已知关于x 的一元二次方程x 2+2x +m =0.(1)当m =3时,判断方程的根的情况;(2)当m =-3时,求方程的根.解:(1)Δ=22-4× 3=-8< 0,∴此方程没有实数根.(2)当m =-3时,原方程可化为x 2+2x -3=0,解得x 1=-3,x 2=1.21.(8分)(杭州中考)当x 满足⎩⎨⎧x +1<3x -3,12(x -4)<13(x -4)时,求出方程x 2-2x -4=0的根.解:由已知不等式组得⎩⎪⎨⎪⎧x > 2,x < 4,∴2< x < 4. 解方程x 2-2x -4=0,得x 1=1+5,x 2=1-5,∵2< 5< 3,∴3< 1+5< 4,-2< 1-5< -1,∴x =1+ 5.22.(8分)关于x 的一元二次方程x 2-3x -k =0有两个不相等的实数根.(1)求k 的取值范围;(2)请选择一个k 的负整数值,并求出方程的根.解:(1)k >-94;(2)k =-2时,x 1=1,x 2=2.23.(8分)(黄石中考)已知关于x 的一元二次方程x 2-4x -m 2=0.(1)求证:该方程有两个不等的实数根;(2)若该方程两实数根为x 1,x 2满足x 1+2x 2=9,求m 的值.(1) 证明:∵Δ=(-4)2+4m2=16+4m2∵4m2≥0,∴Δ>0,即该方程有两个不相等的实数根.(2)解:∵x1+x2=4且x1+2x2=9,∴x1=-1,x2=5,∴x1·x2=-m2=-5,∴m=± 5.由(1)可知m=± 5.24.(10分)(桂林中考)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5 000万元,2017年投入基础教育经费7 200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1 500台,调配给农村学校,若购买一台电脑需3 500元,购买一台实物投影仪需2 000元,则最多可购买电脑多少台?解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得5 000(1+x)2=7 200,解得x1=0.2=20%,x2=-2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费7 200×(1+20%)=8 640万元,设购买电脑m台,根据题意得3 500m+2 000(1 500-m)≤86 400 000× 5%解得m≤880.答:2018年最多可购买电脑880台.25.(10分)(南京中考)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元;每多售出1部,所有售出的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为__26.8__万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)解:(2)设需要售出x部汽车,则每部汽车的利润为28-[27-0.1(x -1)]=0.1x+0.9.当0≤x≤10时,可得x(0.1x+0.9)+0.5x=12.即x2+14x-120=0,解得x1=6,x2=-20(不合题意,舍去);当x>10时,则有x(0.1x+0.9)+x=12,即x2+19x-120=0,解得x3=5,x4=-24(不合题意,舍去).因为5<10,所以x=5舍去.答:需要售出6部汽车.26.(10分)阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后可设x2-1=y,则(x2-1)2=y2,原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,x2-1=1,x2=2,∴x=±2;当y=4时,x2-1=4,x2=5,∴x=±5;∴原方程的解为x1=2,x2=-2,x3=5,x4=- 5.(1)根据材料解方程:x4-x2-6=0;(2)已知实数x满足(x2-x)2-4(x2-x)-12=0,根据材料,试求代数式x2-x+1的值.解:(1)设x2=y,则原方程化为y2-y-6=0,得y1=3,y2=-2.当y=3时,x2=3,∴x=±3;当y=-2时,x2=-2,无解.∴原方程的解为x1=3,x2=-3;(2)设x2-x=y,则y2-4y-12=0,(y-6)(y+2)=0,∴y1=6,y2=-2,当y=6时,x2-x=6,∴x2-x+1=7,当y=-2时,x2-x=-2,此时Δ<0,∴x不存在,∴代数式x2-x+1的值为7.。
2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)

第二十一章一元二次方程一、选择题1.下列方程中,是一元二次方程的是( )A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为( )A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为( )A.1B.2C.−1D.−24.方程x(x−2)=0的解是( )A.0B.2C.−2D.0或25.如果关于x的一元二次方程k x2−4x+2=0有实数根,则k的取值范围是( )A.k≤2B.k≤2且k≠0C.k<2且k≠0D.k≥2且k≠06.若x1+x2=3,x1x2=2,则以x1,x2为根的一元二次方程是( )A.x2−3x+2=0B.x2+3x−2=0C.x2+3x+2=0D.x2−3x−2=07.学校要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场,计划安排15场比赛,应邀请多少个队参加比赛?设应邀请x个球队参加比赛,下列算式正确的是( )A.x(x+1)=15B.x(x−1)=15C.12x(x+1)=15D.12x(x−1)=158.若m,n是关于x的一元二次方程x2+2x−5=0的两个根,则m2+mn−2n的值为( )A.−6B.6C.−4D.4二、填空题9.若关于x的方程(m+1)x2﹣3x+2=0是一元二次方程,则m的取值范围是 .10.将关于x的一元二次方程x2−6x−5=0化成(x+a)2=b的形式,则b= .11.方程3x2−6x=0的解是 12.已知关于x的方程(a−2)x2−2x+1=0有实数根,则a的取值范围是 13.若x1,x2是一元二次方程x2−x−6=0的两个实数根,则1x1+1x2的值为 .三、计算题14.解方程:(1)3x2−10x+6=0;(2)5(x+3)2=2(x+3).15.已知关于x的一元二次方程x2−(2k+1)x+k2+k=0 .(1)求证:方程有两个不相等的实数根.(2)若 Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,第三边BC的长为5,求 k 的值.16.已知关于x的一元二次方程x2+(2m+1)x+m2−1=0有两个不相等的实数根.(1)求m的取值范围.(2)设x1,x2分别是方程的两个根,且x21+x22+x1x2−17=0,求m的值.17.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率.(2)若此种头盔的进价为30元/个,经测算,此种头盔在市场中,当售价为40元/个时,月销售量为600个,在此基础上售价每上涨1元/个,则月销售量将减少10个.现希望该头盔每月销售利润为10 000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.B 2.A 3.D 4.D 5.B 6.A 7.D 8.D 9.m≠-1 10.1411.x1=0,x2=212.a≤313.−1614.(1)解:3x2−10x+6=0,∵a=3,b=−10,c=6,∴b2−4ac=(−10)2−4×3×6=28>0,∴x=−b±b2−4ac2a =10±286=5±73,∴x1=5+73,x2=5−73;(2)解:5(x+3)2=2(x+3),5(x+3)2−2(x+3)=0,(x+3)(5x+13)=0,x+3=0或5x+13=0,解得x1=−3,x2=−135.15.(1)证明:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴Δ=[−(2k+1)]2−4(k2+k)=4k2+4k+1−4k2−4k=1>0,∴关于x的一元二次方程x2−(2k+1)x+k2+k=0有两个不相等的实数根;(2)解:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴(x−k)[x−(k+1)]=0,解得:x1=k,x2=k+1.∵ Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,分两种情况讨论如下:当BC=5为直角边时,k2+52=(k+1)2,解得:k=12;当BC=5为斜边时,k2+(k+1)2=52,解得:k1=3,k2=−4(根据边长为正判断不合题意,舍去),∴k=12或k=3.16.(1)解:∵一元二次方程有两个不相等的实根∴(2m+1)2−4×1×(m2−1)=4m2+4m+1−4m2+4=4m+5>0,解得m>−54;(2)解:∵ x1,x2分别是方程的两个根∴x1+x2=−(2m+1)=−2m−1,x1·x2=m2−1;∵x12+x22+x1x2−17=0,配方后可得(x1+x2)2−x1x2−17=0;将x1+x2=−(2m+1)=−2m−1和x1·x2=m2−1代入,可得:(−2m−1)2−(m2−1)−17=0,化简可得3m2+4m−15=0;解得m=53或-3(舍去);∴m的值为53.17.(1)设该品牌头盔销售量的月增长率为x,依题意,得:150(1+x)2=216,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%;(2)设该品牌头盔的实际售价为y元,依题意,得:(y−30)(600−y−400.5×5)=10000,整理,得:y2−130y+4000=0,解得:y1=80(不合题意,舍去),y2=50,∵尽可能让顾客得到实惠,∴该品牌头盔的实际售价应定为50元,答:该品牌头盔的实际售价应定为50元.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。
2024-2025学年初中九年级上学期数学(第21章至23章)第一次月考卷及答案(人教版)

九年级上册数学第一次月考(考试范围:第二十一章至第二十三章)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 在下面用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.2. 方程23x x =的解为( )A. 120x x == B. 123x x == C. 123x x ==− D. 10x =,23x =3. 抛物线 ()2213y x =−−向左平移2个单位,再向上平移5个单位,所得的抛物线的解析式为( ) A. ()2212y x =++ B. ()2212y x =−+ C. ()2212y x =+−D. ()2212y x =−−4. 用配方法解一元二次方程2870x x −+=,方程可变形为( ) A. 2(4)9x +=B. 2(4)9x −=C. 2(8)16x −=D. 2(8)57x +=5. 如图,将OAB ∆绕O 点逆时针旋转60 得到OCD ∆,若4OA =,35AOB ∠= ,则下列结论不一定正确的是( )A. 60BDO ∠=°B. 25BOC ∠=°C. 4OC =D. //CD OA6. 已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A. ac >0B. b >0C. a +c <0D. a +b +c =07. 已知关于x 的一元二次方程x 2+(2m +1)x +m ﹣1=0的两个根分别是x 1,x 2,且满足x 12+x 22=3,则m 的值是( ) A. 0B. ﹣2C. 0 或﹣12D. ﹣2或08. 如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用抛物线2142y x x =−刻画,斜坡可以用直线12y x =刻画.下列结论错误的是( )A. 小球落地点与点O 的水平距离为7mB. 当小球抛出高度达到7.5m O 的水平距离为3mC. 小球与点O 水平距离超过4m 时呈下降趋势D. 小球与斜坡的距离的最大值为49m 89. 如图,抛物线2=23y x x −−与y 轴交于点A ,与x 轴的负半轴交于点B ,点M 是对称轴上的一个动点,连接AM ,BM ,则AM BM +的最小值为( )的A. 2B.C.D.10. 如图,在OAB ∆中,顶点(0,0)O ,(3,4)A −,(3,4)B ,将OAB ∆与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( )A. (10,3)B. (3,10)−C. (10,3)−)D. (3,10)−二、填空题(每小题3分,共15分)11. 已知()211350mm x x +−+−=是关于x 的一元二次方程,则m 的值为______.12. 图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,则这个位置是_______.13. 抛物线()2223,=−−+y x ,当03x ≤≤时,y 的最小值与最大值的和是________.14. 《念奴娇·赤壁怀古》,在苏轼笔下,周瑜年少有为,文采风流,雄姿英发,谈笑间,樯橹灰飞烟灭,然天妒英才,英年早逝,欣赏下面改编的诗歌,“大江东去浪淘尽,千古风流数人物. 而立之年督东吴,早逝英年两位数.十位恰小个位三,个位平方与寿符.”则这位风流人物去世的年龄为_____岁. 15. 函数222y x ax =−−在12x −≤≤有最大值6,则实数a 值是______.三、解答题(本大题共8个小题,共75分)16. 解一元二次方程: (1)210150x x −+=的(2)()()124x x −+=. 17. 若关于x 一元二次方程2420x x a −++=有两个不相等的实数根. (1)求a 的取值范围;(2)求当a 为正整数时方程的根.18. 在正方形网格中建立如图所示的平面直角坐标系xOy ,△ABC 的三个顶点都在格点上,A 的坐标是(4,4),请回答下列问题:(1) 将△ABC 向下平移六个单位长度, 画出平移后的△A 1B 1C 1,并写出点A 的对应点A 1的坐标; (2)画出△ABC 关于原点O 对称的△A 2B 2C 2,并写出点A 2的坐标;(3)判断△A 1B 1C 1与△A 2B 2C 2是否关于某点成中心对称;若是,请画出对称中心M ,并写出点M 坐标19. 如图,隧道的截面由抛物线DEC 和矩形ABCD 构成,矩形的长AB 为6m ,宽BC 为4m ,以DC 所在的直线为x 轴,线段CD 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,最高点E 到地面距离为5米.(1)求出抛物线的解析式.(2)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高4.5米,宽3米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.的的20. 解决问题:邓州公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔7月份到9月份的销量,该品牌头盔7月份销售500个,9月份销售720个,且从7月份到9月份销售量的月增长率相同. (1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,经市场预测,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?21. 已知二次函数 2y x bx c =++中,函数y 与自变量x 的部分对应值如下表: x 0 1 2 3 4 y 5 2 1 2 5(1)求该二次函数的关系式.(2)当x 为何值时,y 有最小值? 最小值多少?(3)若()1,A m y ,()2,B c y 两点都在该函数的图象上,当12y y <时,求m 的取值范围. 22. 如图,抛物线2y x mx =+与直线y x b =−+交于点()2,0A 和点B .(1)求m 和b 的值;(2)求点B 的坐标,并结合图象写出不等式2x mx x b +>−+的解集;(3)点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标x 的取值范围.23. 在等腰直角三角形ABC 和等腰直角三角形EBF 中,90ACB BEF ∠=∠=°,连接AF ,M 是AF 的中点,连接CM ,EM .是(1)观察猜想:图1中,线段CM 与EM 的数量关系是 ,位置关系是 .(2)探究证明:把EBF △绕点B 顺时针旋转一周,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.(3)拓展延伸:如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为()6,0,点C 的坐标为()6,4,P 为平面内一动点,且2AP =,连接CP ,D 是CP 的中点,连接BD .请直接写出BD 的最值.九年级上册数学第一次月考(考试范围:第二十一章至第二十三章)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 在下面用数学家名字命名图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】D 【解析】【分析】本题考查中心对称图形与轴对称图形的识别,轴对称图形指的是延某条直线折叠,两边的图形能够完全重合;将图形旋转180°,能够与原图形重合的图形叫做中心对称图形,掌握定义是解题的关键.根据轴对称图形和中心对称图形的定义逐一判断即可.【详解】解:A B .不是中心对称图形,是轴对称图形,不符合题意; C .既不是中心对称图形,也不是轴对称图形,不符合题意; D .既是中心对称图形,又是轴对称图形,符合题意; 故选:D .2. 方程23x x =的解为( )A. 120x x == B. 123x x == C. 123x x ==− D. 10x =,23x =【答案】D 【解析】【分析】本题考查了因式分解法解一元二次方程,根据因式分解法计算即可得出答案. 【详解】解:∵23x x =, ∴230x x −=,的∴()30x x −=, ∴0x =或30x −=, 解得:10x =,23x =, 故选:D .3. 抛物线 ()2213y x =−−向左平移2个单位,再向上平移5个单位,所得的抛物线的解析式为( ) A. ()2212y x =++ B. ()2212y x =−+ C. ()2212y x =+− D. ()2212y x =−−【答案】A 【解析】【分析】根据函数图像平移法则“左加右减、上加下减”,将题中文字描述转化为数学符号即可解决问题. 【详解】∵抛物线()2213y x =−−向左平移2个单位,再向上平移5个单位, ∴所得的抛物线的解析式为()221235y x =−+−+, 即()2212y x =++ 故选:A【点睛】熟练掌握函数图像平移法则“左加右减、上加下减”是解决问题的关键.4. 用配方法解一元二次方程2870x x −+=,方程可变形为( ) A. 2(4)9x += B. 2(4)9x −= C. 2(8)16x −= D. 2(8)57x +=【答案】B 【解析】【分析】先将常数项移到等号的右边,在方程两边加上一次项系数一半平方,将方程左边配成一个完全平方式即可.【详解】解:x 2-8x +7=0, x 2-8x =-7, x 2-8x +16=-7+16, (x -4)2=9. 故选:B .【点睛】本题考查了运用配方法解一元二次方程,解答时熟练掌握配方法的步骤是关键.5. 如图,将OAB ∆绕O 点逆时针旋转60 得到OCD ∆,若4OA =,35AOB ∠= ,则下列结论不一定正确的是( )A. 60BDO ∠=°B. 25BOC ∠=°C. 4OC =D. //CD OA【答案】D 【解析】【分析】由题意△OAB 绕O 点逆时针旋转60°得到△OCD 知∠AOC=∠BOD=60°,AO=CO=4、BO=DO ,可判断C 正确;由△AOC 、△BOD 是等边三角形可判断A 选项;由∠AOB=35°,∠AOC=60°可判断B 选项,据此可得答案.【详解】∵△OAB 绕O 点逆时针旋转60°得到△OCD , ∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO , 故C 选项正确;则△AOC 、△BOD 是等边三角形, ∴∠BDO=60°, 故A 选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°, 故B 选项正确; 故选:D .【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质. 6. 已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A. ac >0B. b >0C. a +c <0D. a +b +c =0【答案】D 【解析】【分析】根据二次函数的图象与性质即可求出答案. 【详解】A.由图象可知:a <0,c >0, ∴ac <0,故A 错误; B.由对称轴可知:x =2ba −<0, ∴b <0,故B 错误; C.由对称轴可知:x =2ba−=﹣1, ∴b =2a , ∵x =1时,y =0, ∴a +b +c =0, ∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误; 故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型. 7. 已知关于x 的一元二次方程x 2+(2m +1)x +m ﹣1=0的两个根分别是x 1,x 2,且满足x 12+x 22=3,则m 的值是( ) A. 0 B. ﹣2C. 0 或﹣12D. ﹣2或0【答案】C 【解析】【分析】根据根与系数的关系得到()1221x x m ++=-,121x x m =-,再由()22212121223x x x x x x ++=-=,然后整体代入即可得到关于m 方程,解方程即可得到m 的值.【详解】解:∵方程()22110x m x m +++-=的两个根分别是x 1,x 2,∴()1212211x x m x x m ++=-,=-, ∵22123x x +=,即()2121223x x x x +-=, ∴()()221213m m +---=, 解得m =0或m =﹣12, ∵方程()22110x m x m +++-=的两个根, ∴()()222141450m m m ∆++≥=--=, ∴m 为任意实数,方程均有实数根,当m =0, 5∆=>0;当 m =﹣12,6∆=>0 ∴m =0或m =﹣12均符合题意. 故选:C . 【点睛】本题考查根与系数的关系,将根与系数的关系与代数式变形相结合是解题的关键.8. 如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用抛物线2142y x x =−刻画,斜坡可以用直线12y x =刻画.下列结论错误的是( )A. 小球落地点与点O 的水平距离为7mB. 当小球抛出高度达到7.5m 时,小球与点O 的水平距离为3mC. 小球与点O 的水平距离超过4m 时呈下降趋势D. 小球与斜坡的距离的最大值为49m 8【答案】B【解析】【分析】本题考查了二次函数的性质,令211422x x x −=,解得10x =,27x =,即可判断A ;把7.5y =代入2142y x x =−得2147.52x x −=,求解即可判断B ;将抛物线解析式化为顶点式即可判断C ;设抛物线上一点A 的坐标为21,42a a a−,作AB x ⊥轴交直线12y x =于B ,则1,2B a a ,表示出AB ,结合二次函数的性质即可判断D ,熟练掌握二次函数的性质是解此题的关键. 【详解】解:令211422x x x −=,解得10x =,27x =, ∴小球落地点与点O 的水平距离为7m ,故A 正确,不符合题意; 把7.5y =代入2142y x x =−得2147.52x x −=, 解得:13x =,25x =,∴当小球抛出高度达到7.5m 时,小球与点O 的水平距离为3m 或5m ,故B 错误,符合题意; ∵()221144822y x x x =−=−−+, ∴抛物线的对称轴为直线4x =, ∵102−<, ∴当4x >时,y 随x 的增大而减小,∴小球与点O 的水平距离超过4m 时呈下降趋势,故C 正确,不符合题意;设抛物线上一点A 的坐标为21,42a a a−, 作AB x ⊥轴交直线12y x =于B ,则1,2B a a, , ∴2221117174942222228AB a a a a a a =−−=−+=−−+ , ∵102−<,∴当72a =时,AB 有最大值,最大值为498, ∴小球与斜坡的距离的最大值为49m 8,故D 正确,不符合题意; 故选:B . 9. 如图,抛物线2=23y x x −−与y 轴交于点A ,与x 轴的负半轴交于点B ,点M 是对称轴上的一个动点,连接AM ,BM ,则AM BM +的最小值为( )A. 2B.C.D.【答案】D【解析】 【分析】设抛物线与x 轴的另一个交点为C ,连接MC ,AC ,根据解析式求得,A C 的坐标,根据轴对称的性质得出MB MC =,继而得出AM BM +取得最小值,最小值为AC 的长,勾股定理即可求解.【详解】解:如图所示,设抛物线与x 轴的另一个交点为C ,连接MC ,AC ,∵2=23y x x −−,令0y =,即2230x x −−=,解得:121,3x x =−=, ∴()3,0C ,令0x =,解得=3y −,∴()0,3A −,∵点M 是对称轴上的一个动点,∴MB MC =,∵AM BM AM CM AC +=+≥∴当,,A M C 三点共线时,AM BM +取得最小值,最小值为AC 的长,故选:D .【点睛】本题考查了根据二次函数对称性求线段和的最值,掌握二次函数对称性是解题的关键. 10. 如图,在OAB ∆中,顶点(0,0)O ,(3,4)A −,(3,4)B ,将OAB ∆与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( )A. (10,3)B. (3,10)−C. (10,3)−)D. (3,10)−【答案】D【解析】 【分析】先求出6AB =,再利用正方形的性质确定(3,10)D −,由于704172=×+,所以第70次旋转结束时,相当于OAB ∆与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°,此时旋转前后的点D 关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D 的坐标.【详解】解:(3,4)A − ,(3,4)B ,336AB ∴=+=,四边形ABCD 为正方形,6AD AB ∴==,(3,10)D ∴−,704172=×+ ,∴每4次一个循环,第70次旋转结束时,相当于OAB △与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D 的坐标为(3,10)−.故选D .【点睛】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.二、填空题(每小题3分,共15分)11. 已知()211350mm x x +−+−=是关于x 的一元二次方程,则m 的值为______. 【答案】1−【解析】【分析】此题主要考查了一元二次方程的定义:含有一个未知数,且未知数的最高次幂是2次的整式方程,特别注意二次项系数不为0,正确把握定义是解题关键.直接利用一元二次方程的定义知道二次项系数不为0同时x 的最高次幂为2,得出m 的值进而得出答案.【详解】解:由题意知:212m +=且10m −≠,解得1m =−,故答案为:1−.12. 图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,则这个位置是_______.【答案】③【分析】如果一个图形绕着某一点旋转180°后,能够与原来的图形完全重合,那么这个图形叫做中心对称图形,根据中心对称图形的定义和性质思考判断即可.【详解】当放置在①位置时,构成的图形不是中心对称图形,∴①不符合题意;当放置在②位置时,构成的图形不是中心对称图形,∴②不符合题意当放置在③位置时,构成的图形是中心对称图形,∴③符合题意当放置在④位置时,构成的图形不是中心对称图形,∴④不符合题意故答案为:③.【点睛】本题考查了拼图中的中心对称图形,熟练掌握中心对称图形的定义和性质是解题的关键. 13. 抛物线()2223,=−−+y x ,当03x ≤≤时,y 的最小值与最大值的和是________.【答案】2−【解析】【分析】本题主要考查了二次函数的最值问题,先根据解析式得到抛物线顶点坐标为(2,3),且抛物线开口向下,则y 的最大值为32x =,再根据自变量的取值范围推出当0x =时,函数有最小值,据此求出最小值即可得到答案.【详解】解:∵抛物线解析式为()2223,y x =−−+∴抛物线顶点坐标为(2,3),且抛物线开口向下,∴y 的最大值为3,离对称轴越远,函数值越小,且对称轴为直线2x =,∵2032−>−,∴当03x ≤≤时,当0x =时,函数有最小值,最小值为()220235y =−−+=−,∴y 的最小值与最大值的和是532−+=−,故答案为:2−.14. 《念奴娇·赤壁怀古》,在苏轼笔下,周瑜年少有为,文采风流,雄姿英发,谈笑间,樯橹灰飞烟灭,然天妒英才,英年早逝,欣赏下面改编的诗歌,“大江东去浪淘尽,千古风流数人物. 而立之年督东吴,早逝英年两位数.十位恰小个位三,个位平方与寿符.”则这位风流人物去世的年龄为_____岁.【答案】36【分析】本题考查了由实际问题抽象出一元二次方程,根据“十位恰小个位三,个位平方与寿符”以及10×十位数字+个位数字=个位数字的平方,据此列方程可得答案,找准等量关系,正确列出一元二次方程是解题的关键.【详解】解:设这位风流人物去世的年龄十位数字为x ,则个位数字为3x +,则根据题意:()()21033x x x ++=+,整理得:2560x x −+=,解得12x =,23x =,由题意,而立之年督东吴,则2x =舍去,∴这位风流人物去世的年龄为36岁,故答案为:36.15. 函数222y x ax =−−在12x −≤≤有最大值6,则实数a 的值是______.【答案】1−或72【解析】【分析】先求出二次函数的对称轴为x a =,再分1a ≤−,1a 2−<<和2a ≥三种情况,分别利用二次函数的性质求解即可得. 【详解】二次函数222y x ax =−−的对称轴为22a x a −=−=, 由题意,分以下三种情况:(1)当1a ≤−时,在12x −≤≤内,y 随x 的增大而增大, 则当2x =时,y 取得最大值,最大值为224224a a −−=−,因此有246a −=,解得1a =−,符合题设;(2)当1a 2−<<时,在12x −≤≤内,当1x a −≤≤时,y 随x 的增大而减小;当2a x <≤时,y 随x 的增大而 增大, 则当1x =−或2x =时,y 取得最大值,因此有1226a +−=或22426a −−=, 解得72a =或1a =−(均不符题设,舍去); (3)当2a ≥时,在12x −≤≤内,y 随x 的增大而减小,则当1x =−时,y 取得最大值,最大值为12221a a +−−,因此有216a −=,解得72a =,符合题设; 综上,1a =−或72a =, 故答案为:1−或72. 【点睛】本题考查了二次函数的图象与性质,依据题意,正确分三种情况讨论是解题关键.三、解答题(本大题共8个小题,共75分)16. 解一元二次方程:(1)210150x x −+=(2)()()124x x −+=.【答案】(1)15x =+,25x =(2)13x =−,22x =【解析】【分析】本题考查了解一元二次方程,熟练掌握配方法和因式分解法是解此题的关键.(1)利用配方法解一元二次方程即可;(2)利用因式分解法解一元二次方程即可.【小问1详解】解:∵210150x x −+=,∴21015x x −=−,∴210252515x x −+=−,∴()2510x −=,∴5x −=,∴15x =,25x =;【小问2详解】 解:∵()()124x x −+=, ∴2224x x x +−−=,∴260x x +−=,∴()()320x x +−=, ∴30x +=或20x −=,∴13x =−,22x =.17. 若关于x 的一元二次方程2420x x a −++=有两个不相等的实数根.(1)求a 的取值范围;(2)求当a 为正整数时方程的根.【答案】(1)a 的取值范围为2a <(2)若a 为正整数时,方程的根为1和3【解析】【分析】本题考查了根的判别式,解一元一次不等式和解一元二次方程,能根据根的判别式和已知得出不等式是解题的关键.(1)根据判别式即可求出答案;(2)根据a 的范围可知,代入原方程后根据一元二次方程的解法即可求出答案.【小问1详解】解:∵关于x 的一元二次方程2420x x a −++=有两个不相等的实数根,∴()()22Δ444120b ac a =−=−−××+>,解得:2a <,∴a 的取值范围为2a <.【小问2详解】解:∵a 为正整数,∴1a =,∴原方程2430x x −+=, 即()()130x x −−=, 解得:11x =,23x =,∴若a 为正整数时,方程的根为1和3.18. 在正方形网格中建立如图所示的平面直角坐标系xOy ,△ABC 的三个顶点都在格点上,A 的坐标是(4,4),请回答下列问题:为(1)将△ABC向下平移六个单位长度,画出平移后的△A1B1C1,并写出点A的对应点A1的坐标;(2)画出△ABC关于原点O对称的△A2B2C2,并写出点A2的坐标;(3)判断△A1B1C1与△A2B2C2是否关于某点成中心对称;若是,请画出对称中心M,并写出点M的坐标【答案】(1)图形见解析,A1(4,-2)(2)图形见解析,A2(-4,-4)(3)图形见解析,M(0,-3)【解析】【分析】(1)根据网格结构找出点A、B、C向下平移6个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;(2)根据网格结构找出点A、B、C关于原点对称的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可;(3)根据中心对称的定义判断,对称中心是各个对应点连线的交点.【详解】(1) 如图,△A1B1C1即为所求,点A的对应点A1的坐标:(4,-2)(2)如图,△A2B2C2即为所求,点A2的坐标(-4,-4)(3)如图,△A1B1C1与△A2B2C2关于点M成中心对称,M (0,-3).【点睛】本题考查作图,旋转变换,平移变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19. 如图,隧道的截面由抛物线DEC 和矩形ABCD 构成,矩形的长AB 为6m ,宽BC 为4m ,以DC 所在的直线为x 轴,线段CD 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,最高点E 到地面距离为5米.(1)求出抛物线的解析式.(2)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高4.5米,宽3米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.【答案】(1)2119y x =−+ (2)这辆货运卡车能通过该隧道【解析】【分析】(1)抛物线的解析式为()20y ax bx c a ++≠,把()()()303001,,,D ,C ,E −代入计算即可; (2)把 4.5y =时代入(1)的解析式,求出x 的值即可求出结论.【小问1详解】解:根据题意得:()()()303001,,,D ,C ,E −,设抛物线的解析式为()20y ax bx c a ++≠, 把()()()303001,,,D ,C ,E −代入()20y ax bx c a ++≠ 得:193109310c a b a b = ++=−+=解得1901a b c =− = =, ∴抛物线的解析式为2119y x =−+; 【小问2详解】这辆货运卡车能通过该隧道,理由如下: 在2119y x =−+中,令45405..y =−=得: 210519.x =−+,解得:x =±,()28.49m x ∴=≈, 8493.> ,∴这辆货运卡车能通过该隧道.【点睛】本题考查了二次函数的应用,解题的关键是求出二次函数的解析式.20. 解决问题:邓州公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔7月份到9月份的销量,该品牌头盔7月份销售500个,9月份销售720个,且从7月份到9月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,经市场预测,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?【答案】(1)该品牌头盔销售量的月增长率为20%;(2)该品牌头盔的实际售价应定为50元/个.【解析】【分析】(1)设该品牌头盔销售量的月增长率为x ,根据“该品牌头盔7月份销售500个,9月份销售720个,且从7月份到9月份销售量的月增长率相同”列一元二次方程求解即可;(2)设该品牌头盔的实际售价为y 元/个,根据月销售利润=每个头盔的利润×月销售量,即可得出关于y 的一元二次方程,解之即可求出答案.【小问1详解】解:设该品牌头盔销售量月增长率为x ,由题意得:()25001750x +=, 解得:10.220%x ==,2 2.2x =−(不合题意,舍去), 答:该品牌头盔销售量月增长率为20%;【小问2详解】解:设该品牌头盔的实际售价应定为y 元/个,由题意得:()()30600104010000y y −−−=, 整理得:213040000y y −+=,解得:150y =,280y =,∵尽可能让顾客得到实惠,∴50y =,答:该品牌头盔的实际售价应定为50元/个.【点睛】本题考查了列一元二次方程解决实际问题,解题关键是准确理解题意,找出等量关系且熟练掌握解一元二次方程的方法.21. 已知二次函数 2y x bx c =++中,函数y 与自变量x 的部分对应值如下表: x 0 1 2 3 4y 5 2 1 2 5(1)求该二次函数的关系式.的的(2)当x 为何值时,y 有最小值? 最小值是多少?(3)若()1,A m y ,()2,B c y 两点都在该函数的图象上,当12y y <时,求m 的取值范围.【答案】(1)245y x x =−+(2)当2x =时,y 有最小值,最小值为1(3)15m −<<【解析】【分析】本题考查了待定系数法求二次函数解析式、二次函数最值、二次函数的对称性,熟练掌握以上知识点并灵活运用是解此题的关键.(1)利用待定系数法计算即可得出答案;(2)将二次函数解析式化为顶点式即可得出答案;(3)由(1)得出()25,B y ,将二次函数解析式化为顶点式即可得出抛物线的对称轴为直线2x =,抛物线开口向上,得出()25,B y 关于直线2x =对称的点的坐标为()21,y −,即可得解.【小问1详解】解:∵二次函数2y x bx c =++的图象经过点()0,5,()1,2,∴512c b c = ++=, 解得:54c b = =−, ∴该二次函数的关系式是245y x x =−+;【小问2详解】解:∵()224521y x x x −=+=−+,∴当2x =时,y 有最小值,最小值为1;【小问3详解】解:由(1)可得:5c =,即()25,B y ,∵()224521y x x x −=+=−+,∴抛物线的对称轴为直线2x =,抛物线开口向上,∴()25,B y 关于直线2x =对称的点的坐标为()21,y −,∵()1,A m y ,()2,B c y 两点都在该函数的图象上,12y y <,∴15m −<<.22. 如图,抛物线2y x mx =+与直线y x b =−+交于点()2,0A 和点B .(1)求m 和b 的值;(2)求点B 的坐标,并结合图象写出不等式2x mx x b +>−+的解集;(3)点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标x 的取值范围.【答案】(1)2m =−,2b =(2)点B 的坐标为()1,3−,不等式2x mx x b +>−+的解集为1x <−或2x >(3)12x −≤<或3x =【解析】【分析】本题考查了待定系数法求函数解析式、二次函数与一次函数交点问题,熟练掌握以上知识点并灵活运用,采用分类讨论与数形结合的思想是解此题的关键.(1)利用待定系数法计算即可得解;(2)由(1)可得:抛物线的解析式为22y x x =−,直线的解析式为2y x =−+,联立222y x y x x =−+ =−,求出点B 的坐标为()1,3−,再结合图象即可得出答案;(3)分类求解确定MN 的位置,进而求解.【小问1详解】解:将()2,0A 代入抛物线表达式2y x mx =+可得420m +=,解得:2m =−,将()2,0A 代入直线y x b =−+可得:20b −+=, 解得:2b =;【小问2详解】解:由(1)可得:抛物线的解析式为22y x x =−,直线的解析式为2y x =−+, 联立222y x y x x =−+ =−, 解得13x y =− =或20x y = = , ∴点B 的坐标为()1,3−,从图象看,不等式2x mx x b +>−+的解集为1x <−或2x >;小问3详解】解:如图:当点M 在线段AB 上时(不含A 点),线段MN 与抛物线只有一个公共点,∵M ,N 的距离为3,而A 、B 的水平距离是3,故此时只有一个交点,即12x −≤<,如图,当线段MN P 时,线段MN 与抛物线只有一个公共点,∵()22211y x x x =−=−−,∴抛物线的顶点()1,1P −, 在2y x =−+中,当1y =−时,21x −+=−,解得3x =;综上所述,12x −≤<或3x =.23. 在等腰直角三角形ABC 和等腰直角三角形EBF 中,90ACB BEF ∠=∠=°,连接AF ,M 是AF 的中点,连接CM ,EM .【(1)观察猜想:图1中,线段CM 与EM 的数量关系是 ,位置关系是 .(2)探究证明:把EBF △绕点B 顺时针旋转一周,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.(3)拓展延伸:如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为()6,0,点C 的坐标为()6,4,P 为平面内一动点,且2AP =,连接CP ,D 是CP 的中点,连接BD .请直接写出BD 的最值.【答案】(1)CM EM =,CM EM ⊥(2)成立,证明见解析(3)BD 的最小值为1−,最大值为1+【解析】【分析】(1)由直角三角形的性质得出12CM AM AF ==,12EM AM AF ==,从而得出CM EM =,由等边对等角得出MAC MCA ∠=∠,MAE MEA ∠=∠,由三角形外角的定义及性质得出2EMC BAC ∠=∠,最后再由等腰直角三角形的性质即可得出答案;(2)延长AC 到点G ,使CG AC =,连接BG ,FG ,延长FE 到点H ,使EH FE =,连接BH ,AH ,证明()SAS ACB GCB ≌,得出AB BG =,45BAC BGC ∠=∠=°,同理可得:BH BF =,90∠=°FBH ,证明HBA FBG ≌,得出AH FG =,HAB FGB ∠=∠,由三角形中位线定理可得12EM AH =,EM AH ∥,12CM FG =,CM FG ∥,得出EM CM =,由平行线的性质得出EMF HAF ∠=∠,MCA FGA ∠=∠,求出FMC FAC FGA ∠=∠+∠,即可得解; (3)连接AC ,BC ,由题意得出4AB =,4BC =,90ABC ∠=°,以AP 为斜边作等腰直角三角形AKP ,连接DK ,BK ,由等腰直角三角形的性质得出AK AP =,由(2)可得,DK BD =,DK BD ,同理可得:BD =,结合AB AK BK AB AK −≤≤+,得出当点K 在AB 线段上时,BK 取得最小值,即BD 取得最小值,当点K 在BA 的延长线上时,BK 取得最大值,即BD 取得最大值,即可得解.【小问1详解】解:∵90BEF ∠=°,∴18090AEF BEF ∠=°−∠=°,∵90ACB ∠=°,M 是AF 的中点, ∴12CM AM AF ==,12EM AM AF ==, ∴CM EM =,MAC MCA ∠=∠,MAE MEA ∠=∠,∴222EMC EMF CMF MAE MAC BAC ∠=∠+∠=∠+∠=∠,∵三角形ABC 是等腰直角三角形,∴45BAC ∠=°,∴90EMC ∠=°,即CM EM ⊥;故答案为:CM EM =;CM EM ⊥【小问2详解】解:成立,证明如下:如图,延长AC 到点G ,使CG AC =,连接BG ,FG ,延长FE 到点H ,使EH FE =,连接BH ,AH ,∵90ACB ∠=°,∴91800BCG A ACB CB ∠=−°=∠°∠=,∵CG AC =,BC BC =,∴()SAS ACB GCB ≌,∴AB BG =,45BAC BGC ∠=∠=°,∴18090ABG BAC BGC ∠=°−∠−∠=°,。
人教版九年级上学期数学期末检测卷(考试范围:上册第21章~下册第27章,含答案)

人教版九年级上学期数学期末检测卷(考试范围:上册第21章~下册第27章)说明:本卷共有三个大题,25个小题,全卷满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的,将正确答案的代号填在下表中.1.下列函数是y关于x的反比例函数的是A.y=1x-1B.y=1x3C.y=-3xD.y=-x42.下列图形中,既是轴对称图形又是中心对称图形的是3.如图,△ABC与△DEF位似,位似中心为O,且CO∶OF=4∶3,则△ABC的周长与△DEF的周长之比为A.4∶3B.7∶3C.7∶4D.16∶94.如图,D,E分别为AB,AC上的两点,且DE∥BC,AD=2BD,AC=6,则AE的长为A.3B.4C.5D.65.如图,☉O是△ABC的外接圆,若∠OAB=31°,则∠C的度数为A.59°B.62°C.28°D.74.5°6.一元二次方程x2+6x+12=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.如图,A是反比例函数y=5x(x>0)的图象上的一点,过点A作AB⊥x轴,垂足为B.C 为y轴上的一点,连接AC,BC.则△ABC的面积为A.52B.3C.5D.108.从分别写有-5,-2,0,5,3的五张外表形状完全相同的卡片中,随机抽取两张,那么抽到的两张卡片上的数字之积为0的概率是A.15B.25C.35D.459.关于反比例函数y=8x,下列说法不正确的是A.函数图象分别位于第一、第三象限B.函数图象关于原点中心对称C.当x>0时,y随x的增大而增大D.当-8<x<-1时,-8<y<-110.已知二次函数y=x2-2x+c(c为大于0的常数),当x=m时,y<0.那么当x=m-2时,函数值A.y>cB.y=cC.y<0D.0<y<c第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.11.已知反比例函数的图象经过点(1,-2),那么这个反比例函数的解析式是.12.如图,直线l1∥l2∥l3∥l4∥l5∥l6∥l7,且每相邻两条直线的距离相等.若直线l8分别与l1,l2,l5,l7相交于点A,B,C,D,则AB∶BC∶CD为.13.若两个边数相同的正多边形的周长比是5∶4,其中较大一个正多边形的面积为100,则较小一个正多边形的面积为.14.如图,将△ABC绕着点A按逆时针方向旋转得到△AB'C',已知∠CAB=85°,∠B=25°,AC'∥BC,则∠CAB'的度数为.15.如图,在菱形ABCD中,AB=2,∠DAB=60°,以D为圆心,菱形的高DF为半径画弧,交AD于点E,CD于点G,则图中阴影部分的面积是.16.如图,在正方形ABCD中,E是边BC的中点,连接AE,作EF⊥AE交正方形的外角平分线于点F,连接AF,交CD于点H,连接EH.若AB=4,则EH的长为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)解方程:x2+4x-21=0.18.(本小题满分8分)如图所示是测量河宽的示意图,AE与BC相交于点D,AB⊥BC于点B,CE⊥BC于点C,测得BD=150 m,DC=75 m,EC=60 m,求河宽AB的长.19.(本小题满分8分)2020年6月1日,李克强总理称赞地摊经济、小店经济是人间的烟火,是中国的生机.一时间,祖国大地上掀起了一股地摊经济的热潮.根据城管部门统一规划,甲,乙两兄弟只能从A,B,C,D四个街道中各随机选取一个街道摆地摊. (1)“甲,乙两兄弟都到E街道摆地摊”是事件.(填“必然”,“不可能”或“随机”)(2)试用画树状图或列表的方法求甲,乙两兄弟选在同一个街道摆地摊的概率.20.(本小题满分8分)如图,在△ABC中,AD是角平分线.(1)求作△ADE,使得△ABD∽△ADE,且点D与点E对应,点E在AC上.(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的基础上,求证:CD2=CA·CE.21.(本小题满分8分)如图,在矩形ABCD中,BC=4,AB=2,E为CB边延长线上的一动点,连接AE,过点A作AF⊥AE交直线CD于点F.(1)求证:△ABE∽△ADF.(2)当点E运动时,点F也随之运动,若CF=1,求BE的长.22.(本小题满分10分)如图,点C在半圆O上运动(不与点A,B重合),点E在AC⏜上,且CE⏜=BC⏜,连接AE,过点C作CD⊥AE交AE的延长线于点D.(1)求证:CD是半圆O的切线.(2)已知直径AB=6,连接CE,当CE∥AB时,求线段CD的长.23.(本小题满分10分)如图,直线y =k 1x -32分别与反比例函数y =k2x (x >0)的图象,x 轴,y 轴相交于点A ,C ,B ,已知C 点坐标为(2,0)且AC =BC . (1)求k 1,k 2的值.(2)P 是反比例函数y =k2x (x >0)图象上的一点,且P 点在A 点的左侧,过P 点作PD ∥y 轴交直线AB 于D 点,设P 点横坐标为m . ①用含m 的代数式表示PD 的长;②连接OP ,OD .当m 为何值时,△POD 的面积最大,最大为多少?24.(本小题满分12分)如图,在△ABC 中,∠ACB =90°,AC =BC ,D ,E 两点都在边AB 上,∠DCE =45°. (1)求证:△DCE ∽△DBC . (2)求证:AD 2+BE 2=DE 2.(3)若AC =6√2,AD =3,求线段CE 的长.25.(本小题满分14分)定义:设抛物线p :y =ax 2,以顶点为位似中心,相似比为k ,把抛物线p 放大k (k >1)倍,且开口方向不变,得到新抛物线q :y =a'x 2,则称抛物线q 为抛物线p 的“位似抛物线”. 【实践操作】(1)当a =1时,抛物线p :y =ax 2的图象如图所示,点A 1,A 2,A 3的横坐标分别为-1,-2,-3,它们关于y 轴对称的点分别为B 1,B 2,B 3.若k =2,抛物线q 为抛物线p 的“位似抛物线”.①请你在图中描出A 1,A 2,A 3,B 1,B 2,B 3在“位似抛物线”q 上对应的点A 1',A 2',A 3',B 1',B 2',B 3',并画出“位似抛物线”q 的图象;②求“位似抛物线”q的解析式.【合理猜想】(2)猜想a,a'与相似比k的关系,并给予证明.【反思提升】(3)已知直线l与x轴平行,抛物线m:y=ax2+bx+c的顶点Q到直线l的距离为1,且直线l与抛物线m相交于M,N两点,定义M,N两点之间的距离d为抛物线m的“开口大小”.①用含a的式子表示d;②若抛物线m放大k(k>1)倍后的“位似抛物线”n:y=a'x2+b'x+c'的“开口大小”为的值.(用含k的式子表示)d',求d'd参考答案1.C2.D3.A4.B5.A6.D7.A8.B9.C10.A11.y=-2x 12.1∶3∶213.6414.15°15.√3−π216.10317.解:∵x2+4x-21=0,∴(x+7)(x-3)=0,则x+7=0或x-3=0,解得x1=-7,x2=3......................................................... 8分18.解:∵AB⊥BC,CE⊥BC,∴AB∥CE,∴△ABD∽△ECD,..................................................... 3分∴ABCE =BDCD=15075,∴AB60=2, .............................................................. 6分∴AB=120,∴河宽AB为120 m...................................................... 8分19.解:(1)不可能...................................................... 2分(2)甲乙A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D (A,D)(B,D)(C,D)(D,D)根据列表可知共有16种等可能的结果,甲,乙两兄弟选在同一个街道摆地摊的结果有4种,∴甲,乙两兄弟选在同一个街道摆地摊的概率为14. ........................... 8分20.解:(1)△ADE 如图所示. ............................................ 4分(2)∵△ABD ∽△ADE , ∴∠ADB =∠AED .∵∠ADB +∠ADC =180°,∠AED +∠DEC =180°, ∴∠ADC =∠DEC . ∵∠C =∠C , ∴△CDA ∽△CED , ∴CDCE =CACD ,即CD 2=CA ·CE . ........................................................ 8分 21.解:(1)证明:∵ ∠BAD =∠EAF =90°, ∴∠BAE =∠DAF . 又∠ABE =∠ADF ,∴△ABE ∽△ADF ........................................................ 3分 (2)∵△ABE ∽△ADF , ∴BE ∶DF =AB ∶AD . ∵BC =4,AB =2, ∴AB ∶AD =1∶2,∴BE =12DF . ............................................................. 4分①如图1,当点F 在边CD 上时,CF =1,则DF =1,∴BE =12. ................................................................ 6分 ②如图2,当点F 在边DC 延长线上时,CF =1,则DF =3, ∴BE =32.综上所述,BE =12或32. ..................................................... 8分图1 图222.解:(1)证明:如图,连接OC . ∵CE ⏜=BC ⏜,∠DAC =∠BAC . ∵OA =OC , ∴∠BAC =∠ACO ,∴∠DAC =∠ACO , ..................................................... 3分 ∴OC ∥AD . ∵CD ⊥AE , ∴CD ⊥OC ,∴CD 是半圆O 的切线. ................................................... 5分(2)如图,连接BC . ∵CE ∥AB ,∴∠ACE =∠BAC ,AE ⏜=BC ⏜. ∵CE⏜=BC ⏜, ∴AE⏜=BC ⏜=CE ⏜, ∴∠DAC =∠BAC =30°. .................................................. 7分 ∵AB 是直径, ∴∠ACB =90°, ∴BC =12AB =3, ∴AC =3√3, ∴CD =3√32. ............................................................. 10分23.解:(1)将点C (2,0)代入y =k 1x -32,得2k 1-32=0,则k 1=34,............................................................... 2分 ∴y =34x -32,∴B (0,-32).∵AC =BC ,∴点A ,B 关于点C 中心对称,∴A (4,32),∴k 2=6. ................................................................ 4分 (2)①PD =6m −34m +32. ................................................... 6分②∵PD =6m −34m +32,∴S △POD =12m ·(6m −34m +32)=-38(m -1)2+278,∴当m =1时,S △POD 最大,最大为278. ...................................... 10分 24.解:(1)证明:∵ ∠ACB =90°,AC =BC , ∴∠B =∠A =45°.又∠CDE =∠CDB ,∠DCE =∠B ,∴△DCE ∽△DB C. ...................................................... 2分 (2)证明:将线段CD 绕着点C 按逆时针方向旋转90°得到CF ,连接EF ,BF ,∴CD =CF ,∠DCF =90°. ∵∠DCE =45°, ∴∠FCE =45°, ∴∠DCE =∠FCE . 又CE =CE ,∴△DCE ≌△FCE , ..................................................... 4分 ∴DE =EF .∵∠ACB =∠DCF =90°, ∴∠ACD =∠BCF . 又AC =BC , CD =CF , ∴△ACD ≌△BCF ,∴AD =BF ,∠CBF =∠A =45°, ........................................... 5分 ∴∠EBF =90°, ∴BF 2+BE 2=EF 2,∴AD 2+BE 2=DE 2. ........................................................ 7分 (3)在等腰Rt △ABC 中,∠ACB =90°,AC =BC =6√2, ∴AB =12. ∵AD =3, ∴BD =9.设DE=x,则BE=9-x.由(2)可知32+(9-x)2=x2,解得x=5,∴DE=5................................................................ 9分∵△DCE∽△DBC,∴DCDB =DEDC=CEBC,∴DC2=DB·DE,∴DC2=(5+4)×5=45,∴DC=3√5,.......................................................... 11分∴3√59=CE6√2,∴CE=2√10............................................................ 12分25.解:(1)①如图所示,抛物线q为所求.................................. 2分②将B1'(2,2)代入y=a'x2中,得4a'=2,解得a'=12,∴抛物线q的解析式为y=12x2. ............................................. 4分(2)a=a'k.............................................................. 5分理由如下:∵抛物线y=ax2上一点(1,a)以点O为位似中心,相似比为k,得到对应点(k,ka).将(k,ka)代入y=a'x2中,得ka=a'k2,∴a=a'k................................................................. 7分(3)①∵y=ax2与y=ax2+bx+c“开口大小”一样,当a>0时,将y=1代入y=ax2中,得x1=√aa ,x2=-√aa,∴d=2√aa............................................................... 10分当a<0时,将y=-1代入y=ax2中,得x1=√-aa ,x2=-√-aa,∴d=-2√-aa.综上所述,当a>0时,d=2√aa ;当a<0时,d=-2√-aa............................ 12分②由(2)可知aa'=k,∴d'd =√aa'=√k......................................................... 14分。
九年级数学第一次月考卷01(全解析)【九年级上册第二十一章~第二十二章】人教版-初中上学期第一次月考

2024-2025学年九年级数学上学期第一次月考卷01(人教版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版九年级上册第二十一章~第二十二章。
5.难度系数:0.8。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,属于一元二次方程的是()A.x―2y=1B.x2―2x+1=0C.x2―2y+4=0D.x2+3=2x2.将方程x2―8x=10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A.―8,―10B.―8,10C.8,―10D.8,10【答案】A【详解】将x2―8x=10化为一般形式为:x2―8x―10=0,∴一次项系数、常数项分别是-8,-10.故选A.3.对于二次函数y=3(x+4)2,其图象的顶点坐标为()A.(0,4)B.(0,―4)C.(4,0)D.(―4,0)【答案】D【详解】解:因为二次函数y=3(x+4)2,所以其图象的顶点坐标为(―4,0).故选:D.4.一元二次方程x2―2x+3=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.只有一个实数根【答案】C【详解】∵Δ=(―2)2―4×1×3=―8<0,∴一元二次方程没有实数根.故选:C.5.淄博烧烤火爆出圈,各地游客纷纷“进淄赶烤”.某烧烤店5月1日收入约为5万元,之后两天的收入按相同的增长率增长,5月3日收入约为9.8万元,若设每天的增长率为x,则x满足的方程是()A.5(1+x)=9.8B.5(1+2x)=9.8C.5(1―x)2=9.8D.5(1+x)2=9.86.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是ℎ=30t―5t2.小球运动到最高点所需的时间是( )A.2s B.3s C.4s D.5s【答案】B【详解】解:ℎ=30t―5t2=―5(t―3)2+45,∵―5<0,∴当t=3时,ℎ有最大值,最大值为45.故选:B.7.中秋节当天,某微信群里的每两个成员之间都互发一条祝福信息,共发出72条信息,设这个微信群的人数为x,则根据题意列出的方程是()A .x(x ―1)=72B .12x(x +1)=72 C .x(x +1)=72D .12x(x ―1)=72【答案】A【详解】解:根据题意可得x (x ―1)=72,故选:A .8.如果三点P 1(1,y 1),P 2(3,y 2)和P 3(4,y 3)在抛物线y =―x 2+6x +c 的图象上,那么y 1,y 2与y 3之间的大小关系是( )A .y 1<y 3<y 2B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 2<y 3【答案】A【详解】解:∵y =-x 2+6x +c =-(x -3)2+9+c ,∴图象的开口向下,对称轴是直线x =3,P 1(1,y 1)关于对称轴的对称点为(5,y 1),∵3<4<5,∴y 2>y 3>y 1,故选:A .9.对于二次函数y =(x ―1)2―2的图象,下列说法正确的是( )A .开口向下B .对称轴是直线x =―110.如图是抛物线y =a(x +1)2+2的一部分,该抛物线在y 轴右侧部分与x 轴的交点坐标是( )A.(1,0)B.(1,0)C.(2,0)D.(3,0)211.二次函数y=x―+3的图象(1≤x≤3)如图所示,则该函数在所给自变量的取值范围内,函数值y4的取值范围是()A.y≥1B.1≤y≤3C.3≤y≤3D.0≤y≤3412.定义新运算“a⊗b”:对于任意实数a,b,都有a⊗b=(a﹣b)2﹣b,其中等式右边是通常的加法、减法和乘法运算,如3⊗2=(3﹣2)2﹣2=﹣1.若x⊗k=0(k为实数)是关于x的方程,且x=2是这个方程的一个根,则k的值是( )A.4B.﹣1或4C.0或4D.1或4【答案】D【详解】解:∵a⊗b=(a﹣b)2﹣b,∴关于x的方程x⊗k=0(k为实数)化为(x―k)2―k=0,∵x=2是这个方程的一个根,∴4-4k+k2-k=0,解得:k1=4,k2=1,故选:D.二、填空题(本题共6小题,每小题2分,共12分.)13.把方程x2=2x―3化为一般形式是.【答案】x2―2x+3=0【详解】解:由x2=2x―3得:x2―2x+3=0,故答案为:x2―2x+3=0.14.已知x=1是方程x2+bx―2=0的一个根,则b的值为.15.若x1,x2是一元二次方程x2+2x―5=0的两个根,则x1+x2=.【答案】―2【详解】解:∵x1,x2是一元二次方程x2+2x―5=0的两个根,方程中二次项系数a=1,一次项系数b=2,常数项c=―5,∴x1+x2=―2.故答案为:―2.16.若抛物线y=(m―1)x m2―2―mx有最小值,则常数m的值为.【答案】2【详解】解:∵抛物线y=(m―1)x m2―2―mx有最小值,∴m―1>0(开口向上),m2―2=2,解得m>1,m=±2,即m=2,故答案为:2.17.已知等腰三角形的底边长为7,腰长是x2―8x+15=0的一个根,则这个三角形周长为.【答案】17【详解】解:x2―8x+15=0,(x―5)(x―3)=0,x―5=0,x―3=0,x1=5,x2=3,即①等腰三角形的三边为7,5,5,此时符合三角形三边关系定理,三角形的周长是5+5+7=17;②等腰三角形的三边为3,3,7,此时不符合三角形三边关系定理,故答案为:17.18.已知二次函数y=ax2+bx+c的图象如图所示,若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围是.故答案为k<5.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)x(2x+1)=2x+1;(2)4x2﹣3x=x+1.20.(6分)已知关于x的方程x2+ax+a―2=0.(1)若该方程的一个根为2,求a的值及该方程的另一根.(2)求证:不论a取何实数,该方程都有两个不相等的实数根.△=a2―4×1×(a―2)=a2―4a+8=(a―2)2+4,(4分)∵(a―2)2≥0,∴(a―2)2+4≥4,∴不论a取何实数,该方程都有两个不相等的实数根;(6分)21.(10分)已知二次函数y=―x2+2x+3;(1)把该二次函数化成y=a(x+m)2+k的形式为______;(2)当x______时,y随x的增大而增大;(3)若该二次函数的图像与x轴交于点A、B,与y轴交于点C,求△ABC的面积.22.(10分)如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,另三边用竹篱笆围成,篱笆总长35m,围成长方形的养鸡场四周不能有空隙.(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到200m2?请说明理由.【详解】解:(1)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=150,(2分)解得:x1=10,x2=7.5,当x1=10时,35﹣2x=15<18,当x2=7.5时35﹣2x=20>18,(舍去),则养鸡场的宽是10m,长为15m.(5分)(2)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=200,(7分)整理得:2x2﹣35x+200=0,△=(﹣35)2﹣4×2×200=1225﹣1600=﹣375<0,因为方程没有实数根,所以围成养鸡场的面积不能达到200m2.(10分)23.(10分)为了加强安全教育,某校对学生进行“防溺水知识应知应答”测评.该校随机选取了八年级300名学生中的20名学生在10月份测评的成绩,数据如下:收集数据:9791899590999097919890909188989795909688整理、描述数据:数据分析:样本数据的平均数、众数、中位数和极差如表:平均数中位数众数极差93b c d(1)a=______,b=______,c=______,d=______;(2)该校决定授予在10月份测评成绩优秀(96分及以上)的八年级的学生“防溺水小卫士”荣誉称号,请估计评选该荣誉称号的人数.(3)若被选取的20名学生在11月份测评的成绩的平均数、众数、中位数和极差如表:平均数中位数众数极差95939410结合相关数据,从一个方面评价10月份到11月份开展的“防溺水知识应知应答”测评活动的效果.24.(10分)杭州亚运会的三个吉祥物“琮琮”“宸宸”“莲莲”组合名为“江南忆”,出自唐朝诗人白居易的名句“江南忆,最忆是杭州”,它融合了杭州的历史人文、自然生态和创新基因.吉祥物一开售,就深受大家的喜爱.某商店以每件35元的价格购进某款亚运会吉祥物,以每件58的价格出售.经统计,4月份的销售量为256件,6月份的销售量为400件.(1)求该款吉祥物4月份到6月份销售量的月平均增长率;(2)经市场预测,7月份的销售量将与6月份持平,现商场为了减少库存,采用降价促销方式,调查发现,该吉祥物每降价1元,月销售量就会增加20件.当该吉祥物售价为多少元时,月销售利润达8400元?【详解】(1)设该款吉祥物4月份到6月份销售量的月平均增长率为m,则6月份的销售量为256(1+m)2,根据题意得:256(1+m)2=400,解得:m1=0.25=25%,m2=―2.25(不符合题意,舍去),答:该款吉祥物4月份到6月份销售量的月平均增长率为25%;(4分)(2)设该吉祥物售价为y元,则每件的销售利润为(y―35)元,月销售量为400+20(58―y)=(1560―20y)(件),根据题意得:(y―35)(1560―20y)=8400,(7分)整理得:y2―113y+3150=0,解得:y1=50,y2=63(不符合题意,舍去),答:该款吉祥物售价为50元时,月销售利润达8400元.(10分)25.(10分)如图,点E,F,G,H分别在边长为6的正方形ABCD的四条边上运动,四边形EFGH也是正方形.(1)求证:△AEH≌△BFE;(2)设AE的长为x,正方形EFGH的面积为y,求y关于x的函数解析式;(3)在(2)的条件下,当AE的长为多少时,正方形EFGH的面积最小?最小值是多少?26.(10分)如图,在平面直角坐标系xOy中,抛物线y=―x2+bx+c交x轴于C(1,0),D(―3,0)两点,交y轴于点E,连接DE.(1)求抛物线的解析式及顶点坐标;(2)在线段DE上,是否存在一点P,使得△DCP是等腰直角三角形,如果存在,求出点P的坐标;如果不存在,请说明理由;(3)点A(―3,5),B(0,5),连接AB,若二次函数y=―x2+bx+c的图象向上平移m(m>0)个单位时,与线段AB有一个公共点,结合函数图象,直接写出m的取值范围.∠PCM=45°,时,5=―9+6+3+m,解得m=5,∴当m=1,或2<m≤5时,函数图象与线段AB有一个公共点.(10分)。
河北省邢台市任泽区第一中学2022-2023学年九年级上学期阶段评估二数学试题(含答案)

河北省2023届九年级阶段评估(二)数学上册第21章~下册第27章注意事项:1.共8页.总分120分,作答时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试结束时,请将本试卷和答题卡一并交回.一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图所示的甲、乙两个矩形相似,则“?”是( )A .1B .2C .3D .42.下列图形中,不是中心对称图形的是( )A .B .C .D .3.在平面直角坐标系中,若点()2,5m -与点()2,21n --关于原点对称,则m n -的值是( ) A .4-B .2-C .3D .3-4.关于x 的一元二次方程22150x x --=的解是( ) A .15x =-,23x = B .15x =,23x = C .15x =,23x =-D .15x =-,23x =-5.已知二次函数2y ax bx c =++(其中a ,b ,c 是常数,0a ≠)的图象如图所示,则下列判断正确的是( )A .0b >,0c >B .0b >,0c <C .0b <,0c >D .0b <,0c <6.如图,A ,B ,C 是O 上的三点,若62AOB ∠=︒,则∠ACB 的度数为( )A .26°B .28°C .30°D .31°7.如图,已知AB CD EF ∥∥,且3AD =,7AF =,5EC =,则BC 的长为( )A .3.5B .3.6C .3.75D .48.如图,在平面直角坐标系中,平行四边形ABCD 的顶点A ,D 在函数()160y x x=>的图象上,CD x ⊥轴于点C ,BD CD ⊥,点D 的纵坐标为2,则AD 的长为( )A .B .C .4D .69.如图,点B 在反比例函数()0k y x x =>的图象上,点C 在反比例函数()30y x x=->的图象上,且BC x ⊥轴,过点C 作x 轴的平行线,交y 轴于点A ,若6ABC S =△,则k 的值为( )A .3B .4C .6D .910.甲说:“将三角形各边向内平移1个单位长度并适当缩短,得到如图1所示的图形,变化前后的两个三角形相似.”乙说:“将菱形各边向内平移1个单位长度并适当缩短,得到如图2所示的图形,变化前后的两个菱形相似.” 对于两人的观点,下列说法正确的是( )A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对11.已知反比例函数()0m y m x =≠,当31x -≤≤-时,y 的最大值是13-,则当8x ≥时,y 有( ) A .最大值,且最大值为18- B .最大值,且最大值为18C .最小值,且最小值为18D .最小值,且最小值为18-12.若双曲线ky x=在第一、第三象限,则关于x 的方程2250x x k --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .条件不足,无法判断13.一天晩上小亮在楼下散步,想利用所学知识测量一路灯AB 的高度.如图,路灯AB 在两棵同样高度的树CE 和DF 之间,小亮测得树高2m ,两棵树之间的距离CD 为16m ,在路灯的照射下,树CE 的影长CG 为1m ,树DF 的影长DH 为3m ,点G ,C ,B ,D ,H 在一条直线上.则路灯AB 的高度为( )A .6mB .8mC .10mD .12m14.如图,已知△ABC 和A B C ''△,位似中心点C 的坐标是()1,0,且:1:2AB A B ''=,()3,1B ,BB '交y 轴负半轴于点D ,则B D '的长为( )A B C D .15.已知P 是反比例函数()180y x x=>图象上一点,点A ,B 分别在y 轴,x 轴的正半轴上,且2OB =,90APB ∠=︒,过点P 作PC x ⊥轴于点C ,PD y ⊥轴于点D ,且:1:2PD PC =,连接OP ,则AOP S △的值为( )A .6B .7C .374 D .39416.如图,在Rt △ABC 中,90BAC ∠=︒,AB AC =,D 为线段BC 上一点,以AD 为一边构造Rt △ADE ,90DAE ∠=︒,AD AE =,下列说法正确的是( )①BAD EDC ∠=∠;②ADOC ACD ∽△△;③BD ADOE AO=;④2222AD BD CD =+. A .仅有①② B .仅有①②③C .仅有②③④D .①②③④二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17.若()340a b b =≠,则ab=________. 18.在Rt △ABC 中,90ACB ∠=︒,3AC =,4BC =,若以点C 为圆心,r 为半径的圆与边AB 所在直线相离,则r 的取值范围为________;若C 与AB 边只有一个公共点,则r 的取值范围为________.19.某批发商销售一种成本是40元/副的防寒手套,当每副防寒手套的售价定为60元时,一天内可卖出100副.经调研得知,该防寒手套的单价每降低1元,每天的销量可增加10副. (1)当防寒手套的单价在定价的基础上降低2元时,每天的销售量为________副.(2)该批发商每天要获利2240元,为尽可能让利于顾客,赢得市场,那么这种防寒手套的售价应降价________元.当每副防寒手套的定价为________元时,该批发商可获得最大利润.三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分9分)解方程:()()2422x x x -=-.21.(本小题满分9分)已知抛物线22y ax x =+的顶点坐标为()1,1A --,求该抛物线的解析式.22.(本小题满分9分)如图,AB 是O 的直径,AD AB ⊥于点A ,C 是O 上一点,OD AC ⊥于点E .(1)若BC CE =,求证:ABC DAE ≌△△. (2)若6OA =,16OD =,求BC 的长.23.(本小题满分10分)如图,一次函数2y mx =+的图象分别交y 轴,x 轴于点D ,()4,0E ,与反比例函数ny x=的图象相交于A ,B 两点,AC CE ⊥于点C ,:3:2AE DE =.(1)求一次函数与反比例函数的解析式. (2)请直接写出关于x 的不等式2nmx x+>的解集. 24.(本小题满分10分)某中学九年级开展了以“喜迎二十大、永远跟党走、奋进新征程”为主题的知识竞赛活动,赛后将成绩由高到低分为甲、乙、丙三个等级.为进一步了解学生的竞赛成绩,特抽取部分学生的成绩进行分析.(1)被抽取学生的成绩为“甲等级”是________事件,被抽取学生的成绩为“丁等级”是________事件(填“不可能”或“必然”或“随机”).(2)若已知成绩为甲等级的5个人中有3名男生,2名女生,若从中任选两人参加县级竞赛,利用画树状图或列表法,求这两人恰好是2名男生的概率.25.(本小题满分10分)某企业接到生产一种机器零部件的任务,已知制造每个这样的零部件需要6秒,因时间紧迫,该企业决定引进一批新的生产设备,安装后经过不断的调试发现,生产每个零部件的平均时间y (单位:秒)与调试次数x (单位:次)之间的函数关系是()20ky k x=+≠,下表是调试次数x ,调试后平均生产每个零部件所需时间y 及相应的k 的数据:(1)如果要使表中有尽可能多的数据满足函数2y x=+,求k 的值. (2)如果要使k 与表中相应具体数据的差的平方和最小,求出这个最小值. (3)如果生产这种零部件的效率提高50%,试求此时的调试次数.26.(本小题满分12分)已知:如图,△ABC 是以AB ,BC 为腰的等腰直角三角形,现将△ABC 绕点A 逆时针旋一个角度α得到Rt △ADE ,连接BD ,CE .(1)如图1,当045α︒<<︒时,求证:ABD ACE ∽△△.(2)如图2,当45α=︒时,点E 在AB 的延长线上,延长DB 交CE 于点F ,求证:BCF FBC ∠=∠. (3)如图3,当4590α︒<<︒时,延长DB 交CE 于点F ,求证:F 是CE 的中点.2023届九年级阶段评估(二)数学参考答案1.B 2.A 3.B 4.C 5.D 6.D 7.C 8.A 9.D 10.A 11.B 12.B13.C14.C15.D16.D 提示:①180135BAD B BDA BDA∠=︒-∠-∠=︒-∠,180135EDC ADE BDA BDA ∠=︒-∠-∠=︒-∠.故①正确;②∵ADE ACB ∠=∠,ADO ACD ∠=∠,∴ADO ACD ∽△△.故②正确; ③∵ABD AEO ∠=∠,BAD EAO ∠=∠,∴BAD EAO ∽△△,∴BD ADOE AO=.故③正确; ④如图,过点D 作DM AB ⊥,DN AC ⊥,垂足分别为M ,N ,在Rt △ADE 中,∵222DE AD AE =+,AD AE =,∴222DE AD =, 同理,在Rt △BMD 中,222BD MD =, 在Rt △DCN 中,222CD DN =.∵90DMA MAN DNA ∠=∠=∠=︒,∴四边形AMDN 是矩形,∴DN AM =, 在Rt △AMD 中,222AD AM MD =+,∴222222AD AM MD =+,∴2222AD BD CD =+. 故④正确.故选D . 17.4318.1205r <<;34r <≤或125r =. 19.(1)120 (2)6;55提示:(2)设这种防寒手套的售价应降价x 元,则每副防寒手套的销售利润为()6040x --元,平均每天的销售量为()10010x +副,依题意得()()6040100102240x x --+=,解得14x =,26x =. ∵尽可能让利于顾客,赢得市场,∴每副防寒手套应降价6元.设利润为w ,依据题意可知,()()604010010w x x =--+()21052250x =--+. 当5x =时,批发商可获得最大利润. 即每副防寒手套的定价为55元.20.解:(解法不唯一)∵()()2422x x x -=-,∴()()2420x x x ⎡⎤---=⎣⎦, ∴()()2380x x --=,∴12x =,283x =. 21.解:∵()1,1A --是抛物线22y ax x =+的顶点坐标, ∴()()21121a -=⋅-+⨯-,∴1a =. 故抛物线的解析式为22y x x =+. 22.解:(1)证明:∵AB 是O 的直径, ∴90ACB ∠=︒,∴90B BAC ∠+∠=︒. ∵AD AB ⊥于点A ,∴AD 是O 的切线,∴90CAD BAC ∠+∠=︒,∴EAD B ∠=∠.∵OD AC ⊥于点E .∴BC OD ∥,∴AOD B ∠=∠, ∴AE EC =,90AED C ∠=∠=︒. ∵BC CE =,∴AE BC =,在△ABC 和△DAE 中,,,,C AED BC AE B DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABC DAE ≌△△.(2)∵B AOD ∠=∠,C OAD ∠=∠,∴ABC DOA ∽△△,∴BC ABOA OD=. ∵6OA =,12AB =,16OD =,∴12616BC =,∴92BC =.23.解:(1)在2y mx =+中,令0x =,则2y =,∴()0,2D ,∴2OD =.∵:3:2AE DE =,∴32AC OD =,∴3AC =. ∵AC x ⊥轴于点C ,∴AC x ∥轴,∴ODE CAE ∽△△,∴OE ODCE AC=. ∵32AC OD =,∴23OE =.∵4OE =,∴6CE =,∴2OC =,∴()2,3A -, 把点A 的坐标分别代入2y mx =+和n y x =,得322m =-+,32n=-, 解得12m =-,6n =-, ∴一次函数的解析式为122y x =-+,反比例函数的解析式为6y x=-. (2)2x <-或06x <<.提示:12,26,y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩解得2,3x y =-⎧⎨=⎩或6,1,x y =⎧⎨=-⎩∴()6,1B -;观察图象,关于x 的不等式1622x x-+>-的解集是2x <-或06x <<. 24.解:(1)随机;不可能.(2)共有20种等可能的结果,其中两人恰好是2名男生的结果有6种, ∴P (2人恰好是男生)632010==. 25.解:(1)要使表中有尽可能多的数据满足函数关系,由表中k 的数据可以看出,12出现的次数最多, ∴k 取12,∴函数关系式为122y x=+. (2)依据题意得()()()()222212141812k k k k -+-+-+-24112808k k =-+()241424k =-+,∴当14k =时,原式取最小值24.(3)设生产效率提高50%后,需y 秒生产1个零部件,∴11650%16y -=, 解得4y =,经检验,4y =是原方程的解,将4y =代入(1)中函数关系式,得1242x=+, 解得6x =,经检验,6x =是原方程的解, 故此时的调试次数为6.26.证明:(1)∵将△ABC 绕点A 逆时针旋一个角度α得到Rt △ADE , ∴AD AB =,AE AC =,BAD CAE ∠=∠,∴AD ABAE AC=,∴ABD ACE ∽△△.(2)如图,在Rt △ABC 中,90ABC ∠=︒,AB BC =,∴45BAC BCA ∠=∠=︒,由旋转的性质可知:AD AB =,AE AC =,45DAE BAC ∠=∠=︒, ∴1267.5∠=∠=︒,367.5ACE ∠=∠=︒,∴2467.5∠=∠=︒, ∴1803445BFE ∠=︒-∠-∠=︒,∴135BFC ∠=︒. ∵67.54522.5BCF ACE ACB ∠=∠-∠=︒-︒=︒,∴在△BFC 中,180********.522.5FBC BFC FCB ∠=︒-∠-∠=︒-︒-︒=︒, ∴BCF FBC ∠=∠.(3)如图,过点E 作EM DF ⊥于点M ,过点C 作CN DF ⊥,交DF 的延长线于点N ,∴90DME EMF BNC ∠=∠=∠=︒.由旋转的性质可知:DE BC =,AD AB =,90ADE ABC ∠=∠=︒, ∴12∠=∠,1490∠+∠=︒,2318090ABC ∠+∠=︒-∠=︒, ∴34∠=∠,∴()AAS DEM BCN ≌△△,∴EM CN =, 又∵56=∠,90EMF CNF ∠=∠=︒, ∴()AAS FEM FCN ≌△△,∴EF CF =, 即F 是CE的中点.。
北师大版九年级数学上册《第二十一章一元二次方程》单元检测卷带答案

北师大版九年级数学上册《第二十一章一元二次方程》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x的方程是一元二次方程的是()A.x2−4x=0B.x+y−3=0C.1x2+x=2D.3x+8=02.若x=1是关于x的一元二次方程x2+x−t=0的一个根,则t的值为()A.1 B.2 C.3 D.43.用配方法解方程x2−2x−5=0时,原方程变形为()A.(x+1)2=6B.(x−1)2=6C.(x+1)2=9D.(x−1)2=94.若关于x的一元二次方程x2−4x−c=0有两个相等的实数根,则实数c的值为()A.16 B.−16C.4 D.−45.方程(x+2)(x−3)=0的解是()A.x1=2,x2=−3B.x=−3C.x1=−2,x2=3D.x=26.关于x的一元二次方程kx2−4x+4=0有两个不相等的实数根,则k的取值范围是()A.k<1B.k≤1C.k<1且k≠0D.k≤1且k≠07.参加一次交易活动,每两人都交换一次名片共交换了110张名片,若有x人参加活动,可列方程为()A.12x(x−1)=110B.x(x−1)=110C.12x2=110D.x2=1108.若α,β是方程x2−2x−1=0的两根,则α+β+αβ的值为()A.1 B.-1 C.3 D.-3二、填空题9.已知关于x的方程(m+2)x m2−2+√3x=7是一元二次方程,则m的值为.10.用配方法解一元二次方程x2−6x+2=0,可将方程变形为(x−3)2=n的形式,则n的值是.11.已知关于x的一元二次方程k2x2+(2k−3)x+1=0有实数根,则k的取值范围是.12.在等腰△ABC中,三边长分别为a,b,c,其中b,c恰好是方程x2−9x+18=0的两个实数根,则△ABC 的周长为.13.已知一元二次方程x2+x=5x+6的两根分别为m、n,则1m +1n=.三、计算题14.解方程:(1)2(x−1)2=4;(2)2x(x+7)=3(x+7);(3)2x2+3x−2=0.四、解答题15.已知关于x的一元二次方程x2−(k+4)x+4k=0.(1)求证:不论k取任何实数,该方程总有两个实数根;(2)若该方程有一个根小于2,求k的取值范围16.已知关于x的一元二次方程x2+6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2-x1-x2≥8,求m的取值范围.17.“杭州亚运⋅三人制篮球”赛将于9月25−10月1日在我县举行,我县某商店抓住商机,销售某款篮球服.6月份平均每天售出100件,每件盈利40元.为了扩大销售、增加盈利,7月份该店准备采取降价措施,经过市场调研,发现销售单价每降低1元,平均每天可多售出10件.(1)若降价5元,求平均每天的销售数量;(2)当每件商品降价多少元时,该商店每天销售利润为6000元?18.随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和14.4万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.7万件,那么该公司现有的22名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.A2.B3.B4.D5.C6.C7.B8.A9.210.7且k≠011.k≤3412.15.13.−2314.(1)解:(1)2(x−1)2=4(x−1)2=2x−1=±√2x1=√2+1,x2=−√2+1(2)2x(x+7)=3(x+7)2x(x+7)−3(x+7)=0(2x−3)(x+7)=02x−3=0,x+7=0x1=3,x2=−72(3)2x2+3x−2=0(2x−1)(x+2)=02x−1=0,x+2=0x1=1,x2=−2215.(1)证明:∵x2−(k+4)x+4k=0a=1,b=−(k+4)∴Δ=b2−4ac=[−(k+4)]2−4×1×4k=k2−8k+16=(k−4)2≥0∴不论k取任何实数,方程总有两个实数根.(2)解:∵x2−(k+4)x+4k=0x=−b±√b2−4ac2a=k+4±√(k−4)22×1=k+4±(k−4)2解得:x1=4∵该方程有一个根小于2∴k<216.(1)解:∵方程有实数根∴Δ=36-4(2m+1)=36-8m-4=32-8m≥0解得:m≤4.故m的取值范围是m≤4;(2)解:∵x1,x2是方程x2+6x+(2m+1)=0的两个实数根∴x1+x2=-6,x1·x2=2m+1∵2x1x2-x1-x2≥8∴2(2m+1)+6≥8解得m≥0由(1)可得m≤4∴m的取值范围是0≤m≤4.17.(1)平均每天的销售数量为:100+10×5=150(件)答:平均每天的销售数量150件;(2)设每件商品降价x元根据题意,得:(100+10x)(40−x)=6000解得:x1=10答:当每件商品降价10元或20元时,该商店每天销售利润为6000元.18.解:(1)设该快递公司投递总件数的月平均增长率为x因为今年一月份与三月份完成投递的快递总件数分别为10万件和14.4万件,增长率相同所以10(1+x)2=14.4解得x1=0.2,x2=-2.2(不合题意舍去),所以x=0.2=20%.答:该快递公司投递总件数的月平均增长率为20%;(2)今年4月份的快递投递任务是14.4×(1+20%)=17.28(万件).因为·平均每人每月最多可投递0.7万件所以22名快递投递业务员能完成的快递投递任务是:0.7×22=15.4<17.28所以该公司现有的22名快递投递业务员不能完成今年4月份的快递投递任务所以需要增加业务员(17.28-15.4)÷0.7≈2.7≈3(人).答:该公司现有的22名快递投递业务员不能完成今年4月份的快递投递任务,至少需要增加3名业务员.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学第21章-27章检测试卷
一、精心选一选(本题有l2小题。
每小题3分,共36分.每小题只有一个选项是正确的。
不选、多选、错选,均不给分)
1、计算32712+的结果为( )A. 93 B. 63 C. 92 D. 62
2、关于x 的一元二次方程(m-1)x 2-2mx+m=0有两个实数根,那么m 的取值范围是 ( ) A. m>0 B. m ≥0 C. m>0且m ≠1 D. m ≥0,且m ≠1
3、如果mn
m 1+
有意义,那么点(m ,-n )的位置在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
4、在100张奖券中,有4张中奖,某人从中抽一张,则他中奖的概率为 ( )A.
251 B .41 C. 1001 D. 20
1
5、在直角坐标系中,以点A (0,3)为圆心,以3为半径作⊙A ,则直线y=kx+2(k ≠0)与⊙A 的位置关系( )
A.相切
B.相交
C.相离
D.与k 值有关
6、过⊙O 内一点M 作最长弦为10cm ,最短弦为8cm ,则OM 的 长 为 ( )
A. 3cm
B. 6cm
C. 41cm
D. 9cm
7、一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形圆心角是 ( ) A.60° B.90° C.120° D.180°
8、如图:在⊙O 中∠A=25°,∠E=30°,∠BOD 的度数为( ) A. 55° B. 110° C. 125° D. 150°
第8题图 第
9题图
第10题图 9、如图:圆O 的弦AB 垂直平分半径OC ,则四边形OACB 为( ) A.正方形 B.长方形 C.菱形 D.以上都不对
10、如图,AB 是⊙O 的直径,AB=2,点C 在⊙O 上∠CAB=30°,D 为BC 是直径AB 上一动点,PC+PD 最小值为 ( ) A.22 B.2 C. 1 D. 2
.
B .
C .
D .
12、
二、专心填一填(本大题共5个小题;每小题3分,共15分.)
13、二次根式x -在实数范围内有意义,则x 的取值 。
14、方程x 2=x 的根是 。
15、如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒2度的速度旋转,CP 与量角器的半圆弧交于点E ,第35秒时,点E 在量角器上对应的读数是 _________ 度.
16、顶角为120°的等腰三角形腰长为4cm ,则它的外接圆的直径 。
17、对于二次函数y=x 2﹣2mx ﹣3,有下列说法:①它的图象与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=﹣1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为﹣3.其中正确的说法是 _________ .(把你认为正确说法的序号都填上)
三、耐心解一解(本题7小题,共计69分)
18、(本题8分)计算:12-)3
3(-1
+3(3-1)-20080-|3-2|
19、(本题9分)如图,四边形ABCD 是正方形,点E 是BC 边上一动点(不与B 、C 重合).连接AE ,过点E 作EF ⊥AE ,交DC 于点F . (1)求证:△ABE ∽△ECF ;
(2)连接AF ,试探究当点E 在BC 什么位置时,∠BAE=∠EAF ,请证明你的结论.
20、(本题10分) 21、(本题10分) 22、(本题10分)某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克成本50元,在第一个月的试销时间内发现,销量w (kg )随销售单价x (元/kg )的变化而变化,具体变化规律如下表所示
D A B C E
O A B
C
O
A B
D C O P
(1)请根据上表,写出w 与x 之间的函数关系式(不必写出自变量x 的取值范围); (2)求y 与x 之间的函数关系式(不必写出自变量x 的取值范围).并求出x 为何值时,y 的值最大?
(3)若在第一个月里,按使y 获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元? 23、(本题10分)已知:正方形中,,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点.
当绕点旋转到时(如图1),易证. (1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明。
(2)当绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请直接写出你的猜想.
24、(本题12分)已知,如图,在平面直角坐标系中,Rt △ABC 的斜边BC 在x 轴上,直角顶点A 在y 轴的正半轴上,A (0,2),B (﹣1,0)
. (1)求点C 的坐标;
(2)求过A 、B 、C 三点的抛物线的解析式和对称轴;
(3)设点P (m ,n )是抛物线在第一象限部分上的点,△PAC 的面积为S ,求S 关于m 的函数关系式,并求使S 最大时点P 的坐标;
(4)在抛物线对称轴上,是否存在这样的点M ,使得△MPC (P 为上述(3)问中使S 最大时的点)为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.
ABCD 45MAN ∠= MAN ∠A CB DC
,M N ,MAN ∠A BM DN =BM DN MN +=MAN ∠A BM DN ≠BM DN ,MN MAN ∠A BM DN ,MN B B M B
C N C N C N M 图1 图2 图3 A A A
D D D。