第一章原子结构和元素周期系
第一章 原子结构和元素周期系

第一章 原子结构和元素周期系1、原子核外电子运动有什么特性?解:原子核外电子的运动和光子的运动一样,具有波粒二象性。
不能同时准确测定它的位置和速度,即服从测不准关系,因而电子的运动不遵循经典力学,无确定的运动轨道,而是服从量子力学,需用统计规律来描述。
也就是说量子力学研究的只是电子在核外空间某地方出现的可能性,即出现的几率大小。
2、氢光谱为什么可以得到线状光谱?谱线的波长与能级间能量差有什么关系?求电子从第四轨道跳回第二轨道时,H β谱线之长。
解:在通常情况下,氢原子的电子在特定的稳定轨道上运动不会放出能量。
因此在通常条件下氢原子是不会发光的。
但是当氢原子受到激发(如在高温或电场下)时,核外电子获得能量就可以从较底的能级跃迁到较高的能级,电子处于激发态,处于激发态的电子不稳定,它会迅速地跳回到能量较底的能级,并将多余的能量以光的形式放出,放出光的频率(或波长)大小决定于电子跃迁时两个能级的能量差,即:νh E E E =-=∆21由于轨道能量的量子化,即不连续的,所以激发态的电子由较高能级跳回到较低能级时,放出光的频率(或波长)也是不连续的,这是氢原子光谱是线状光谱的原因。
谱线的波长和能量的关系为:hE E C 12-==νλ=3.289×1015(222111n n -)电子从第四轨道跳回第二轨道时,H B 谱线的波长为:114221510167.6)4121(10289.3-⨯=-⨯=S ννλC =nm m ss m 4861086.410167.6103711418=⨯=⋅⨯⋅⨯=---λ 3、当氢原子的一个电子从第二能级跃迁至第一能级,发射出光子的的波长为121.6nm ,当电子从第三能级跃迁至第二能级,发射出光子的的波长为656.3nm 。
试通过计算回答:(1) 哪一种光子的能量大?(2) 求氢原子中电子的第三与第二能级的能量差,以及第二与第一能级的能量差。
解:(1) 由于能量与波长有如下关系λνλνhCE h E C =∴==, 由此可知:波长越短,能量越高,因此电子从第二能级跃迁到第一能级发射出的光子能量大。
《原子结构与元素周期律》知识总结

电第一章 原子结构与元素周期律第一节原子结构有关原子结构的知识是自然科学的重要基础知识之一。
原子是构成物质的一种基本微粒,物质的组成、性质和变化都与原子结构密切相关。
1、原子核核素§1原子的组成及微粒间的关系构成原子或离子微粒间的数量关系: 1质子数Z +中子数N =质量数A =原子的近似相对原子质量质量关系2原子的核外电子数=核内质子数=核电荷数3阳离子核外电子数=核内质子数-阳离子所带电荷数 4阴离子核外电子数=核内质子数+阴离子所带电荷数 元素、核素、同位素)(X A Z 原子原质子:相对原子质量为1,1个质子带1中子:相对质量为1,不带电核处电子:质量忽略不计,1个电子例如:氢元素有、、三种不同的核素,它们之间互称同位素。
放射性同位素的应用:1、作为放射源和同位素示踪。
2、用H11H11于疾病诊断和治疗。
§2核外电子排布:如:53号元素碘的电子排布为,2-8-18-18-7元素的化学性质与原子最外层电子排布的关系:如:钠原子最外层只有1个电子,容易失去这个电子而达到稳定结构,因此钠元素在化合物中通常显1价;氯原子最外层有7个电子,只需得到1个电子便可达到稳定结构,因此氯元素在化合物中可显-1价。
第2节元素周期律和元素周期表 §1元素周期律外层电子数从1~8)。
(2)原子半径呈周期性变化(由大~小,稀有气体除外)。
(3)元素的主要化合价呈周期性变化(正化价从1~7,负化合价从-4~-1)。
元素周期律的实质元素原子的核外电子排布呈周期性变化§2元素周期表排列原则(1)按原子序数递增的顺序从左到右排列 (2)将电子层数相同的元素排成一个横行(1横称为1个周期) (3)把最外层电子数相同的无素(个别除外)排成一个纵列(1个纵列称为1个族)元素周期表元素周期律 原子半径比较方法:(1)电子层数越多,半径越大;电子层数越少,半径越小(即周期越大,半径越大)(2)当电子层结构同时,核电荷数多的半径小,核电荷数少的半径大,如:F ->Na +>Mg 2(3)对于同种元素的各种微粒,核外电子数越多,半径越大;核外电子数越少,半径越小。
高中化学 第一章 第二节 原子结构与元素周期表(第1课时)教学案 高二化学教学案

鲁科版选修4 第一章原子结构第二节原子结构与元素周期表第一课时基态原子的核外电子排布编写人:白慧峰【学习目标】1. 理解能量最低原则、泡利不相容原理、洪特规则,能用以上规则解释1~36号元素基态原子的核外电子排布;2.能根据基态原子的核外电子排布规则和基态原子的核外电子排布顺序图,完成1~36号元素基态原子的核外电子排布式。
【学习过程】一.核外电子在能级中的排布【温故·知新】我们已经知道的基态原子的核外电子的排布规律有哪些 (必修2) ?(1)各电子层最多能容纳个电子(2)最外层电子数目不超过个(K层为最外层时不超过个);次外层电子数不超过个(3)核外电子在距核由到,能量有到的电子层上依次排列哪些规律通过上节课的学习可以解释原因了呢?【联想·质疑1】基态氖原子的核外电子按怎样的能级顺序依次进行排列呢?基态氩原子的核外电子应按怎样的能级顺序依次进行排列呢?为什么?【联想·质疑2】基态K原子的原子结构示意图中为什么是2,8,8,1结构,而不是2,8,9结构呢?1.基态原子的核外电子排布原则_______能量最低原则基态原子核外电子在排布时要先占有的能级,然后再依次进入的能级,这样使整个原子处于最低的能量状态。
基态原子核外电子在原子轨道上的排列顺序为1s , , ,3s , , ,3d , , ┉。
适用于大多数基态原子的核外电子排布。
2. 表示原子核外电子排布的图示法之一________电子排布式用 来表示电子排布的式子。
请写出基态氯原子的电子排布式,并用图示法解释箭头所指的每部分的含义。
例:【迁移·应】原子核外电子在排布时, 最外层电?【练习·巩固Ⅰ】1-1 按能量由低到高的顺序排列,正确的一组是( )A .1s 、2p 、3d 、4sB .1s 、2s 、3s 、2pC .2s 、2p 、3s 、3pD .4p 、3d 、4s 、3p1-2(2015安徽高考)N 的基态原子核外电子排布式为 二. 核外电子在原子轨道中的排布 【交流 .研讨1】在同一个原子轨道里的两个电子以何种状态进行排布呢?(以1S 轨道为例)1.基态原子的核外电子排布原则_______泡利不相容原理(1)每个原子轨道上最多容纳______电子,且一个原子轨道上的电子自旋方向必须______。
《无机化学》习题解析和答案

1、教材《无机化学》北京师范大学、华中师范大学、南京师范大学无机化学教研室编,高等教育出版社,2002年8月第4版。
2、参考书《无机化学》北京师范大学、华中师范大学、南京师范大学无机化学教研室编,高等教育出版社,1992年5月第3版。
《无机化学》邵学俊等编,武汉大学出版社,2003年4月第2版。
《无机化学》武汉大学、吉林大学等校编,高等教育出版社,1994年4月第3版。
《无机化学例题与习题》徐家宁等编,高等教育出版社,2000年7月第1版。
《无机化学习题精解》竺际舜主编,科学出版社,2001年9月第1版《无机化学》电子教案绪论(2学时)第一章原子结构和元素周期系(8学时)第二章分子结构(8学时)第三章晶体结构(4学时)第四章配合物(4学时)第五章化学热力学基础(8学时)第六章化学平衡常数(4学时)第七章化学动力学基础(6学时)第八章水溶液(4学时)第九章酸碱平衡(6学时)第十章沉淀溶解平衡(4学时)第十一章电化学基础(8学时)第十二章配位平衡(4学时)第十三章氢和稀有气体(2学时)第十四章卤素(6学时)第十五章氧族元素(5学时)第十六章氮、磷、砷(5学时)第十七章碳、硅、硼(6学时)第十八章非金属元素小结(4学时)第十九章金属通论(2学时)第二十章s区元素(4学时)第二十一章p区金属(4学时)第二十二章ds区元素(6学时)第二十三章d区元素(一)第四周期d区元素(6学时)第二十四章d区元素(二)第五、六周期d区金属(4学时)第二十五章核化学(2学时)1 .化学的研究对象什么是化学?●化学是研究物质的组成、结构、性质与变化的一门自然科学。
(太宽泛)●化学研究的是化学物质(chemicals) 。
●化学研究分子的组成、结构、性质与变化。
●化学是研究分子层次以及以超分子为代表的分子以上层次的化学物质的组成、结构、性质和变化的科学。
●化学是一门研究分子和超分子层次的化学物种的组成、结构、性质和变化的自然科学。
第一章 物质结构元素周期律(知识点总结)

Z 第一章物质结构元素周期律班级姓名一、原子结构质子(Z个)原子核注意:中子(N个)质量数(A)=质子数(Z)+中子数(N) 1.原子(A X)原子序数=质子数= 核电荷数=原子的核外电子数核外电子(Z个)2.原子核外电子的排布规律:①电子总是尽先排布在能量最低的电子层里;②各电子层最多容纳的电子数是2n2;③最外层电子数不超过8个(K层为最外层不超过2个),次外层不超过18个,倒数第三层电子数不超过32个。
电子层:一(能量最低)二三四五六七对应表示符号: K L M N O P Q3.元素、核素、同位素元素:具有相同核电荷(质子)数的同一类原子的总称。
核素:具有一定数目质子和一定数目中子的一种原子。
同位素:质子数相同而中子数不同的同一元素的不同原子互称为同位素(对于原子来说)二、元素周期表1.编排原则:①按原子序数递增的顺序从左到右排列;②将电子层数相同......的各元素从左到右排成一横行..③把最外层电子数相同........的元素按电子层数递增的顺序从上到下排成一纵行..(注意:周期序数=原子的电子层数;主族序数=原子最外层电子数)2.结构特点:核外电子层数元素种类第一周期 1 2种元素短周期第二周期 2 8种元素周期第三周期 3 8种元素元(7个横行)第四周期 4 18种元素素(7个周期)长周期第五周期 5 18种元素周第六周期 6 32种元素期不完全周期:第七周期 7 未填满(已有26种元素)表主族:7个主族族副族:7个副族(18个纵行)第Ⅷ族:三个纵行(16个族)零族:稀有气体三、元素周期律1.元素周期律:元素的性质(核外电子排布、原子半径、主要化合价、金属性、非金属性)随着核电荷数的递增而呈周期性变化的规律。
元素性质的周期性变化实质是元素原子核外电..........子排布的周期性变化.........的必然结果。
2.同周期元素性质递变规律(从左到右):电子层数相同,最外层电子数依次增加,原子半径依次减小,金属性减弱,非金属性增强,与H2的化合由难到易,氢化物的稳定性由弱到强。
无机化学练习题(含答案)第一章 原子结构与元素周期系

第一章原子结构与元素周期系1-1:区分下列概念(1) 质量数和相对原子质量(2) 连续光谱和线状光谱(3) 定态、基态和激发态(4) 顺磁性和逆磁性(5) 波长、波数和频率(6) 经典力学轨道和波动力学轨道(7) 电子的粒性与波性(8) 核电荷和有效核电荷答:(1) 质量数:指同位数原子核中质子数和中子数之和, 是接近同位素量的整数。
相对原子质量:符号为Ar,被定义为元素的平均原子质量与核素12C 原子质量的1/12 之比,代替“原子量”概念(后者已被废弃);量纲为1(注意相对概念)。
(2) 连续光谱: 波长连续分布的光谱。
炽热的固体、液体或高压气体往往发射连续光谱。
电子和离子复合时,以及高速带电离子在加速场中运动时亦能发射这种光谱。
线状光谱:彼此分立、波长恒定的谱线。
原子受激发(高温、电孤等)时,电子由低能级轨道跃迁到高能级轨道,回到低能级时产生发射光谱(不同原子具有各自特征波长的谱线)。
(3) 定态是由固定轨道延伸出来的一个概念。
电子只能沿若干条固定轨道运动,意味着原子只能处于与那些轨道对应的能态,所有这些允许能态统称为定态。
主量子数为1 的定态叫基态,其余的定态都是激发态。
波动力学中也用基态和激发态的概念。
(4) 物质在外磁场中表现出来的性质。
受吸引的性质叫顺磁性,这类物质中含有未成对电子;受排斥的性质叫抗磁性,这类物质中不含未成对电子。
(5) 波长:符号λ,单位m(或m 的倍数单位);波数:符号σ,单位m-1(常用cm-1);频率:符号ν,单位Hz,相互关系:σ=1/λ,ν= c/λ。
(6) 汉语中都叫原子轨道,但英语中的区分却是明确的。
“orbital”是波动力学的原子轨道,是特定能量的某一电子在核外空间出现机会最多的那个区域,亦叫“原子轨函”。
“orbit”是玻尔从旧量子学提出的圆型原子轨道。
(7) 粒性:电子运动具有微粒运动的性质,可用表征微粒运动的物理量(如距离和动量)描述;波性:电子运动也具有波的性质(如衍射),可用表征波的物理量(如波长和频率)描述。
化学

0.00
0.25 0.50 0.75 0.93
波函数的角度分布剖面图
180
- 1.00
1.00
1.2.2 氢原子结构的量子力学描述
P轨道角度分布图
+ + + -
1.2.2 氢原子结构的量子力学描述
+
-
-
+ +
+ + + + + -
+ -
d轨道角度分布图
+
1.2.2 氢原子结构的量子力学描述
几种电子云的角度分布剖面图
连续光谱
第1章 原子结构与元素周期系
2. 氢原子光谱
自然界的连续 光谱
实验室的连 续光谱
第1章 原子结构与元素周期系
● 氢原子光谱
Hδ Hγ 410 .2 434 .0 7.31 6.91
Hβ 486 .1 6.07
Hα 656 .3 4.57
8
/nm 14 1 ( 10 ) /s
1
2.179 1018 6.626 10
34
(
1
2 n1
1
2 n2
)
3 .289 10 (15来自12 n1
1
2 n2
)
与里德堡经验方程完全一致
第1章 原子结构与元素周期系
3. Bohr原子结构理论
波尔理论的合理内涵
电子在定态时有确定的能量; 原子光谱源自核外电子的能量变化。 原子光谱——线状光谱 反 映
1.2.2 氢原子结构的量子力学描述
量子力学理论证明,电子出现的概率密 度=||2 ,于是有: W=||2 V
当某空间区域中概率密度一致时,我们 可用乘法求得概率。 电子云是概率密度||2的形象化描述,是 |Ψ|2的空间图形。黑点密集的地方,||2的值 大,概率密度大;反之概率密度小。 原子轨道是波函数Ψ,或波函数Ψ的线性 组合(波函数的加减)。
高中化学必修2 第1章 原子结构与元素周期律 思维导图

普通高中化学
必修2(第1章原子结构与元素周期律)
思维导图
史学强
你是否发现笔记记得越多,思维也越混乱?你是否经常为琐事缠身而苦无分身之术?你是否总是感叹一天的时间太少?思维导图来了!它可以“解救”你!
思维导图是一种终极的思维工具,由英国“记忆之父”东尼·博赞发明,并在全球得到广泛推广,已成为21世纪风靡全球的思维工具,到目前已被世界上2.5亿人所使用。
思维导图注重开发人的左、右脑,运用线条、符号、词汇和图像,把一长串枯燥的信息变成彩色的、容易记忆的、有高度组织性的图,它绘制起来非常简单,而且十分有趣!它可以帮助人们改善思维,提高记忆力和办事效率。
原子结构与元素周期律
1-1原子结构
1-2元素周期律和元素周期表
1-3元素周期表的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 原子结构和元素周期系1、原子核外电子运动有什么特性解:原子核外电子的运动和光子的运动一样,具有波粒二象性。
不能同时准确测定它的位置和速度,即服从测不准关系,因而电子的运动不遵循经典力学,无确定的运动轨道,而是服从量子力学,需用统计规律来描述。
也就是说量子力学研究的只是电子在核外空间某地方出现的可能性,即出现的几率大小。
2、氢光谱为什么可以得到线状光谱谱线的波长与能级间能量差有什么关系求电子从第四轨道跳回第二轨道时,H β谱线之长。
解:在通常情况下,氢原子的电子在特定的稳定轨道上运动不会放出能量。
因此在通常条件下氢原子是不会发光的。
但是当氢原子受到激发(如在高温或电场下)时,核外电子获得能量就可以从较底的能级跃迁到较高的能级,电子处于激发态,处于激发态的电子不稳定,它会迅速地跳回到能量较底的能级,并将多余的能量以光的形式放出,放出光的频率(或波长)大小决定于电子跃迁时两个能级的能量差,即:νh E E E =-=∆21由于轨道能量的量子化,即不连续的,所以激发态的电子由较高能级跳回到较低能级时,放出光的频率(或波长)也是不连续的,这是氢原子光谱是线状光谱的原因。
谱线的波长和能量的关系为:hE E C 12-==νλ =×1015(222111n n -) 电子从第四轨道跳回第二轨道时,H B 谱线的波长为:114221510167.6)4121(10289.3-⨯=-⨯=S ν νλC = nm m ss m 4861086.410167.6103711418=⨯=⋅⨯⋅⨯=---λ 3、当氢原子的一个电子从第二能级跃迁至第一能级,发射出光子的的波长为,当电子从第三能级跃迁至第二能级,发射出光子的的波长为。
试通过计算回答:(1) 哪一种光子的能量大(2) 求氢原子中电子的第三与第二能级的能量差,以及第二与第一能级的能量差。
解:(1) 由于能量与波长有如下关系λνλνhC E h E C =∴==, 由此可知:波长越短,能量越高,因此电子从第二能级跃迁到第一能级发射出的光子能量大。
(2) 根据公式:λhCE =∆λhCE E E =-=∆121mS m S J 91834106.12110310626.6---⨯⋅⨯⨯⋅⨯= J 181063.1-⨯=λhCE E E =-=∆232mS m S J 91834103.65610310626.6---⨯⋅⨯⨯⋅⨯= J 191003.3-⨯=4、氢原子的核外电子在第四轨道上运动时的能量比它在第一轨道上运动的能量多。
这个核外电子由第四轨道跃入第一轨道时,所发出的频率和波长是多少 解:根据公式:hE h E ∆=∴=∆νν 已知:J eV eV E 1910603.11,7.12-⨯==∆,代入上式得nm S S m C S S J J h E 8.971007.31031007.310626.610603.17.12115181153419=⋅⨯⋅⨯==⨯=⋅⨯⨯⨯=∆=-----νλν 5、玻尔理论有哪几条主要假设根据这些假设得到那些结果解决了什么问题有什么缺点解:玻尔理论有三条假设:(1) 核外电子运动取一定的轨道,在轨道上运动的电子不吸收能量也不放出能量,第一条假设回答了原子可以稳定存在;(2) 在一定轨道上运动的电子有一定的能量,而能量只能取某些由量子化条件决定的正整数值,由量子化条件可推出氢原子核外轨道能量公式E = n 2eV = –×10-18/n 2 J 原子在正常或稳定状态时,各电子层尽可能处在离核最近的轨道上。
这时电子的能量最低。
这条假设也决定了原子可以稳定存在; (3) 只有电子从高能级跃迁到低能级时,原子就会以光子形式放出能量,释放出光子的频率和能量的关系为νh E E =-12h E E 12-=ν 放出光子的频率(或波长)是不连续的,这就是氢原子光谱是线状光谱的原因。
玻尔理论的局限性(1) 不能解释氢原子光谱的精细结构以及谱线分裂现象;(2) 不能解释多电子原子、分子光谱;(3) 不能解释电子为什么在一定轨道上稳定存在而不放出能量。
6、原子轨道、几率密度和电子云等概念有何联系和区别解:薛定谔方程的每一个合理解,都表示该微观粒子运动的某一种状态,微观粒子的运动状态是用波函数来描述的,所以波函数是描述核外电子运动状态的数学函数式。
n 、l 、m 三个量子数确定一个波函数,也即确定电子在空间运动的范围。
可以粗略地把波函数看作是在x 、y 、z 三维空间里找到该运动电子的区域。
波函数称为原子轨道,所以原子轨道是波函数的同义语。
波函数本身并无具体的物理意义。
但波函数绝对值的平方||2却有明确的物理意义。
||2则是电子在核外空间某处出现的几率。
即电子的几率密度。
电子云是电子在核外空间出现几率密度分布的形象化描述。
也可以说电子云是||2的具体图像。
电子云图像中,小黑点密集的地方表示电子的几率密度大,小黑点稀的地方表示电子的几率密度小。
原子轨道、几率密度、电子云都是描述核外电子运动的。
它们虽有联系,但各个描述的方式和所代表的函义又是不同的。
电子云和原子轨道角度分布图基本相似,但电子云的分布图要比原子轨道的分布图“瘦”些,而原子轨道角度分布图则有正负号,电子云角度分布图没有正负号。
而几率密度却是描述核外电子在某处单位体积内出现几率多少。
7、下列说法是否正确应如何改正(1) “s 电子绕核旋转,其轨道为一圆,而p 电子是走形”。
(2) “主量子数为1时,有自旋相反的两条轨道”。
(3) “主量子数为3时,有3s、3p、3d、3f四条轨道”。
解:(1) 不正确。
因为电子运动并无固定轨道,应该说s电子在核外运动电子云图象是一个球体,其剖面图是个园,而p电子云图象是哑铃形,其剖面图是形。
(2) 不正确。
应说n=1的电子层中,l=0、m=0只有一个1s轨道,可容纳两个自旋相反的电子。
(3) 不正确。
n=3时,l只能取0、1、2,即只有3s、3p、3d三个能级,没有3f。
同时3p还有m = 0,±1三种不同的空间取向,是三种不同的空间运动状态,有三条原子轨道,同样3d,m可为0、±1、±2五种空间取向,有五条原子轨道。
每条原子轨道又有两种自旋状态。
因此应说:n=3时,有9条原子轨道,电子的最大可能状态数18。
8、有无以下的电子运动状态(1) n = 1, l = 1, m = 0 (2) n = 2, l = 0, m = 1(3) n = 3, l = 3, m = 3 (4) n = 4, l = 3, m = 2解:(1) 没有。
因为l最大只能为n – 1,所以当n = 1时、l只能为0,不能为1;若要l = 1,则必须2n中任何一个值,而不能为1。
≥(2) 没有。
因为m最大只能为±l,所以当l = 0时、m只能为0,不能为±1;若要m =±1,则必须n = 2时,l必须为1,而不能为0。
(3) 没有。
因为n = 3,l就不能为3时,m也不能为±3;若要l = 3、m =±3,则必须4n中任何一个值,而不能为3。
≥(4) 有。
因为有两组合理的n、l、m值,是表明两条原子轨道。
9、填充合理的量子数:(1) n = , l = 2, m = 0, m s = +1/2 (2) n = 2, l = , m = 1, m s = –1/2(3) n = 4, l = 2, m = 0, m s = (4) n = 2, l = 0, m = , m s = +1/2解:(1) n 3中的任何一个整数;(2) l = 1 (3) m s = +1/2或–1/2 (4) m = 010、n = 3, l有多少可能值n = 3,共有多少轨道电子的最大可能状态数为多少解:n 3时,l可以取0、1、2三个值,n = 3共有9条轨道,电子的最大可能状态数为18。
11、画出:(1) s、p y、p x、p z、d xy、d yz、d xz、d z2、d x2–y2原子轨道角度分布图(2) s 、p y 、p x 、p z 、d xy 、d yz 、d xz 、d z 2、d x 2–y 2电子云角度分布图解:(1) 原子轨道角度分布分别如图6–1(2) 电子云角度分布图分别如图6–2图6–1原子轨道的角度分布图 图6–2电子云的角度分布图12、什么叫屏蔽效应什么钻穿效应应如何解释下列轨道能量的差别(1) E 1s <E 2s <E 3s <E 4s (2) E 3s <E 3p <E 3d (3) E 4s <E 3d解:在多电子原子中,电子不仅受到原子核的引力,而电子之间还有斥力,这种斥力的存在,相当于减弱了原子核对外层电子的引力,即:σ-=*Z Z式中,*Z 为有效核电荷数,σ为屏蔽常数。
由于其他电子对选定电子的排斥作用,而抵消了一部分核电荷,就相当于核电荷对选定电子的吸引力的减弱,这种效应称屏蔽效应。
由于电子的角量子数l 不同,其几率的径向分布不同,电子钻到核附近的几率较大,受到核的引力大,因而能量不同的现象称为钻穿效应。
(1) E 1s < E 2s < E 3s < E 4s ,应该用屏蔽效应解释。
当l 相同,n 不同时,n 越大,电子离核越远,原子中其它电子对它的屏蔽作用越大,原子核对外层电子的吸引力减小,能量升高,所以:E 1s < E 2s < E 3s < E 4s(2) E 3s < E 2p < E 3d 用钻穿效应解释:对于n 相同而l 不同的电子,穿入内层的能力不同,ns >np >nd >nf ,s 电子穿透内层的能力大些,即在离核较近的地方s 电子出现的几率比p 、d 、f 电子大些,电子穿透内层的程度越大,受到其它电子的蔽屏作用越小,受到核的引力越强,能量越低,这就解释了n 相同、l 不同的各轨道能量顺序为E n s < E n p < E n d < E n f 的原因。
同属于第三电子层的3s 、3p 、3d ,其径向分布不同,3s 有3个峰,3s 电子除有较多机会出现在离核远的区域外,3s 电子在离核最近的地方有小峰,钻到核附近的机会较多,即在离核较近了地方3s 电子出现的几率比3p 、3d 大些。
3d 电子钻到核附近的机会更小(见图6–3)。
由此可见,受到屏蔽作用依次增大,能量依次升高,即E 3s < E 2p < E 3d 。
(3) E 4s < E 3d ,钻穿效应解释能级交错现象,从径向分布图看出(图6–4),4s 的最大峰虽比3d 离核远,但它有小峰钻到核的附近,回避了其他电子的屏蔽。