浙江省金华市2017年中考数学试卷及参考答案
浙江省金华市2017年中考数学真题试题(含解析)

浙江省金华市2017年中考数学真题试题第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分.1.下列各组数中,把两数相乘,积为1的是( )A .2和2−B .2−和12C .3和33D .3和3− 【答案】C.【解析】 试题分析:选项A ,2×(-2)=-4,该选项错误;选项B ,-2×12=-1,该选项错误; 选项C ,33⨯=1,故该选项正确;选项D ,3(3)⨯− =-3,该选项错误;故选C.2. 一个几何体的三视图如图所示,这个几何体是( )A .球B .圆柱C .圆锥D .立方体【答案】B.3. 下列各组数中,不可能成为一个三角形三边长的是( )A .2,3,4B .5,7,7C .5,6,12D .10,8,6【答案】C.【解析】试题分析:根据三角形的三边关系:三角形任意两边的和大于第三边,可得:选项A ,2+3>4,能组成三角形;选项B ,5+7>7,能组成三角形;选项C ,5+6<12,不能组成三角形;选项D ,6+8>10,能组成三角形,故选C.4. 在t ABC ∆R 中,90,5,3C AB BC ∠===,则tan A 的值是( )A .34B .43 C.35 D .45【答案】A.【解析】试题分析:在△ABC 中,∠C=90°,AB=5,BC=3, 根据勾股定理可求得AC=4, 所以tanA=34BC AC =,故选A.5. 在下列的计算中,正确的是( )A .325m m m +=B .623÷=m m m C.()3326m m = D .()2211m m +=+ 【答案】B.6. 对于二次函数()212y x =−−+是图象与性质,下列说法正确的是( )A .对称轴是直线1x =,最小值是2B .对称轴是直线1x =,最大值是2C. 对称轴是直线1x =−,最小值是2 D .对称轴是直线1x =−,最大值是2【答案】B.【解析】试题分析:已知()212y x =−−+,可得抛物线开口向下,顶点坐标为(1,2),对称轴为x=1,即可得当x=1时,y 有最大值2,故选B.7. 如图,在半径为13cm 的圆形铁片上切下一块高为8cm 的弓形铁片,则弓形弦AB 的长为( )A .10cmB .16cm C.24cm D .26cm【答案】C.【解析】试题分析:作OC ⊥AB 交点为D ,交圆于点C ,OB=13cm ,CD=8cm ,OD=5cm ;在RT △BOD 中,根据勾股定理可求得BD=12cm ,再由垂径定理可得AB=2BD=24cm ,故选C.8. 某校举行以“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( )A .12B .13 C.14D .16 【答案】D.9. 若关于x 的一元一次不等式组()2132,x x x m−>−⎧⎪⎨<⎪⎩的解是5x <,则m 的取值范围是( ) A .5m ≥ B .5m > C.5m ≤ D .5m <【答案】A.【解析】试题分析:解第一个不等式得:x <5;解第二个不等式得:x <m ;因为不等式组的解是x <5,根据不等式组解集的判定方法即可得m ≥5,故选A.10. 如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在,A B 两处各安装了一个监控探头(走廊内所用探头的观测区为圆心角最大可取到180的扇形),图中的阴影部分是A 处监控探头观测到的区域,要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是( )A.E处 B.F处 C.G处 D.H处【答案】D.【解析】试题分析:根据两点确定一条直线,观察可以摄像头应安装在点H的位置,故选D.第Ⅱ卷(共90分)二、填空题(每题4分,满分24分,将答案填在答题纸上)11. 分解因式:24x−=.【答案】(x+2)(x-2).【解析】试题分析:解:直接利用平方差公式进行因式分解即可,即原式=(x+2)(x-2).12.若23ab=,则a bb+=.【答案】53.【解析】试题分析:根据等式的性质,两边都加上1,即可得2113ab+=+,通分得53a bb+=.13. 2017年5月28日全国部分宜居城市最高气温的数据如下:宜居城市大连靑岛威海金华昆明三亚最高气灌(℃) 252835302632则以上最高气温的中位数为℃.【答案】29.【解析】试题分析:将这组数据中小到大排列如下:25,26,28,30,32,35,这组数据的个数为偶数个,所以中位数是28和30两个数的平均数29.14. 如图,已知12l l ,直线l 与12,l l 相交于,C D 两点,把一块含30角的三角尺按如图位置摆放若1130∠=,则2∠= .【答案】20°.15. 如图.已知点()2,3A 和点()0,2B ,点A 在反比例函数k y x=的图象上.作射线AB ,再将射线AB 绕点A 按逆时针方向旋转45,交反比例函数图象于C 点,则点C 的坐标为 .【答案】(-1,-6).【解析】试题分析:作BF ⊥AC 于点F ,作AE ⊥y 轴于点E ,设AC 交y 轴于点D ,已知A (2,3),B (0,2),即可得AE=2,BE=1,由勾股定理可得A B=5,又因∠BAC =45°,可得BF=AF=102,因△DEA ∽△DFB ,令AD=x ,根据相似三角形的性质可得DE AE DF BF = 1010x =−,解得∴421010x −,又因222DE AE AD += ,解得12210210,3x x == (舍去),所以AD=210 ,设D (0,y ),即可得22(3)4(210)y −+=,解得:123,9y y ==(舍去),设AC 直线方程为y=kx+b,将A (2,3),D (0,-3)代入直线方程得求得直线AC 的解析式为y=3x-3,因A (2,3)在y=k x上,所以k=2×3=6,把直线AC 的解析式和反比例函数的解析式联立得方程组336y x y x =−⎧⎪⎨=⎪⎩,解得16x y =−⎧⎨=−⎩ ,即可得C (-1,-6).16.在一空旷场地上设计一落地为矩形ABCD 的小屋,10AB BC m +=.拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进人小屋内的条件下活动,其可以活动的区域面积为()2S m. (1)如图1,若4BC m =,则S = 2m .(2)如图2,现考虑在(1)中的矩形ABCD 小屋的右侧以CD 为边拓展一正CDE ∆区域,使之变成落地为五边ABCDE 的小屋,其它条件不变.则在BC 的变化过程中,当S 取得最小值时,边长BC 的长为 m .【答案】52. 【解析】试题分析:(1)在B 点处是以点B 为圆心,10为半径的34个圆;在A 处是以A 为圆心,4为半径的14个圆;在C 处是以C 为圆心,6为半径的14个圆;所以S=222113641088444ππππ⨯+⨯+⨯= ;(2)设BC=x,则AB=10-x ,222330110(10)43604S x x πππ=⨯+⨯−+⨯ =3π(-10x+250),当x=52时,S 最小,即BC=52. 三、解答题 (本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)17. 计算:()()020172cos601321+−+−−−. 【答案】2.18. 解分式方程:2111x x =+−. 【答案】x=3.【解析】试题分析:方程去分母后化转为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 试题解析:方程两边同乘(x+1)(x-1)得:2(x-1)=x+1去括号得: 2x-2=x+1移项得: 2x-x=2+1合并同类项得: x=3经检验:x=3是原分式方程的根,∴原方程的根是x=3.19. 如图,在平面直角坐标系中,ABC ∆各顶点的坐标分别为()()()2,2,4,1,4,4A B C −−−−−−.(1)作出ABC ∆关于原点O 成中心对称的111A BC ∆.(2)作出点A 关于x 轴的对称点'A .若把点'A 向右平移a 个单位长度后落在111A BC ∆的内部(不包括顶点和边界)求a的取值范围.【答案】详见解析.【解析】试题分析:(1)分别作出点A、B、C关于圆点O对称的点,然后顺次连接即可;(2)作出点A关于X轴的对称点,再向右平移即可.试题解析:(1)如下图:(2)解:A′如图所示:a的取值范围是4<a<6.20. 某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级.统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如下图表.请按正确数据解答下列各题:(1)填写统计表.(2)根据调整后数据,补全条形统计图.(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.学生体能测试成绩各等次人数统计表体能等级调整前人数调整后人数优秀8良好16及格12不及格4合计40学生体能测试成绩各等次人数统计图【答案】(1)详见解析;(2)详见解析;(3)360.【解析】试题分析:(1)根据题和统计表给出的数据即可填写统计表;(2)根据调整后统计表的数据即可补全条形统计图;(3)根据抽取的学生中体能测试的优秀率为24%;从而求出该校体能测试为“优秀”的人数. 试题解析:(1)解:填写的统计表如图1所示:(2)解:补全的条形统计图如图2所示:(3)解:抽取的学生中体能测试的优秀率为:12÷50=24%;∴该校体能测试为“优秀”的人数为1500×24%=360(人)21.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点上正方1m 的P 处发出一球,羽毛球飞行的高度()y m 与水平距离()x m 之间满足函数表达式()24y a x h =−+.已知点O 与球网的水平距离为5m ,球网的高度为1.55m .(1)当124a =−时,①求h 的值.②通过计算判断此球能否过网. (2)若甲发球过网后,羽毛球飞行到点O 的水平距离为7m ,离地面的高度为125m 的Q 处时,乙扣球成功,求a 的值.【答案】(1)①h=53;②此球能过网,理由见解析;(2)a=15− . 【解析】 试题分析:(1)①利用a=124−,(0,1)代入解析式即可求出h 的值;②利用x=5代入解析式求出y ,再与1.55比较大小即可判断是否过网;(2)将点(0,1),(7,125)代入解析式得到一个二元一次方程组求解即可得出a 的值.(2)解:把(0,1),(7, 125)代入y=2(4)a x h −+得:1611295a h a h +=⎧⎪⎨+=⎪⎩; 解得:15215a h ⎧=−⎪⎪⎨⎪=⎪⎩; ∴a=15− . 22. 如图,已知:AB 是O 的直径,点C 在O 上,CD 是O 的切线,AD CD ⊥于点,D E 是AB 延长线上的一点,CE 交O 于点F ,连接,OC AC .(1)求证:AC 平分DAO ∠.(2)若105DAO ∠=,30E ∠=.①求OCE ∠的度数.②若O 的半径为22,求线段EF 的长.【答案】(1)详见解析;(2)①∠OCE=45°;②3【解析】试题分析:(1)利用了切线的性质,平行线的判定和性质,等边对等角,角平分线的判定即可得证;(2)①根据(1)得出的AD//OC,从而得出同位角相等,再利用三角形的内角和定理即可求出答案;②作OG⊥CE于点G,可得FG=CG,根据等边对等角得出CG=OG=FG=2,在根据勾股定理得出GE,从而求出EF=GE-FG.又∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OAC;∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°;∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG,∵2∠OCE=45°.∴CG=OG=2,∴FG=2;∵在RT△OGE中,∠E=30°,∴3∴323. 如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段_____,_____;:ABCD AEFG S S =矩形 ______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长.(3)如图4,四边形ABCD 纸片满足,,,8,10AD BC AD BC AB BC AB CD <⊥==.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出,AD BC 的长.【答案】(1)(1)AE ;GF ;1:2;(2)13;(3)按图1的折法,则AD=1,BC=7;按图2的折法,则AD=134 ,BC=374. 【解析】试题分析:(1)由图2观察可得出答案为AE,GF,由折叠的轴对称性质可得出答案为1:2;(2)由EF 和EH 的长度根据勾股定理可求出FH 的长度,再由折叠的轴对称性质易证△AEH ≌△CGF ;再根据全等三角形的性质可得出AD 的长度;(3)由折叠的图可分别求出AD 和BC 的长度.试题解析:(1)AE ;GF ;1:2(3)解:本题有以下两种基本折法,如图1,图2所示.按图1的折法,则AD=1,BC=7.按图2的折法,则AD=134 ,BC=374. 24. 如图1,在平面直角坐标系中,四边形OABC 各顶点的坐标分别为)0,14(),35,9(),33,3(),0,0(C B A O ,动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线BC -AB -OA 运动,在BC AB OA ,,上运动的速度分别为2533,,(单位长度/秒).当Q P ,中的一点到达C 点时,两点同时停止运动.(1)求AB 所在直线的函数表达式;(2)如图2,当点Q 在AB 上运动时,求CPQ ∆的面积S 关于t 的函数表达式及S 的最大值;(3)在P ,Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值.【答案】(1) y=3x+23;(2) 213353(14)(23)143(26)2S t t t t t =−+=−++≤≤ ,当t=5时,S 有最大值;最大值为8134;(3) t 的值为73572238202,,,4237++. 试题解析:(1)解:把A (3,3 ),B (9,5 )代入y=kx+b,得 333953k b k b ⎧+=⎪⎨+=⎪⎩;解得:3323k b ⎧=⎪⎨⎪=⎩;∴33 ; (2)解:在△PQC 中,PC=14-t,PC 323+∴213353(14)(23)143(26)2S t t =−+=+≤≤ ∴当t=5时,S 有最大值;最大值为8134.c.当6<t≤10时,①线段PQ 的中垂线经过点C (如图3) 可得方程14-t=25-52t ; 解得:t=223. ②线段PQ 的中垂线经过点B (如图4) 可得方程2225(53)(9)(6)2t t ⎡⎤+−=−⎢⎥⎣⎦; 解得123820238202,72t t +−==; 此时38202t +=; 综上所述:t 的值为73572238202,,4237+.。
【数学】2017年浙江省金华市中考真题(解析版)

2017年浙江省金华市中考真题第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分. 1.下列各组数中,把两数相乘,积为1的是() A .2和2- B .2-和12C .3和33D .3和3-2. 一个几何体的三视图如图所示,这个几何体是()A .球B .圆柱C .圆锥D .立方体 3. 下列各组数中,不可能成为一个三角形三边长的是()A .2,3,4B .5,7,7C .5,6,12D .10,8,6 4. 在t ABC ∆R 中,90,5,3C AB BC ∠===o,则tan A 的值是() A .34 B .43 C.35 D .455. 在下列的计算中,正确的是()A .325m m m +=B .623÷=m m m C.()3326m m = D .()2211m m +=+6. 对于二次函数()212y x =--+是图象与性质,下列说法正确的是()A .对称轴是直线1x =,最小值是2B .对称轴是直线1x =,最大值是2 C. 对称轴是直线1x =-,最小值是2 D .对称轴是直线1x =-,最大值是2 7. 如图,在半径为13cm 的圆形铁片上切下一块高为8cm 的弓形铁片,则弓形弦AB 的长为()A .10cmB .16cm C.24cm D .26cm8. 某校举行以“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是() A .12 B .13 C.14 D .169. 若关于x 的一元一次不等式组()2132,x x x m->-⎧⎪⎨<⎪⎩的解是5x <,则m 的取值范围是()A .5m ≥B .5m > C.5m ≤ D .5m <10. 如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在,A B 两处各安装了一个监控探头(走廊内所用探头的观测区为圆心角最大可取到180o 的扇形),图中的阴影部分是A 处监控探头观测到的区域,要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是()A .E 处B .F 处 C.G 处 D .H 处第Ⅱ卷(共90分)二、填空题(每题4分,满分24分,将答案填在答题纸上) 11. 分解因式:24x -=. 12.若23a b =,则a bb+=. 13. 2017年5月28日全国部分宜居城市最高气温的数据如下:宜居城市 大连 靑岛 威海 金华 昆明 三亚 最高气灌(℃) 25 28 35 30 26 32 则以上最高气温的中位数为℃.14. 如图,已知12l l ,直线l 与12,l l 相交于,C D 两点,把一块含30o 角的三角尺按如图位置摆放若1130∠=o ,则2∠=.15. 如图.已知点()2,3A 和点()0,2B ,点A 在反比例函数ky x=的图象上.作射线AB ,再将射线AB 绕点A 按逆时针方向旋转45o ,交反比例函数图象于C 点,则点C 的坐标为.16.在一空旷场地上设计一落地为矩形ABCD 的小屋,10AB BC m +=.拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进人小屋内的条件下活动,其可以活动的区域面积为()2S m .(1)如图1,若4BC m =,则S =2m .(2)如图2,现考虑在(1)中的矩形ABCD 小屋的右侧以CD 为边拓展一正CDE ∆区域,使之变成落地为五边ABCDE 的小屋,其它条件不变.则在BC 的变化过程中,当S 取得最小值时,边长BC 的长为m .三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.) 17. 计算:()()20172cos 601321+-+---o.18. 解分式方程:2111x x =+-.19. 如图,在平面直角坐标系中,ABC ∆各顶点的坐标分别为()()()2,2,4,1,4,4A B C ------.(1)作出ABC ∆关于原点O 成中心对称的111A B C ∆.(2)作出点A 关于x 轴的对称点'A .若把点'A 向右平移a 个单位长度后落在111A B C ∆的内部(不包括顶点和边界)求a 的取值范围.20. 某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级.统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如下图表.请按正确数据解答下列各题: (1)填写统计表.(2)根据调整后数据,补全条形统计图.(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数. 学生体能测试成绩各等次人数统计表体能等级 调整前人数 调整后人数 优秀 8 良好 16及格 12不及格 4合计40学生体能测试成绩各等次人数统计图21.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点上正方1m 的P 处发出一球,羽毛球飞行的高度()y m 与水平距离()x m 之间满足函数表达式()24y a x h =-+.已知点O 与球网的水平距离为5m ,球网的高度为1.55m .(1)当124a =-时,①求h 的值.②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O 的水平距离为7m ,离地面的高度为125m 的Q 处时,乙扣球成功,求a 的值.22. 如图,已知:AB 是O e 的直径,点C 在O e 上,CD 是O e 的切线,AD CD ⊥于点,D E 是AB 延长线上的一点,CE 交O e 于点F ,连接,OC AC .(1)求证:AC 平分DAO ∠. (2)若105DAO ∠=o ,30E ∠=o . ①求OCE ∠的度数.②若O e 的半径为22,求线段EF 的长.23. 如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD Y 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段_____,_____;:ABCD AEFG S S =Y 矩形 ______.(2)ABCD Y 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长.(3)如图4,四边形ABCD 纸片满足,,,8,10AD BC AD BC AB BC AB CD <⊥==P .小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出,AD BC 的长.24. 如图1,在平面直角坐标系中,四边形OABC 各顶点的坐标分别为)0,14(),35,9(),33,3(),0,0(C B A O ,动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线BC -AB -OA 运动,在BC AB OA ,,上运动的速度分别为2533,,(单位长度/秒).当Q P ,中的一点到达C 点时,两点同时停止运动.(1)求AB 所在直线的函数表达式;(2)如图2,当点Q 在AB 上运动时,求CPQ ∆的面积S 关于t 的函数表达式及S 的最大值;(3)在P ,Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值.参考答案第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分. 1.【答案】C. 【解析】试题分析:选项A ,2×(-2)=-4,该选项错误;选项B ,-2×12=-1,该选项错误; 选项C ,333⨯=1,故该选项正确;选项D ,3(3)⨯- =-3,该选项错误;故选C. 2.【答案】B.3. 【答案】C. 【解析】试题分析:根据三角形的三边关系:三角形任意两边的和大于第三边,可得:选项A ,2+3>4,能组成三角形;选项B ,5+7>7,能组成三角形;选项C ,5+6<12,不能组成三角形;选项D ,6+8>10,能组成三角形,故选C. 4.【答案】A. 【解析】试题分析:在△ABC 中,∠C=90°,AB=5,BC=3, 根据勾股定理可求得AC=4, 所以tanA=34BC AC =,故选A. 5.【答案】B.6.【答案】B. 【解析】试题分析:已知()212y x =--+,可得抛物线开口向下,顶点坐标为(1,2),对称轴为x=1,即可得当x=1时,y 有最大值2,故选B. 7. 【答案】C. 【解析】试题分析:作OC ⊥AB 交点为D ,交圆于点C ,OB=13cm ,CD=8cm ,OD=5cm ;在RT △BOD 中,根据勾股定理可求得BD=12cm ,再由垂径定理可得AB=2BD=24cm ,故选C. 8. 【答案】D.9.【答案】A. 【解析】试题分析:解第一个不等式得:x <5;解第二个不等式得:x <m ;因为不等式组的解是x <5,根据不等式组解集的判定方法即可得m≥5,故选A.学科网10.【答案】D.【解析】试题分析:根据两点确定一条直线,观察可以摄像头应安装在点H的位置,故选D.第Ⅱ卷(共90分)二、填空题(每题4分,满分24分,将答案填在答题纸上)11.【答案】(x+2)(x-2).【解析】试题分析:解:直接利用平方差公式进行因式分解即可,即原式=(x+2)(x-2).12.【答案】5 3 .【解析】试题分析:根据等式的性质,两边都加上1,即可得2113ab+=+,通分得53a bb+=.13. 【答案】29.【解析】试题分析:将这组数据中小到大排列如下:25,26,28,30,32,35,这组数据的个数为偶数个,所以中位数是28和30两个数的平均数29.14.【答案】20°.15.【答案】(-1,-6).【解析】试题分析:作BF⊥AC于点F,作AE⊥y轴于点E,设AC交y轴于点D,已知A(2,3),B(0,2),即可得AE=2,BE=1,由勾股定理可得AB=5,又因∠BAC=45°,可得BF=AF=102,因△DEA∽△DFB,令AD=x,根据相似三角形的性质可得DE AEDF BF=,即2101022DEx=-,解得∴DE=421010x-,又因222DE AE AD+=,解得12210210,3x x==(舍去),所以AD=210,设D(0,y),即可得22(3)4(210)y-+=,解得:123,9y y==(舍去),设AC直线方程为y=kx+b,将A(2,3),D(0,-3)代入直线方程得求得直线AC的解析式为y=3x-3,因A(2,3)在y=kx上,所以k=2×3=6,把直线AC的解析式和反比例函数的解析式联立得方程组336y xyx=-⎧⎪⎨=⎪⎩,解得16xy=-⎧⎨=-⎩,即可得C(-1,-6).16.【答案】52.【解析】试题分析:(1)在B点处是以点B为圆心,10为半径的34个圆;在A处是以A为圆心,4为半径的14个圆;在C处是以C为圆心,6为半径的14个圆;所以S=222113641088444ππππ⨯+⨯+⨯=;(2)设BC=x,则AB=10-x,222330110(10)43604S x xπππ=⨯+⨯-+⨯ =3π(-10x+250),当x=52时,S最小,即BC=52.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)17.【答案】2.18.【答案】x=3.【解析】试题分析:方程去分母后化转为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:方程两边同乘(x+1)(x-1)得:2(x-1)=x+1去括号得:2x-2=x+1移项得:2x-x=2+1合并同类项得:x=3经检验:x=3是原分式方程的根,∴原方程的根是x=3.19.【答案】详见解析.【解析】试题分析:(1)分别作出点A、B、C关于圆点O对称的点,然后顺次连接即可;(2)作出点A关于X轴的对称点,再向右平移即可.试题解析:(1)如下图:(2)解:A′如图所示:a的取值范围是4<a<6.20.【答案】(1)详见解析;(2)详见解析;(3)360.【解析】试题分析:(1)根据题和统计表给出的数据即可填写统计表;(2)根据调整后统计表的数据即可补全条形统计图;(3)根据抽取的学生中体能测试的优秀率为24%;从而求出该校体能测试为“优秀”的人数.试题解析:(1)解:填写的统计表如图1所示:(2)解:补全的条形统计图如图2所示:(3)解:抽取的学生中体能测试的优秀率为:12÷50=24%;∴该校体能测试为“优秀”的人数为1500×24%=360(人)21.【答案】(1)①h=5 3;②此球能过网,理由见解析;(2)a=15-.【解析】试题分析:(1)①利用a=124-,(0,1)代入解析式即可求出h的值;②利用x=5代入解析式求出y,再与1.55比较大小即可判断是否过网;(2)将点(0,1),(7,125)代入解析式得到一个二元一次方程组求解即可得出a的值.(2)解:把(0,1),(7,125)代入y=2(4)a x h-+得:1611295a ha h+=⎧⎪⎨+=⎪⎩;解得:1 5 21 5ah⎧=-⎪⎪⎨⎪=⎪⎩;∴a=15-.22.【答案】(1)详见解析;(2)①∠OCE=45°;②23-2.【解析】试题分析:(1)利用了切线的性质,平行线的判定和性质,等边对等角,角平分线的判定即可得证;(2)①根据(1)得出的AD//OC,从而得出同位角相等,再利用三角形的内角和定理即可求出答案;②作OG⊥CE于点G,可得FG=CG,根据等边对等角得出CG=OG=FG=2,在根据勾股定理得出GE,从而求出EF=GE-FG.又∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OAC;∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°;∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG,∵OC=22,∠OCE=45°.∴CG=OG=2,∴FG=2;∵在RT△OGE中,∠E=30°,∴GE=23,∴EF=GE-FG=23-2.23.【答案】(1)(1)AE;GF;1:2;(2)13;(3)按图1的折法,则AD=1,BC=7;按图2的折法,则AD=134,BC=374.【解析】试题分析:(1)由图2观察可得出答案为AE,GF,由折叠的轴对称性质可得出答案为1:2;(2)由EF和EH的长度根据勾股定理可求出FH的长度,再由折叠的轴对称性质易证△AEH ≌△CGF;再根据全等三角形的性质可得出AD的长度;(3)由折叠的图可分别求出AD和BC的长度.试题解析:(1)AE;GF;1:2(3)解:本题有以下两种基本折法,如图1,图2所示.按图1的折法,则AD=1,BC=7.按图2的折法,则AD=134,BC=374.24. 【答案】(1) y=33x+23;(2)213353(14)(23)143(26)2242S t t t t t=-+=-++≤≤,当t=5时,S有最大值;最大值为8134;(3) t的值为73572238202,,,4237++.试题解析:(1)解:把A(3,3 ),B(9,5 )代入y=kx+b,得333953k bk b⎧+=⎪⎨+=⎪⎩;解得:3323kb⎧=⎪⎨⎪=⎩;∴y=33x+23;(2)解:在△PQC 中,PC=14-t,PC 边上的高线长为3232t +; ∴213353(14)(23)143(26)2242S t t t t t =-+=-++≤≤ ∴当t=5时,S 有最大值;最大值为8134.c.当6<t≤10时,①线段PQ 的中垂线经过点C (如图3) 可得方程14-t=25-52t ; 解得:t=223. ②线段PQ 的中垂线经过点B (如图4)可得方程2225(53)(9)(6)2t t ⎡⎤+-=-⎢⎥⎣⎦;解得123820238202,72t t +-==(舍去); 此时382027t +=; 综上所述:t 的值为73572238202,,,4237++.。
2017学年浙江省金华中考数学年试题

∴ a 2,b 2,c 2 的方差 1[(a 2 3)2 (b 2 3)2 (c 2 3)2 ] 1[(a 5)2 (b 5)2 (c 5)2] 4
3
3
故选 B
【提示】根据数据 a,b,c 的平均数为 5 可知 1 (a b c) 5 ,据此可得出 1 (a 2 b 2 c 2) 的值;再
y (3 n)2 6(3 n) 10,当 x 3 n 时, y (n 3)2 6(n 3) 10 ,
∵ (3 n)2 6(3 n) 10 [(n 3)2 6(n 3) 10] 0 ,∴ n 为任意实数, x 3 n 时的函数值等于 x 3 n
,则
A4 H
A3C 2
CH 2
13 17 17
,
∴ tan BA4C
CH A4 H
1 13 ,1=12﹣1+1,3 22
2 1,7 32
3 1,∴ tan BAnC
n2
1 ,故答案为: n 1
1; 1 . 13 n2 n 1
【提示】作 CH BA4 于 H ,根据正方形的性质、勾股定理以及三角形的面积公式求出 CH、A4H ,根据正 切的概念求出 tan BA4C ,总结规律解答. 【考点】解直角三角形,勾股定理,正方形的性质 16.【答案】12( 3 1)cm (12 3 18)cm 【解析】解:如图 1 中,作 HM BC 于 M , HN AC 于 N ,则四边形 HMCN 是正方形,设边长为 A .
12( 3 1)cm ,12 3 18cm
【提示】如图 1 中,作 HM BC 于 M , HN AC 于 N ,则四边形 HMCN 是正方形,设边长为 A .在
2017年浙江省金华市中考数学试卷-答案

22264113
πππ1088π444
++=2223301π10π(10)π43604x x +
-+2π(3x =-
【提示】方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【考点】解分式方程 19.【答案】 (1)如下图:
(2)解:A '如图所示.
a 的取值范围是46a <<
【提示】(1)分别作出点A 、B 、C 关于圆点O 对称的点,然后顺次连接即可; (2)作出点A 关于X 轴的对称点即可.再向右平移即可. 【考点】坐标与图形性质,关于原点对称的点的坐标 20.【答案】(1)解:填写的统计表如图1所示:
(2)解:补全的条形统计图如图2所示:
)解:∵直线与O相切,
OCA,∴∠
105
DAO=︒
1:
S ABCD=
是叠合矩形,FEH
∠
;由折叠的轴对称性可知:
3)解:本题有以下两种基本折法,如图1,图2所示.
(
4237。
2017年浙江金华数学解析

2017年浙江省金华市中考数学试卷满分:120分 版本:浙教版 第I 卷(选择题,共30分)一、选择题(每小题3分,共10小题,合计30分)1. (2017浙江金华,1,3分)下列各组数中,把两数相乘,积为1的是 A .2和-2B .-2和21C .3和33D .3和-3答案:C ,解析:(1)根据“有理数乘法的运算法则”,2×(-2) =-4;(2)根据“有理数乘法的运算法则”, -2×21=-1;(3)根据“二次根式乘法的运算法则”,3×33=1;(4)根据“二次根式乘法的运算法则”,3×(-3)=-3.2. (2017浙江金华,2,3分)一个几何体的三视图如图所示,这个几何体是 A .球B .圆柱C .圆锥D .立方体俯视图答案:B ,解析:因为该几何体的主视图与左视图都是矩形,所以该几何体是柱体;又因为该几何体的俯视图是圆,所以该几何体是圆柱.3.(2017浙江金华,3,3分)下列各组数中,不可能成为一个三角形三边长的是A .2,3,4B .5,7,7C .5,6,12D .6,8,10答案:C ,解析:判断三条线段a ,b ,c 能否组成三角形的常用方法:当两条较短线段之和大于最长线段时,则能组成三角形.∵2+3>4,5+7>7,5+6<12,6+8>10,∴5,6,12不可能成为一个三角形三边长.4. (2017浙江金华,4,3分)在Rt △ABC 中,∠C =90°,AB =5,BC =3,则tan A 的值是A .43B .34 C .53 D .54 答案:A ,解析:在Rt △ABC 中,根据勾股定理,得AC =22BC AB -=2235-=4,再根据余切函数的定义,得tan A =AC BC =43. 5. (2017浙江金华,5,3分)在下列的计算中,正确的是A .m 3+m 2=m 5B .m 5÷m 2=m 3C .(2m )3=6m 3D .(m +1)2=m 2+1答案:B ,解析:(1)根据“同类项定义”, m 3+m 2不能计算;(2)根据“同底数幂的除法”, m 5÷m 2=m 5-2=m 3;(3)根据“积的乘方”, (2m )3=23·m 3=8m 3;(4)根据“完全平方公式”, (m +1)2=m 2+2m +1.6. (2017浙江金华,6,3分)对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是A .对称轴是直线x =1,最小值是2B .对称轴是直线x =1,最大值是2C .对称轴是直线x =-1,最小值是2D .对称轴是直线x =-1,最大值是2 答案:B ,解析:二次函数y =-(x -1)2+2的对称轴是直线x =1. ∵-1<0,∴抛物线开口向下,有最大值,最大值是2.7. (2017浙江金华,7,3分)如图,在半径为13cm 的圆形铁片上切下一块高为8cm 的弓形特片,则弓形弦AB 的长为 A .10cmB .16cmC .24cmD .26cm答案:C ,解析:如图,在Rt △OCB 中,OC =5cm ,OB =13cm ,根据勾股定理,得BC =22OC OB -=22513-=12cm.∵OC ⊥AB ,∴AB =2BC =24cm .8. (2017浙江金华,8,3分)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学得前两名的概率是A .21 B .31 C .41 D .61 答案:D ,解析:画树形图如下:甲 乙 丙 丁乙 丙 丁 甲 丙 丁甲 乙 丁甲 乙 丙由图可知,所有等可能出现的情况共有12种,其中甲、乙同学得前两名的情况有2种,所有甲、乙同学得前两名的概率是122=61. 9. (2017浙江金华,9,3分)若关于x 的一元一次不等式组⎩⎨⎧<->-mx x x ,)2(312的解是x <5,则m 的取值范围是 A .m ≥5B .m >5C .m ≤5D .m <5答案:A ,解析:解不等式2x -1>3(x -2),得x <5,又x <m ,且不等式组的解是x <5,根据解不等式组口诀“同小取小”,所以m 的取值范围是m ≥5 .10. (2017浙江金华,10,3分)如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在A ,B 两处各安装了一个监控探头(走廊内所用探头的观测区域为圆心角最大可取到180°的扇形),图中的阴影部分是A 处监控探头观测到的区域.要是整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是 A .E 处B .F 处C .G 处D .H 处答案:D ,解析:根据监控探头观测区域的条件,B 监控探头为如图黑色区域,剩余的区域只有在H 处安装监控探头,如图红色区域,这样整个艺术走廊都能被监控到.第Ⅱ卷(非选择题,共90分)二、填空题(本大题有6个题,每小题4分,共24分) 11. (2017浙江金华,11,4分)分解因式:x 2-4= .答案:(x +2)(x -2),解析:直接用平方差公式“a 2-b 2=(a +b )(a -b )”分解因式,x 2-4=(x +2)(x -2).12. (2017浙江金华,12,4分)若32=b a ,则bb a += . 答案:35,解析:解法1:利用比例的基本性质“两内项积等于两外项积”求解,∵32=b a ,∴3a =2b ,∴a =32b .∴b b a +=b b b +32=bb35=35;解法2:设参数法求解,设a =2k ,则b =3k ,∴b b a +=k k k 332+=k k 35=35;解法3:逆用同分母分式加减法则求解,b b a +=b b b a +=ba +1=32+1=35.13. (2017浙江金华,13,4分)2017年5月28日全国部分宜居城市最高气温的数据如下:则以上最高气温的中位数为 ℃.答案:29,解析:把6个数字按照从小到大排列为25,26,28,30,32,35,则中位数为23028+=29℃. 14. (2017浙江金华,14,4分)如图,已知l 1∥l 2,直线l 与l 1,l 2相交于C ,D 两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2= °.答案:20°,解析:如下图,∵∠1=130°,∴∠3=180°-∠1=180°-130°=50°. ∵l 1∥l 2,∴∠BDC =∠3=50°. ∵∠BDC =∠BDA +∠2,∠BDA =30°, ∴∠2=∠BDC -∠BDA =50°-30°=20°.15.(2017浙江金华,15,4分)如图,已知点A (2,3)和点B (0,2),点A 在反比例函数y =xk的图象上.作射线AB ,再将射线AB 绕点A 按逆时针方向旋转45°,交反比例函数图象于点C ,则点C 的坐标为 .答案:(―1,―6),解析:如图,过点A 作AH ⊥AB 交x 轴于点H ,过点D 分别作DE ⊥AB ,DF ⊥AH ,垂足分别为E ,H .设AB 的解析式为y =kx +b ,把点A (2,3)和点B (0,2)分别代入,得⎩⎨⎧==+.2,32b b k解得⎪⎩⎪⎨⎧==.2,21b k ∴y =21x +2.令y =0,则21x +2=0,得x =-4.∴G (-4,0).∴OG =4,OB =2.∵点A (2,3),OG =4,可得AG =35.∵∠BGO =∠BGA ,∠GOB =∠GAH =90°,∴△BOG ∽△HAG ,∴AG OG AH OB =,即5342=AH ,∴AH =253. 由△AGH 的面积,可得21×3GH =21AG ·AH ,即3GH =35×253,得GH =215. ∴OH =GH -OG =27. ∵AH ⊥AB ,∠GAC =45°,∴AD 平分∠GAH . ∵DE ⊥AB ,DF ⊥AH ,∴DE =DF =AF . 由△AGH 的面积,可得21DE ·AG +21DF ·AH =21AG ·AH , 即21(35+253) DF =21×35×253, ∴DF =5.∴AF =5,FH =253-5=25.∴DH =22)25()5(+=25.∴OD =OH -DH =27-25=1. ∴D (1,0).设直线AD 的解析式为y =mx +n ,把点A (2,3),D (1,0)代入,得⎩⎨⎧=+=+.0,32n m n m 解得⎩⎨⎧-==.3,3n m∴y =3x -3. 把点A (2,3)代入y =x k ,得y =x6. 由⎪⎩⎪⎨⎧-==33,6x y x y 得⎩⎨⎧-=-=6,1y x 或⎩⎨⎧==.3,2y x ∴点C 的坐标为(―1,―6).16. (2017浙江金华,16,4分)在一空旷场地上设计一落地为矩形ABCD 的小屋,AB +BC =10m.拴住小狗的10m 长的绳子一端固定在B 点出,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S (m 2).(1)如图1,若BC =4m ,则S = m 2.(2)如图2,现考虑在(1)中的矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其它条件不变.则在BC 的变化过程中,当S 取得最小值时,边BC 的长为 m .图1 图2答案:(1)88π;(2)25,解析:(1)当BC =4时,S =360102702π⨯+3606902π⨯+3604902π⨯=88π;(2)设BC =x m ,则S =360102702π⨯+360)10(302x -⨯π+360902x π=36030π[900+(10-x )2+3x 2]=12π(4x 2-20x +1000)=3π(x 2-5x +250)= 3π(x -25)2+4325π. ∴当x =25时,S 取得最小值.三、解答题(本题有8小题,共66分)17.(2017浙江金华,17,6分)计算:2cos60°+(-1)2017+3--(2-1)0.思路分析:分别根据特殊角的三角函数值、乘方的意义、绝对值的性质及零指数幂计算出各数,再根据实数混合运算的运算法则计算即可.解:原式=2×21-1+3-1=2. 18.(2017浙江金华,18,6分)解分式方程:1112-=+x x . 思路分析:先找出最简公分母,方程左右两边乘以最简公分母,化为整式方程,再解整式方程,最后一定注意检验.解:方程两边同乘(x +1)(-1),得2(x -1)=x +1. 解得x =3.检验:当x =3时,(x +1)(-1)≠0. 所以,原分式方程的解为x =3.19.(2017浙江金华,19,6分)如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (-2,-2),B (-4,-1),C (-4,-4).(1)作出△ABC 关于原点O 成中心对称的△A 1B 1C 1.(2)作出点A 关于x 轴的对称点A '.若把点A '向右平移a 个单位长度后落在△A 1B 1C 1的内部(不包括顶点和边界),求a 的取值范围.思路分析:(1)根据关于原点对应点的坐标特征,对应点的横纵坐标互为相反数,得到A,B,C 关于原点的对应点A1,B1,C1,连接对应线段得到所作图形;(2)根据点关于x轴对称点的特征,横坐标不变,纵坐标变为相反数,即可确定点A',点A'向右平移4各单位长度与点A1重合,向右平移6个单位长度,在边B1C1上,再根据要求“不包括顶点和边界”,可确定a的取值范围.解:(1)如图,△A1B1C1就是所求作的图形.(2)A'如图所示. a的取值范围是4<a<6.20.(2017浙江金华,20,8分)某校为了了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级.统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如下图表.请按正确数据解答下列各题:。
【精校】2017年浙江省金华市中考真题数学

2017年浙江省金华市中考真题数学一、选择题(每小题3分,共30分)1.下列各组数中,把两数相乘,积为1的是( )A.2和-2B.-2和1 2C.3和3 3解析:A、2×(-2)=-4,故此选项不合题意;B、-2×12=-1,故此选项不合题意;C、333⨯=1,故此选项符合题意;D(3=-,故此选项不合题意.答案:C2.一个几何体的三视图如图所示,这个几何体是( )A.球B.圆柱C.圆锥D.立方体解析:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.答案:B3.下列各组数中,不可能成为一个三角形三边长的是( )A.2,3,4B.5,7,7C.5,6,12D.6,8,10解析:∵5+6<12,∴三角形三边长为5,6,12不可能成为一个三角形. 答案:C4.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是( )A.3 4B.4 3C.3 5D.4 5解析:由勾股定理,得=4,由正切函数的定义,得tanA=34 BCAC=.答案:A5.在下列的计算中,正确的是( )A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+1解析:A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意.答案:B6.对于二次函数y=-(x-1)2+2的图象与性质,下列说法正确的是( )A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=-1,最小值是2D.对称轴是直线x=-1,最大值是2解析:由抛物线的解析式:y=-(x-1)2+2,可知:对称轴x=1,开口方向向下,所以有最大值y=2.答案:B7.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为( )B.16cmC.24cmD.26cm解析:如图,过O 作OD ⊥AB 于C ,交⊙O 于D ,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt △BCO 中,,∴AB=2BC=24.答案:C8.某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( )A.12 B.13 C.14 D.16解析:画树状图得:∴一共有12种等可能的结果,甲、乙同学获得前两名的有2种情况, ∴甲、乙同学获得前两名的概率是21216=. 答案:D9.若关于x 的一元一次不等式组()2132x x xm ⎧⎪⎨⎪-⎩->,<的解是x <5,则m 的取值范围是( )A.m ≥5B.m >5C.m ≤5解析:解不等式2x-1>3(x-2),得:x<5,∵不等式组的解集为x<5,∴m≥5.答案:A10.如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在A、B两处各安装了一个监控探头(走廊内所用探头的观测区域为圆心角最大可取到180°的扇形),图中的阴影部分是A处监控探头观测到的区域.要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是( )A.E处B.F处C.G处D.H处解析:如图,A、若安装在E处,仍有区域:四边形MGNS和△PFI监控不到,此选项错误;B、若安装在F处,仍有区域:△ERW监控不到,此选项错误;C、若安装在G处,仍有区域:四边形QEWP监控不到,此选项错误;D、若安装在H处,所有空白区域均能监控,此选项正确.答案:D二、填空题(每小题4分,共24分)11.分解因式:x2-4= .解析:x2-4=(x+2)(x-2). 答案:(x+2)(x-2)12.若23ab=,则a bb+= .解析:根据等式的性质:两边都加1,2113ab+=+,则53a bb+=.答案:5 313.2017年5月28日全国部分宜居城市最高温度的数据如下:则以上最高气温的中位数为℃.解析:题目中数据共有6个,按从小到大排列后为:25,26,28,30,32,35. 故中位数是按从小到大排列后第3,第4两个数的平均数作为中位数,故这组数据的中位数是12×(28+30)=29.答案:2914.如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2= .解析:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°.答案:20°15.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=kx的图象上,做射线AB,再将射线AB 绕点A 按逆时针方向旋转45°,交反比例函数图象于点C ,则点C 的坐标为 .解析:如图所示,过A 作AE ⊥x 轴于E ,以AE 为边在AE 的左侧作正方形AEFG ,交AB 于P ,根据点A(2,3)和点B(0,2),可得直线AB 的解析式为y=12x+2, 由A(2,3),可得OF=1,当x=-1时,y=21232-+=,即P(-1,32),∴PF=32,将△AGP 绕点A 逆时针旋转90°得△AEH ,则△ADP ≌△ADH ,∴PD=HD ,PG=EH=32,设DE=x ,则DH=DP=x+32,FD=1+2-x=3-x ,Rt △PDF 中,PF 2+DF 2=PD 2,即(32)2+(3-x)2=(x+32)2,解得x=1,∴OD=2-1=1,即D(1,0),根据点A(2,3)和点D(1,0),可得直线AD 的解析式为y=3x-3,解方程组336y x y x =-⎧⎪⎨=⎪⎩,,可得23x y =⎧⎨=⎩,或16x y =-⎧⎨=-⎩,,∴C(-1,-6). 答案:(-1,-6)16.在一空旷场地上设计一落地为矩形ABCD 的小屋,AB+BC=10m ,拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m 2)(1)如图1,若BC=4m ,则S= m 2.(2)如图2,现考虑在(1)中矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 的变化过程中,当S 取得最小值时,边BC 的长为m.解析:(1)如图1,拴住小狗的10m 长的绳子一端固定在B 点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B 为圆心、10为半径的34圆,以C 为圆心、6为半径的14圆和以A 为圆心、4为半径的14圆的面积和, ∴S=222311106488444ππππ⨯⋅+⋅⋅+⋅=.(2)如图2,设BC=x ,则AB=10-x , ∴S=()2223160101044360x x πππ⋅⋅+⋅⋅+⋅⋅-=3π(x 2-10x+250) =3π(x 2-5x+250), 当x=52时,S 取得最小值,∴BC=52.答案:88π;52.三、解答题(共8小题,满分66分)17.计算:2cos60°+(-1)2017.解析:本题涉及特殊角的三角函数值、乘方、零指数幂、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.答案:2cos60°+(-1)2017-1)0=2×12-1+3-1 =1-1+3-1 =2.18.解分式方程:2111x x =+-. 解析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式冯方程的解.答案:去分母得:2(x-1)=x+1,解得:x=3,经检验x=3是分式方程的解.19.如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC 关于原点O 或中心对称的△A 1B 1C 1;(2)作出点A 关于x 轴的对称点A ′,若把点A ′向右平移a 个单位长度后落在△A 1B 1C 1的内部(不包括顶点和边界),求a 的取值范围.解析:(1)分别作出点A 、B 、C 关于原点O 或中心对称的对应点,顺次连接即可得;(2)由点A′坐标为(-2,2)可知要使向右平移后的A′落在△A1B1C1的内部,最少平移4个单位,最多平移6个单位,据此可得.答案:(1)如图所示,△A1B1C1即为所求;(2)∵点A′坐标为(-2,2),∴若要使向右平移后的A′落在△A1B1C1的内部,最少平移4个单位,最多平移6个单位,即4<a<6.20.某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如下图表,请按正确数据解答下列各题:(1)填写统计表;(2)根据调整后数据,补全条形统计图;(3)若该校共有学生1500人,请你估算出该体能测试等级为“优秀”的人数.解析:(1)求出各自的人数,补全表格即可;(2)根据调整后的数据,补全条形统计图即可;(3)根据“游戏”人数占的百分比,乘以1500即可得到结果.答案:(1)填表如下:(2)补全条形统计图,如图所示:(3)抽取的学生中体能测试的优秀率为24%,则该校体能测试为“游戏”的人数为1500×24%=360(人).21.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=124时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为125m的Q处时,乙扣球成功,求a的值.解析:(1)①将点P(0,1)代入y=124-(x-4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,125)代入y=a(x-4)2+h代入即可求得a、h.答案:(1)①当a=124-时,y=124-(x-4)2+h,将点P(0,1)代入,得:124-×16+h=1,解得:h=53;②把x=5代入y=124-(x-4)2+53,得:y=124-×(5-4)2+53=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,125)代入y=a(x-4)2+h,得:1619125a ha h+=⎧⎪⎨+=⎪⎩,,解得:15215ah⎧=-⎪⎪⎨⎪=⎪⎩,,∴a=-15.22.如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB 延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为,求线段EF的长.解析:(1)由切线性质知OC⊥CD,结合AD⊥CD得AD∥OC,即可知∠DAC=∠OCA=∠OAC,从而得证;(2)①由AD∥OC知∠EOC=∠DAO=105°,结合∠E=30°可得答案;②作OG⊥CE,根据垂径定理及等腰直角三角形性质知CG=FG=OG,由OC=22得出CG=FG=OG=2,在Rt△OGE中,由∠E=30°可得答案.答案:(1)∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA,∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠DAC,∴AC平分∠DAO;(2)①∵AD∥OC,∴∠EOC=∠DAO=105°,∵∠E=30°,∴∠OCE=45°;②作OG⊥CE于点G,则CG=FG=OG,∵,∠OCE=45°,∴CG=OG=2,∴FG=2,在Rt△OGE中,∠E=30°,∴,∴23.如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能合成一个无缝隙,无重叠的矩形,这样的矩形称为叠合矩形.(1)将平行四边形ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段,GFGF;S矩形AEFG:S平行四边形ABCD= .(2)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.解析:(1)根据题意得出操作形成的折痕分别是线段AE、GF;由折叠的性质得出△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,得出S矩形AEFG=12S平行四边形ABCD,即可得出答案;(2)折法1中,由折叠的性质得:AD=BG,AE=BE=12AB=4,CF=DF=12CD=5,GM=CM,∠FMC=90°,由叠合正方形的性质得出BM=FM=4,由勾股定理得出GM=CM==3,得出AD=BG=BM-GM=1,BC=BM+CM=7;折法2中,由折叠的性质得:四边形EMHG的面积=12梯形ABCD的面积,AE=BE=12AB=4,DG=NG,NH=CH,BM=FM,MC=CN,求出GH=12CD=5,由叠合正方形的性质得出EM=GH=5,正方形EMHG的面积=52=25,由勾股定理求出,设AD=x,则MN=FM+FN=3+x,由梯形ABCD的面积得出BC=252-x,求出MC=BC-BM=252-x-3,由MN=MC得出方程,解方程求出AD=134,BC=374.答案:(1)根据题意得:操作形成的折痕分别是线段AE、GF;由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,∴S矩形AEFG=12S平行四边形ABCD,∴S矩形AEFG:S平行四边形ABCD=1:2;(2)有两种折法,如图4、图5所示:折法1中,如图4所示:由折叠的性质得:AD=BG,AE=BE=12AB=4,CF=DF=12CD=5,GM=CM,∠FMC=90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴=,∴AD=BG=BM-GM=1,BC=BM+CM=7;折法2中,如图5所示:由折叠的性质得:四边形EMHG的面积=12梯形ABCD的面积,AE=BE=12AB=4,DG=NG,NH=CH,BM=FM,MC=CN,∴GH=12CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=12(AD+BC)×8=2×25,∴AD+BC=252,∴BC=252-x,∴MC=BC-BM=252-x-3,∵MN=MC,∴3+x=252-x-3,解得:x=134,∴AD=134,BC=251337244-=.24.如图1,在平面直角组坐标系中,四边形OABC各顶点的坐标分别为O(0,0),A(3,)、B(9,,C(14,0),动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OA-AB-BC运动,在OA、AB、BC上运动的速度分别为352(单位长度/秒),当P、Q中的一点到达C点时,两点同时停止运动.(1)求AB所在直线的函数表达式;(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值;(3)在P、Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t 值.解析:(1)利用待定系数法求AB所在直线的函数表达式;(2)由题意得:OP=t,PC=14-t,求出PC边上的高为2+据二次函数的最值公式求出最大值即可;(3)分别以Q在OA、AB、BC上运动时讨论:①当0<t≤2时,线段PQ的中垂线经过点C(如图2),②当2<t≤6时,线段PQ的中垂线经过点A(如图3),③当6<t≤10时,i)线段PQ的中垂线经过点C(如图4),ii)线段PQ的中垂线经过点B(如图5),只要能画出图形,根据中垂线的性质和勾股定理列方程可得结论. 答案:(1)设AB所在直线的函数表达式为y=kx+b,把A(3,33)、B(9,53)代入得:39k bk b⎧+=⎪⎨+=⎪⎩解得:kb⎧=⎪⎨=⎪⎩∴AB所在直线的函数表达式为3y x=+(2)如图1,由题意得:OP=t,则PC=14-t,过A作AD⊥x轴于D,过B作BF⊥x轴于F,过Q作QH⊥x轴于H,过A作AE⊥BF于E,交QH于G,∵A(3,),∴OD=3,, 由勾股定理得:OA=6,∵B(9,),∴AE=9-3=6,,Rt △AEB 中,=,tan ∠BAE=BE AE ==BAE=30°,点Q 过OA 的时间:t=63=2(秒),∴(t-2),∴QG=)2122t AQ -=,∴QH=)22t -+=+在△PQC 中,PC=14-t ,PC,=4(秒),∴S=21124t ⎛⎫ ⎪⎝⎭⎝+=+-≤t ≤6),∴当t=5时,S ; (3)①当0<t ≤2时,线段PQ 的中垂线经过点C(如图2),过Q 作QG ⊥x 轴于G ,由题意得:OQ=3t ,OP=t ,∠AOG=60°,∴∠OQG=30°,∴OG=32t ,∴CG=14-32t ,sin60°=QG OQ ,∴QG=322t t =, 在Rt △QGC 中,由勾股定理得:QG 2+CG 2=QC 2=PC 2,可得方程t)2+(14-32t)2=(14-t)2,解得:t 1=74,t2=0(舍),此时t=74, ②当2<t ≤6时,线段PQ 的中垂线经过点A(如图3),∴AQ=AP ,过A 作AG ⊥x 轴于G ,由题意得:OP=t ,,则PG=t-3,(t-2), 在Rt △AGP 中,由勾股定理得:AP 2=AG 2+PG 2,可得方程:2+(t-3)22,解得:t 1=32,t 2=32(舍去),此时t=32+; ③当6<t ≤10时,i)线段PQ 的中垂线经过点C(如图4),∴PC=CQ ,由(2)知:OA=6,BC=10,t=63+, ∴BQ=52(t-6),∴CQ=BC-BQ=10-52(t-6)=25-52t , 可得方程为:14-t=25-52t ,解得:t=223;ii)线段PQ 的中垂线经过点B(如图5),∴BP=BQ ,过B 作BG ⊥x 轴于G ,则,PG=t-9,BQ=52(t-6),由勾股定理得:BP 2=BG 2+PG 2,可得方程为:2+(t-9)2=[52(t-6)]2,解得:t 1=387+,t 2=387-(舍去),此时t=387+,综上所述,t 的值为74223或387+.考试考高分的小窍门1、提高课堂注意力2、记好课堂笔记3、做家庭作业4、消除焦虑、精中精力、5、不忙答题,先摸卷情、不要畏惧考试。
2017年金华数学卷答案

第1页(共3页)浙江省2017年初中毕业升学考试(金华卷)数学试卷参考答案及评分标准一、 选择题(本题共10小题,每小题3分,共30分)二、填空题(本题有6小题,每小题4分,共24分) 11. (x +2)(x -2) 12.5313. 29 14. 2015.(-1, -6)16.(1)88π; (2) 52(各2分)三、解答题(本题有8小题,共66分) 17. (本题6分) 解:原式=122⨯-1+ 3-1 …… (4分) =2. …… (2分)18. (本题6分)解:方程两边同乘(x -1) (x +1)得2(x -1)=x +1, …… (2分)去括号得 2x -2= x +1,移项得 2x -x = 1+2, 合并同类项得 x =3, …… (3分) 经检验,x =3是原分式方程的解.∴原方程的根是x =3.…… (1分)19. (本题6分)解: (1)如图,△A 1B 1C 1就是所求作的图形. (3分) (2) A'如图所示. …… (1分)a 的取值范围是4<a <6. …… (2分) 20. (本题8分) 解: (1)填表如图1. …… (3分)(2)补充的条形如图2所示. ……(2分)(第19题答图)(第20答题图1)学生体能测试成绩各等次人数统计表 (第20题答图2)优秀良好及格不及格等级 学生体能测试成绩各等次人数统计图第2页(共3页)(3)抽取的学生中体能测试的优秀率为24%. …… (1分) 该校体能测试为“优秀”的人数为1500×24%=360(人) . …… (2分) 21. (本题8分) 解:(1) ① 把(0,1)代入y =124-(x -4)2+h ,得53h =. …… (2分) ②把x =5代入215(4)243y x =--+,得215(54) 1.625243y =--+=,∵1.625 1.55>,∴ 此球能过网.…… (2分)(2)把(0,1),127,5⎛⎫⎪⎝⎭代入2(4)y a x h =-+,得161,129,5a h a h +=⎧⎪⎨+=⎪⎩解得1,521.5a h ⎧=-⎪⎪⎨⎪=⎪⎩∴15a =-. …………………… (4分)22. (本题10分) 解:(1) ∵直线CD 与⊙O 相切,∴OC ⊥CD . ∵AD ⊥CD ,∴AD ∥OC. ∴∠DAC=∠OCA .又∵OC =OA .∴∠OAC=∠OCA .∴∠DAC = ∠OAC.∴AC 平分∠DAO …… (4分) (2)①∵AD ∥OC , ∴∠EOC=∠DAO=105° , ∵∠E =30°,∴∠OCE =45° . …… (2分) ②作OG ⊥CE 于点G ,可得FG =CG . ∵OC =∠OCE=45°, ∴CG =OG =2,∴FG =2. ……(2分) ∵在Rt △OGE 中,∠E =30°,∴GE =∴EF = GE -FG =-2. . …… (2分)23. (本题10分) 解:(1) AE , GF ; 1:2 …… (3分) (2) ∵四边形EFGH 是叠合矩形,∴∠FEH =90°,又EF =5,EH =12. ∴13FH =.由折叠的轴对称性可知,DH=HN , AH =HM , CF =FN , 易证△AEH ≌△CGF , ∴CF =AH ,∴AD =DH +AH =HN +FN =FH =13. ……(3分) (3)本题有以下两种基本折法,折法如图1,图2所示.(第23题答图2)ADB C(第22题答图)OFDC A EGB (第23题答图1)ADB C第3页(共3页)按图1的折法,AD =1,BC =7.按图2的折法,134AD =,374BC =. …… (4分)24. (本题12分)解:(1)把A (3,,B (9,代入y kx b =+.得39k b k b ⎧+=⎪⎨+=⎪⎩解得k b ⎧=⎪⎨⎪=⎩∴y =+ …….…….…… (4分)(2)在△PQC 中,PC =14-t ,PC+,∴S=1(14)2t -+⎝=2++26t ≤≤). ………… (2分) 当5t =时,S. …… (2分)(3)①当02t <≤时,线段PQ 的中垂线经过点C (如图1),可得方程222314(14)2t t ⎫⎛⎫+-=-⎪ ⎪⎪⎝⎭⎝⎭, 解得174t =,20t =(舍去),此时74t =.②当26t <≤时, 当线段PQ 的中垂线经过点A 时(如图2),可得方程222(3)2)t t ⎤+-=-⎦,解得1t2t (舍去),此时t ③当610t <≤时,1°当线段PQ 的中垂线经过点C 时 (如图3) ,可得方程514252t t -=-,解得223t =.2°当线段PQ 的中垂线经过点B 时(如图4),可得方程2225(9)(6)2t t ⎡⎤+-=-⎢⎥⎣⎦,解得1t =,∵2t =,此时t . 综上所述,t 的值为74223.(每个答案1分,共4分)(第24题答图2)(第24题答图4)(第24题答图3)。
浙江省金华市2017年中考数学真题试题含解析

浙江省金华市2017年中考数学真题试题第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分.1.下列各组数中,把两数相乘,积为1的是( )A .2和2-B .2-和12 C .3和33 D .3和3- 【答案】C.【解析】试题分析:选项A ,2×(-2)=-4,该选项错误;选项B ,-2×12=-1,该选项错误; 选项C ,333⨯=1,故该选项正确;选项D ,3(3)⨯- =-3,该选项错误;故选C. 2. 一个几何体的三视图如图所示,这个几何体是( )A .球B .圆柱C .圆锥D .立方体【答案】B.3. 下列各组数中,不可能成为一个三角形三边长的是( )A .2,3,4B .5,7,7C .5,6,12D .10,8,6【答案】C.【解析】试题分析:根据三角形的三边关系:三角形任意两边的和大于第三边,可得:选项A ,2+3>4,能组成三角形;选项B ,5+7>7,能组成三角形;选项C ,5+6<12,不能组成三角形;选项D ,6+8>10,能组成三角形,故选C.4. 在t ABC ∆R 中,90,5,3C AB BC ∠===,则tan A 的值是( ) A .34 B .43 C.35 D .45【答案】A.【解析】试题分析:在△ABC 中,∠C=90°,AB=5,BC=3, 根据勾股定理可求得AC=4, 所以tanA=34BC AC =,故选A. 5. 在下列的计算中,正确的是( )A .325m m m +=B .623÷=m m m C.()3326m m = D .()2211m m +=+ 【答案】B.6. 对于二次函数()212y x =--+是图象与性质,下列说法正确的是( )A .对称轴是直线1x =,最小值是2B .对称轴是直线1x =,最大值是2C. 对称轴是直线1x =-,最小值是2 D .对称轴是直线1x =-,最大值是2【答案】B.【解析】试题分析:已知()212y x =--+,可得抛物线开口向下,顶点坐标为(1,2),对称轴为x=1,即可得当x=1时,y 有最大值2,故选B.7. 如图,在半径为13cm 的圆形铁片上切下一块高为8cm 的弓形铁片,则弓形弦AB 的长为( )A .10cmB .16cm C.24cm D .26cm【答案】C.【解析】试题分析:作OC ⊥AB 交点为D ,交圆于点C ,OB=13cm ,CD=8cm ,OD=5cm ;在RT △BOD 中,根据勾股定理可求得BD=12cm ,再由垂径定理可得AB=2BD=24cm ,故选C.8. 某校举行以“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( )A .12B .13 C.14 D .16【答案】D.9. 若关于x 的一元一次不等式组()2132,x x x m->-⎧⎪⎨<⎪⎩的解是5x <,则m 的取值范围是( ) A .5m ≥ B .5m > C.5m ≤ D .5m <【答案】A.【解析】试题分析:解第一个不等式得:x <5;解第二个不等式得:x <m ;因为不等式组的解是x <5,根据不等式组解集的判定方法即可得m ≥5,故选A.10. 如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在,A B 两处各安装了一个监控探头(走廊内所用探头的观测区为圆心角最大可取到180的扇形),图中的阴影部分是A处监控探头观测到的区域,要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是()A.E处 B.F处 C.G处 D.H处【答案】D.【解析】试题分析:根据两点确定一条直线,观察可以摄像头应安装在点H的位置,故选D.第Ⅱ卷(共90分)二、填空题(每题4分,满分24分,将答案填在答题纸上)11. 分解因式:24x-=.【答案】(x+2)(x-2).【解析】试题分析:解:直接利用平方差公式进行因式分解即可,即原式=(x+2)(x-2).12.若23ab=,则a bb+=.【答案】53.【解析】试题分析:根据等式的性质,两边都加上1,即可得2113ab+=+,通分得53a bb+=.13. 2017年5月28日全国部分宜居城市最高气温的数据如下:宜居城市大连靑岛威海金华昆明三亚最高气灌(℃) 252835302632则以上最高气温的中位数为℃.【答案】29.【解析】试题分析:将这组数据中小到大排列如下:25,26,28,30,32,35,这组数据的个数为偶数个,所以中位数是28和30两个数的平均数29.14. 如图,已知12l l ,直线l 与12,l l 相交于,C D 两点,把一块含30角的三角尺按如图位置摆放若1130∠=,则2∠= .【答案】20°.15. 如图.已知点()2,3A 和点()0,2B ,点A 在反比例函数k y x=的图象上.作射线AB ,再将射线AB 绕点A 按逆时针方向旋转45,交反比例函数图象于C 点,则点C 的坐标为 .【答案】(-1,-6).【解析】试题分析:作BF ⊥AC 于点F ,作AE ⊥y 轴于点E ,设AC 交y 轴于点D ,已知A (2,3),B(0,2),即可得AE=2,BE=1,由勾股定理可得A B=5,又因∠BAC =45°,可得BF=AF=102,因△DEA ∽△DFB ,令AD=x ,根据相似三角形的性质可得DE AE DF BF = ,即2101022DE x =- ,解得∴DE=421010x -,又因222DE AE AD += ,解得12210210,3x x == (舍去),所以AD=210 ,设D (0,y ),即可得22(3)4(210)y -+=,解得:123,9y y ==(舍去),设AC 直线方程为y=kx+b,将A (2,3),D (0,-3)代入直线方程得求得直线AC 的解析式为y=3x-3,因A (2,3)在y=k x上,所以k=2×3=6,把直线AC 的解析式和反比例函数的解析式联立得方程组336y x y x =-⎧⎪⎨=⎪⎩,解得16x y =-⎧⎨=-⎩ ,即可得C (-1,-6).16.在一空旷场地上设计一落地为矩形ABCD 的小屋,10AB BC m +=.拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进人小屋内的条件下活动,其可以活动的区域面积为()2S m .(1)如图1,若4BC m =,则S = 2m .(2)如图2,现考虑在(1)中的矩形ABCD 小屋的右侧以CD 为边拓展一正CDE ∆区域,使之变成落地为五边ABCDE 的小屋,其它条件不变.则在BC 的变化过程中,当S 取得最小值时,边长BC 的长为 m .【答案】52.【解析】 试题分析:(1)在B 点处是以点B 为圆心,10为半径的34个圆;在A 处是以A 为圆心,4为半径的14个圆;在C 处是以C 为圆心,6为半径的14个圆;所以S=222113641088444ππππ⨯+⨯+⨯= ;(2)设BC=x,则AB=10-x ,222330110(10)43604S x x πππ=⨯+⨯-+⨯ =3π(-10x+250),当x=52时,S 最小,即BC=52. 三、解答题 (本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)17. 计算:()()020172cos 601321+-+---. 【答案】2.18. 解分式方程:2111x x =+-. 【答案】x=3.【解析】试题分析:方程去分母后化转为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:方程两边同乘(x+1)(x-1)得:2(x-1)=x+1去括号得: 2x-2=x+1移项得: 2x-x=2+1合并同类项得: x=3经检验:x=3是原分式方程的根,∴原方程的根是x=3.19. 如图,在平面直角坐标系中,ABC ∆各顶点的坐标分别为()()()2,2,4,1,4,4A B C ------.(1)作出ABC ∆关于原点O 成中心对称的111A B C ∆.(2)作出点A 关于x 轴的对称点'A .若把点'A 向右平移a 个单位长度后落在111A B C ∆的内部(不包括顶点和边界)求a 的取值范围.【答案】详见解析.【解析】试题分析:(1)分别作出点A 、B 、C 关于圆点O 对称的点,然后顺次连接即可;(2)作出点A 关于X 轴的对称点,再向右平移即可.试题解析:(1)如下图:(2)解:A ′如图所示:a的取值范围是4<a<6.20. 某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级.统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如下图表.请按正确数据解答下列各题:(1)填写统计表.(2)根据调整后数据,补全条形统计图.(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.学生体能测试成绩各等次人数统计表体能等级调整前人数调整后人数优秀8良好16及格12不及格4合计40学生体能测试成绩各等次人数统计图【答案】(1)详见解析;(2)详见解析;(3)360.【解析】试题分析:(1)根据题和统计表给出的数据即可填写统计表;(2)根据调整后统计表的数据即可补全条形统计图;(3)根据抽取的学生中体能测试的优秀率为24%;从而求出该校体能测试为“优秀”的人数.试题解析:(1)解:填写的统计表如图1所示:(2)解:补全的条形统计图如图2所示:(3)解:抽取的学生中体能测试的优秀率为:12÷50=24%;∴该校体能测试为“优秀”的人数为1500×24%=360(人)21.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点上正方1m 的P 处发出一球,羽毛球飞行的高度()y m 与水平距离()x m 之间满足函数表达式()24y a x h =-+.已知点O 与球网的水平距离为5m ,球网的高度为1.55m .(1)当124a =-时,①求h 的值.②通过计算判断此球能否过网. (2)若甲发球过网后,羽毛球飞行到点O 的水平距离为7m ,离地面的高度为125m 的Q 处时,乙扣球成功,求a 的值. 【答案】(1)①h=53;②此球能过网,理由见解析;(2)a=15- . 【解析】试题分析:(1)①利用a=124-,(0,1)代入解析式即可求出h 的值;②利用x=5代入解析式求出y ,再与比较大小即可判断是否过网;(2)将点(0,1),(7,125)代入解析式得到一个二元一次方程组求解即可得出a 的值.(2)解:把(0,1),(7,125)代入y=2(4)a x h-+得:1611295a ha h+=⎧⎪⎨+=⎪⎩;解得:15215ah⎧=-⎪⎪⎨⎪=⎪⎩;∴a=15- .22. 如图,已知:AB是O的直径,点C在O上,CD是O的切线,AD CD⊥于点,D E是AB延长线上的一点,CE交O于点F,连接,OC AC.(1)求证:AC平分DAO∠.(2)若105DAO∠=,30E∠=.①求OCE∠的度数.②若O的半径为22,求线段EF的长.【答案】(1)详见解析;(2)①∠OCE=45°;②23-2.【解析】试题分析:(1)利用了切线的性质,平行线的判定和性质,等边对等角,角平分线的判定即可得证;(2)①根据(1)得出的AD又∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OAC; ∴AC 平分∠DAO.(2)解:①∵AD ②作OG ⊥CE 于点G,可得FG=CG, ∵OC=22,∠OCE=45°. ∴CG=OG=2, ∴FG=2;∵在RT △OGE 中,∠E=30°, ∴GE=23, ∴EF=GE-FG=23-2.23. 如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段_____,_____;:ABCDAEFG S S=矩形 ______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长.(3)如图4,四边形ABCD 纸片满足,,,8,10AD BC AD BC AB BC AB CD <⊥==.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出,AD BC 的长.【答案】(1)(1)AE;GF;1:2;(2)13;(3)按图1的折法,则AD=1,BC=7;按图2的折法,则AD=134,BC=374.【解析】试题分析:(1)由图2观察可得出答案为AE,GF,由折叠的轴对称性质可得出答案为1:2;(2)由EF和EH的长度根据勾股定理可求出FH的长度,再由折叠的轴对称性质易证△AEH ≌△CGF;再根据全等三角形的性质可得出AD的长度;(3)由折叠的图可分别求出AD和BC 的长度.试题解析:(1)AE;GF;1:2(3)解:本题有以下两种基本折法,如图1,图2所示.按图1的折法,则AD=1,BC=7.按图2的折法,则AD=134 ,BC=374. 24. 如图1,在平面直角坐标系中,四边形OABC 各顶点的坐标分别为)0,14(),35,9(),33,3(),0,0(C B A O ,动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线BC -AB -OA 运动,在BC AB OA ,,上运动的速度分别为2533,,(单位长度/秒).当Q P ,中的一点到达C 点时,两点同时停止运动.(1)求AB 所在直线的函数表达式;(2)如图2,当点Q 在AB 上运动时,求CPQ ∆的面积S 关于t 的函数表达式及S 的最大值;(3)在P ,Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值. 【答案】(1) y=333 ;(2) 213353(1423)143(26)2S t t =-+=++≤≤ ,当t=5时,S 有最大值;813;(3) t 的值为7357223820243++.试题解析:(1)解:把A (3,3 ),B (9,5 )代入y=kx+b,得 333953k b k b ⎧+=⎪⎨+=⎪⎩;解得:323k b ⎧=⎪⎨⎪=⎩;∴y=33x+23 ; (2)解:在△PQC 中,PC=14-t,PC 边上的高线长为3232t +; ∴213353(14)(23)143(26)2S t t t t t =-+=-++≤≤ ∴当t=5时,S 有最大值;最大值为8134.c.当6<t≤10时,①线段PQ 的中垂线经过点C (如图3)可得方程14-t=25-52t ; 解得:t=223. ②线段PQ 的中垂线经过点B (如图4)可得方程2225(53)(9)(6)2t t ⎡⎤+-=-⎢⎥⎣⎦;解得123820238202,t t +-==(舍去); 此时382027t +=; 综上所述:t 的值为73572238202,,,437++.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 填写统计表.
(2) 根据调整后数据,补全条形统计图.
(3) 若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.
20. (本题8分) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分. 如图,甲 在O点正上方1m的P处发出
一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式
(1) 将□ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段,;S矩形AEFG:S□ABCD= (2) ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长. (3) 如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把该纸片折叠,得到叠合正方形.请你帮 助画出叠合正方形的示意图,并求出AD,BC的长. 23. 如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别O(0,0),A(3,3 ),B(9,5 ),C(14,0).动点P与Q同 时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OA−AB−BC运动,在OA,A B,BC上运动的速度分别为3, , (单位长度/秒)﹒当P,Q中的一点到达C点时,两点同时停止运动.
浙江省金华市2017年中考数学试卷
一 、 选 择 题 (本 题 有 10小 题 ,每 小 题 3分 ,共 30分 )
1. 下列各组数中,把两数相乘,积为1的是( ) A . 2和-2 B . -2和 C . 和 D . 和2. 一个几何体的三视图如图所示,这个几何体是( )
A . 球 B . 圆柱 C . 圆锥 D . 立方体 3. 下列各组数中,不可能成为一个三角形三边长的是( )
(1) 作出 ABC关于原点O成中心对称的 A1B1C1.
(2) 作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在 值范围.
A1B1C1的内部(不包括顶点和边界),求a的取
19. (本题8分)某校为了解学生体质情况,从各年级学生中随机抽取部分学生进行体能测试.
每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级.统计员在将测试数据绘制 成图表时发现,优秀 漏统计4人,良好漏统计6人,于是及时更正,从而形成如下图表.请按正确数据解答下列各题:
6. 如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为( )
A . 10cm B . 16cm C . 24cm D . 26cm 7. 某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获 得前两名的概率是( )
A. B. C. D. 8. 若关于x的一元一次不等式组
16.
17.
18. 19.
20. 21.
22.
23.
A . E处 B . F处 C . G处 D . H处
二、填空题 (本题有6小题,每小题4分,共24分)
10. 分解因式: 11. 若
________ ________
12. 2017年5月28日全国部分宜居城市最高气温的数据如下:
宜居城市
大连
青岛
威海
金华
昆明
三亚
最高气温(℃ 25
28
35
30
26
15. 在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗 在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).
①如图1,若BC=4m,则S=________m.
②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的 小屋,其它条件不变.则在BC的变化过程中,当S取得最小值时,边BC的长为________m.
32
)
则以上最高气温的中位数为________℃.
13. 如图,已知l1//l2 , 直线l与l1 , l2相交于C,D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2= ________°.
14. 如图,已知点A(2,3)和点B(0,2),点A在反比例函数y= 的图象上.作射线AB,再将射线AB绕点A按逆时针方向旋 转45°,交反比例函数图象于点C,则点C的坐标为________.
A . 2,3,4 B . 5,7,7 C . 5,6,12 D . 6,8,10 4. 在直角三角形Rt ABC中, C=90°,AB=5,BC=3,则tanA的值是( )
A. B. C. D. 5. 对于二次函数y=−(x−1)2+2的图象与性质,下列说法正确的是( )
A . 对称轴是直线x=1,最小值是2 B . 对称轴是直线x=1,最大值是2 C . 对称轴是直线x=−1,最小值是2 D . 对称轴是直线x=−1 ,最大值是2
(1)
求AB所在直线的函数表达式. (2) 如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值. (3) 在P,Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值. 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.
(1) 求证:AC平分∠DAO. (2) 若∠DAO=105°,∠E=30°. ①求∠OCE的度数. ②若⊙O的半径为2 ,求线段EF的长. 22. (本题10分) 如图1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED 和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后 的图形恰能拼合成一个无缝隙、无重叠的矩 形,这样的矩形称为叠合矩形.
三 、 解 答 题 ( 本 题 有 8小 题 , 共 66分 , 各 小 题 都 必 须 写 出 解 答 过 程 )
16. 计算:2cos60°+(−1)2017+|−3|−(2−1)0.
17. (本题6分) 解分图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(−2,−2),B(−4,−1),C(−4,−4).
的解是x<5,则m的取值范围是( )
A . m≥5 B . m>5 C . m≤5 D . m<5 9. 如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在A,B两处各安装了一个监控探头(走廊内所用探头 的观测区域为圆心角最大可取到180°的扇形),图中的阴影部分是A处监控探头观测到的区域.要使整个艺术走廊都能被监 控到,还需再安装一个监控探头,则安装的位置是( )
,已知点O与球网的水平距离为5m,球
网的高度1.55m.
(1) 当a=− 时,①求h的值.②通过计算判断此球能否过网.
(2) 若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为
m的Q处时,乙扣球成功,求a的值.
21. (本题10分) 如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点 ,CE交⊙O于点F,连结OC,AC.