高三数学第一轮复习 第69课时 二项式定理(2)教案
二项式定理教学教案(详案)

课时
2
课题
二项式定理
教学目的 要求
教学重点 教学难点
知识目标:理解二项式定理,会用二项式定理求二项展开式。理解 和掌握二项展开式的规律,利用它能对二项式展开,进行相应的计算。
能力目标:会区别“系数”、“二项式系数”等概念,灵活正用和逆 用展开式。
情感目标:让学生感受数学内在的和谐,对称美及数学符号应用的 简洁美,进一步结合“杨辉三角”,对学生进行爱国主义教育,激励学生 的民族自豪感和为国富民强而勤奋学习的热情。
C40; 含 a3b 的项只能由 3 个括号取 a,余下的 1 个括号取 b 而得,即 C41a3b,系数为:
C41; 含 a2b2 的项只能由 2 个括号取 a,余下的 2 个括号取 b 而得,即 C42a2b2,系数为:
C42; 含的 ab3 的项只能由 1 个括号取 a,余下的 3 个括号取 b 而得,即 C43a3b,系数为:
x
注意:展开式中第
r+1
项的二项式系数
C
r n
与第
r+1
项的系数含义不同。
五、课堂小结(引导提问,10 分钟)
1、二项式定理
(a +b)n =C 0 an +C1 an-1b+…+C r a b n-r r +…+C n bn,其中各项系数就是组合数 C r ,
n
n
n
n
n
展开式共有 n+1 项,第 r+1 项是 Tr+1
C43; 含 b4 的项只能由 4 个括号都取 b 而得,即 C44b4,系数为 C44; 从而可得:
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
高中数学《二项式定理》教案

二项式定理教案
(一)教学目标
1.知识与技能:掌握二项式定理①能根据组合思想及不完全归纳,得出二项式定理和二项展开式的通项。
②能正确区分二项式系数和某一项的系数。
③能正确利用二项式定理对任意给定的一个二项式进行展开,并求出它的特定项。
2.过程与方法:通过定理的发现推导提高学生的观察,比较,分析,概括等能力。
(二)教学重点与难点
重点:二项式定理的发现,理解和初步应用。
难点:二项式定理的发现。
(三)教学方法
启发诱导,师生互动
(四)教学过程。
高三数学第一轮复习 二项式定理教案_

城东蜊市阳光实验学校二项式定理〔2〕一.复习目的:1.能利用二项式系数的性质求多项式系数的和与求一些组合数的和.2.能纯熟地逆向运用二项式定理求和.3.能利用二项式定理求近似值,证明整除问题,证明不等式.二.课前预习:1.1003)32(+的展开式中无理项的个数是〔A 〕 ()A 84()B 85()C 86()D 872.设1510105)(2345++-+-=x x x x x x f ,那么)(1x f-等于〔C 〕 3.假设21872221221=++++n n n n n C C C ,那么=++++n n n n n C C C C 210128. 4.n n n n n C n C C 11)1(3121121+-+-+- =11+n . 5.9)23(z y x +-展开式中含432z y x 的项为43290720z y x -.6.假设1001002210100)1()1()1()21(-++-+-+=+x a x a x a a x ,那么=++++99531a a a a 215100-. 四.例题分析:例1.}{n a 是等比数列,公比为q ,设n n n n n n C a C a C a a S 123121+++++= 〔其中+∈>N n n ,2〕,且n n n n n n C C C C S ++++= 2101,假设1lim n nn S S ∞→存在,求公比q 的取值范围.解:由题意11-⋅=n n q a a ,n n S 21=,)0()1()1(122111221111≠+=++++=++++=q q a C q C q qC a C q a C q a qC a a S n n n n n n n nn n n n ∴n nn n n q a q a S S )21(2)1(111+=+=.假设1lim nn n S S ∞→存在,那么1|21|<+q 或者者121=+q , ∴212<+<-q 或者者1=q ,故13≤<-q 且0≠q .例2.(1)求多项式673410234)157()53()323(--⋅-⋅---x x x x x x 展开式各项系数和.(2)多项式1000231000)22(+--⋅-x x x x展开式中x 的偶次幂各项系数和与x 奇次幂各项系数和各是多少? 解:〔1〕设)()157()53()323()(2210673410234N n xa x a x a a x x x x x x x f n n ∈++++=--⋅-⋅---= , 其各项系数和为n a a a a ++++ 210. 又∵102674102210316)157()53()3213()1(⋅=--⋅-⋅---=++++=n a a a a f ,∴各项系数和为102316⋅. 〔2〕设30013001101000231000)22()(x a x a a x x x x x f +++=+--⋅-= , ∴0)1(3001210=++++=a a a a f ,2)1(3001210=--+-=-a a a a f ,故1300131-=+++a a a ,1300020=+++a a a ,∴)(x f 展开式中x 的偶次幂各项系数和为1,x 奇次幂各项系数和为-1.例3.证明:〔1〕∑==n k n k n k C 032)(N n ∈;〔2〕12221223222120223222--⋅=++++++n n n n n n n n n C C C C C C )(N n ∈;〔3〕)(3)11(2N n nn ∈<+<;〔4〕2222212)1(21-⋅+=⋅++⋅+⋅n n n n n n n n C C C 由(i)知例4.小结:五.课后作业:班级学号姓名1.假设n x x )1(23+的展开式中只有第6项的系数最大,那么不含x 的项为〔C 〕 ()A 462()B 252()C 210()D 102.用88除78788+,所得余数是〔〕()A 0()B 1()C 8()D 803.2002年4月20日是星期五,那么9010天后的今天是星期.4.某公司的股票今天的指数是2,以后每天的指数都比上一天的指数增加%02.0,那么100天后这家公司的股票指数约为42〔准确到0.001〕.5.55443322105)23(x a x a x a x a x a a x +++++=-,那么 〔1〕5432a a a a +++的值是568;〔2〕=++++||||||||||54321a a a a a 2882.6.假设n ax 2)1(+和12)(++n a x 的展开式中含n x 项的系数相等〔*N n ∈,0≠a 〕,那么a 的取值范围为]32,21( 7.求满足500323210<+++++n n n n n nnC C C C C 的最大整数n . 原不等式化为n·2n -1<499∵27=128,∴n=8时,8·27=210=1024>500.当n=7时,7·26=7×64=448<449.故所求的最大整数为n=7.8.求证:222222120)()()()(n n n n n n C C C C C =++++证明 由(1+x)n·(1+x)n=(1+x)2n,两边展开得:比较等式两边xn 的系数,它们应当相等,所以有:9.(1+3x)n 的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项. ∴n=15或者者n =-16(舍)设第r +1项与第r 项的系数分别为tr+1,tr∴tr+1≥tr 那么可得3(15-r +1)>r 解得r≤12∴当r 取小于12的自然数时,都有tr <tr+1当r =12时,tr+1=tr。
二项式定理教学设计高三

二项式定理教学设计高三一、教学目标1. 理解二项式定理的定义和基本性质。
2. 掌握二项式定理的运用方法。
3. 培养学生的逻辑思维和数学推理能力。
4. 培养学生对数学问题的兴趣和探索精神。
二、教学重点1. 掌握二项式定理的展开和应用。
2. 培养学生的数学思维和运算能力。
三、教学难点1. 帮助学生理解二项式定理的证明过程。
2. 培养学生抽象思维和推理能力。
四、教学过程1. 导入(5分钟)教师通过提问和讲述引导学生回顾高中阶段已学习的数学知识,如排列组合、多项式等内容。
然后向学生介绍今天的学习内容:二项式定理。
2. 概念解释(10分钟)教师通过示意图和具体例子,向学生阐述二项式定理的概念和基本性质。
帮助学生理解二项式定理是将两个数相加或相乘的展开式。
3. 二项式定理的展开(15分钟)教师通过板书和示范展示如何将二项式展开。
先给出一个简单的二项式,并指导学生按照二项式定理的公式进行展开。
然后通过一些具体的例子,让学生逐步掌握二项式定理展开的方法和技巧。
4. 二项式定理的应用(20分钟)教师通过实际问题和应用题,引入二项式定理的应用领域。
如组合数学、概率统计等。
通过解答一些实际问题,让学生认识到二项式定理在数学和实际生活中的重要性和应用价值。
5. 二项式定理的证明(20分钟)教师通过逻辑推理和数学推导,带领学生理解和证明二项式定理。
可以使用归纳法和数学归纳法等方法,引导学生参与证明的过程,提高学生的抽象思维和逻辑推理能力。
6. 练习和巩固(15分钟)教师设计一些练习题,让学生巩固和应用所学知识。
通过学生的练习,检验学生对二项式定理的掌握程度和运算能力。
7. 总结和拓展(5分钟)教师对本节课的内容进行总结,并给出一些延伸阅读和学习资料,鼓励学生在课后继续学习和探索。
五、教学评价1. 教师通过课堂讨论、学生练习和问题解答等形式,对学生的学习情况进行评价和反馈。
2. 鼓励学生积极参与课堂活动,发表自己的观点和思考。
高三数学教案《二项式定理》

高三数学教案《二项式定理》高三数学教案《二项式定理》二项式定理说课稿高三第一阶段复习,也称“知识篇”。
在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。
在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。
对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。
一、内容分析说明1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:(1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。
(2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。
(3)二项式定理是解决某些整除性、近似计算等问题的一种方法。
2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的近似值。
二、学校情况与学生分析(1)我校是一所镇普通高中,学生的.基础不好,记忆力较差,反应速度慢,普遍感到数学难学。
但大部分学生想考大学,主观上有学好数学的愿望。
(2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。
课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。
三、教学目标复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。
根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标:1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。
完整版二项式定理教案

1.3.1 二项式定理(第一课时)、教学目标1、知识与技能(1)理解二项式定理,并能简单应用(2)能够区分二项式系数与项的系数2、过程与方法通过学生参与和探究二项式定理的形成过程,培养学生观察,分析,归纳的能力,以及转化化归的意识与知识迁移的能力,体会从特殊到一般的思维方式。
3、情感与态度价值观通过探究问题,归纳假设让学生在学习的过程中养成独立思考的好习惯,在自主学习中体验成功, 在思索中感受数学的魅力,让学生在体验知识产生的过程中找到乐趣。
、教学重点难点1、教学重点:二项式定理及二项式定理的应用2、教学难点:二项式定理中单项式的系数三、教学设计:三、典例分析例1例1、求(2 _)4的展开式x解:(2 -)4C:24C4 23(丄)C4 22(-)2C:2 (-)3C:』)x x x x x “32 24 8 116 2 3 4x x x x例2 (1)求(1 2x)5的展开式中第3项5 23 2 3解.(1 2x)的展开式的第3项疋T2 1 C5 1 (2x) 40 x,1 9 3例3.求(x -)9的展开式中x3的系数x1解:••• (x -)9的展开式的通项是xT k 1 C9x9 k(1)k C9k x9 2k,x二9 2k 3 , k 3,二x3的系数C: 84课堂检测:1.(2a b)4的展开式中的第2项•解:T2 1 C4(2a)3b 32a3b,2.(x 1)10的展开式的第6项的系数(D )厂6 厂6 厂5 厂5A. C10B. C10C. C10D. C10x 5 23.(1 )5的展开式中x2的系数为(C )25A. 10B. 5C. -D. 12四、小结X二项式定理:通理J(灯+小『=Ctf+U十%+…彳U旷方*+…+6弟斤十]域的一,顼成乘数区别:展开式中第2项的系数,第2项二项式系数4思考:展开式中第3项的系数,第3项二项式系数通过例题让学生更好的理解二项式定理强调:通项公式的应用进一步巩固二项式定理学生应用二项式定理明确通项的作用板书设计:1.3.1 二项式定理一. 二项式定理:(a b)n C0n a n C1n a n 1b L C k n a n k b k L C n n b n(n N* )1.项数:n 1项;2•指数:字母a , b的指数和为n ,a 的指数由n 递减至0,b的指数由0递增至n ;3.二项式系数:C n0,C n1,C n2,L ,C n k L ,C n n (k {0,1, 2,L n})4.通项:第k 1项:T k 1 C n k a n k b k二. 典例三. 作业。
高三数学教案《二项式定理》

高三数学教案《二项式定理》高三数学教案《二项式定理》作为一名老师,常常要写一份优秀的教案,编写教案有利于我们科学、合理地支配课堂时间。
我们应该怎么写教案呢?以下是小编整理的高三数学教案《二项式定理》,欢迎阅读与收藏。
一、教材分析:1、知识内容:二项式定理及简单应用2、地位及重要性二项式定理是安排在高中数学排列组合内容后的一部分内容,其形成过程是组合知识的应用,同时也是自成体系的知识块,为随后学习的概率知识及高三选修概率与统计,作知识上的铺垫。
二项展开式与多项式乘法有密切的联系,本节知识的学习,必然从更广的视角和更高的层次来审视初中学习的关于多项式变形的知识。
运用二项式定理可以解决一些比较典型的数学问题,例如近似计算、整除问题、不等式的证明等。
3、教学目标A、知识目标:(1)使学生参与并探讨二项式定理的形成过程,掌握二项式系数、字母的幂次、展开式项数的规律(2)能够应用二项式定理对所给出的二项式进行正确的展开B、能力目标:(1)在学生对二项式定理形成过程的参与、探讨过程中,培养学生观察、猜想、归纳的能力及分类讨论解决问题的能力(2)培养学生的化归意识和知识迁移的能力c、情感目标:(1)通过学生自主参与和二项式定理的形成过程培养学生解决数学问题的信心;(2)通过学生自主参与和二项式定理的形成过程培养学生体会到数学内在和谐对称美;(3)培养学生的民族自豪感,在学习知识的过程中进行爱国主义教育。
4、重点难点:重点:(1)使学生参与并深刻体会二项式定理的形成过程,掌握二项式系数、字母的幂次、展开式项数的规律;(2)能够利用二项式定理对给出的二项式进行正确的展开。
难点:二项式定理的发现。
二、教法学法分析为了达到这节课的目标:掌握并能运用二项式定理,让学生主动探索展开式的由来是关键。
“学习任何东西最好的途径是自己去发现”正所谓“学问之道,问而得,不如求而得之深固也”本节课的教法贯穿启发式教学原则,以启发学生主动学习,积极探索为主。
36751_《二项式定理》教案2(人教A版选修2-3)

1.3二项式定理学习目标:1掌握二项式定理和二项式系数的性质。
2.能灵活运用展开式、通项公式、二项式系数的性质解题 学习重点:如何灵活运用展开式、通项公式、二项式系数的性质解题 学习难点:如何灵活运用展开式、通项公式、二项式系数的性质解题授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪 教学过程: 一、复习引入:1.二项式定理及其特例: (1)01()()nnnr n r r n nn n n n a b C a C a b C a b C b n N -*+=+++++∈,(2)1(1)1nr rn n n x C x C x x +=+++++.2.二项展开式的通项公式:1rn rr r n T C ab -+=3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性 4 二项式系数表(杨辉三角)()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和 5.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图)(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵mn mn n C C -=).直线2nr=是图象的对称轴. (2)增减性与最大值:当n 是偶数时,中间一项2n nC 取得最大值;当n 是奇数时,中间两项12n nC-,12n nC+取得最大值.(3)各二项式系数和: ∵1(1)1nr r n n n x C x C x x +=+++++,令1x =,则0122nrnn n n n n C C C C C =++++++二、讲解范例:例1.设()()()()231111nx x x x ++++++++=2012n n a a x a x a x ++++,当012254n a a a a ++++=时,求n 的值解:令1x =得:230122222nn a a a a ++++=++++2(21)25421n -==-,∴2128,7nn ==,点评:对于101()()()nn n f x a x a a x a a -=-+-++,令1,x a -=即1x a =+可得各项系数的和012n a a a a ++++的值;令1,x a -=-即1x a =-,可得奇数项系数和与偶数项和的关系例2.求证:1231232nn n n n n C C C nC n -++++=⋅.证(法一)倒序相加:设S =12323nnn n n C C C nC ++++①又∵S=1221(1)(2)2n n n n n n n n nC n C n C C C --+-+-+++ ②∵rn rn n C C -=,∴011,,n n n n n n C C C C -==,由①+②得:()0122nn n n n S n C C C C =++++,∴11222n n S n n -=⋅⋅=⋅,即1231232nn nn n n C C C nC n -++++=⋅.(法二):左边各组合数的通项为r n rC 11!(1)!!()!(1)!()!r n n n n r nC r n r r n r --⋅-=⋅==---,∴()1230121112123n n n n n n n n n n C C C nC n C C C C -----++++=++++12n n -=⋅.例3.已知:223(3)nx x +的展开式中,各项系数和比它的二项式系数和大992. (1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项 解:令1x =,则展开式中各项系数和为2(13)2nn+=,又展开式中二项式系数和为2n, ∴222992nn -=,5n =.(1)∵5n =,展开式共6项,二项式系数最大的项为第三、四两项, ∴223226335()(3)90T C x x x ==,22232233345()(3)270T C x x x ==,(2)设展开式中第1r +项系数最大,则21045233155()(3)3r rrrrr r T C x x C x+-+==,∴1155115533792233r r r r r r r r C C r C C --++⎧≥⎪⇒≤≤⎨≥⎪⎩,∴4r =,即展开式中第5项系数最大,2264243355()(3)405T C x x x ==.例4.已知)(1222212211+---∈+⋅++++=N n C C C S n n n n n n nn ,求证:当n 为偶数时,14--n S n 能被64整除分析:由二项式定理的逆用化简n S ,再把14--n S n 变形,化为含有因数64的多项式 ∵1122122221(21)nn n n n n n n n S C C C ---=++++⋅+=+3n =,∴14--n S n 341n n =--,∵n 为偶数,∴设2n k =(*k N ∈), ∴14--n S n 2381k k =--(81)81k k =+--011228(88)8k k k k C C C -=+++(*),当k =1时,410n S n --=显然能被64整除, 当2k≥时,(*)式能被64整除,所以,当n 为偶数时,14--n S n 能被64整除三、课堂练习:1.)()4511x +-展开式中4x 的系数为,各项系数之和为.2.多项式12233()(1)(1)(1)(1)nn n n n n f x C x C x C x C x =-+-+-++-(6n >)的展开式中,6x 的系数为3.若二项式231(3)2n xx-(n N *∈)的展开式中含有常数项,则n 的最小值为() A.4B.5 C.6D.84.某企业欲实现在今后10年内年产值翻一番的目标,那么该企业年产值的年平均增长率最低应()A.低于5%B.在5%~6%之间C.在6%~8%之间D.在8%以上 5.在(1)nx +的展开式中,奇数项之和为p ,偶数项之和为q ,则2(1)n x -等于()A.0B.pq C.22p q + D.22p q -6.求和:()2341012311111111111n nnn n n n n a a a a a C C C C C a a a aa+------+-++------.7.求证:当n N *∈且2n ≥时,()1322nn n ->+.8.求()102x +的展开式中系数最大的项 答案:1.45,02.0.提示:()()16n f x x n =->3.B4.C5.D6.()11n a a ---7.(略)8.33115360T x +=四、小结:二项式定理体现了二项式的正整数幂的展开式的指数、项数、二项式系数等方面的内在联系,涉及到二项展开式中的项和系数的综合问题,只需运用通项公式和二项式系数的性质对条件进行逐个节破,对于与组合数有关的和的问题,赋值法是常用且重要的方法,同时注意二项式定理的逆用 五、课后作业:1.已知2(1)n a +展开式中的各项系数的和等于52165x ⎛ ⎝的展开式的常数项,而2(1)na +展开式的系数的最大的项等于54,求a 的值()a R ∈答案:a =2.设()()()()()591413011314132111x x a x a x a x a -+=+++++++求:①0114a a a +++②1313a a a +++.答案:①9319683=;②()953399632+=3.求值:0123456789999999999922222C C C C C C C C C C -+-+-+-+-. 答案:82256=4.设296()(1)(21)f x x x x =+-+,试求()f x 的展开式中: (1)所有项的系数和;(2)所有偶次项的系数和及所有奇次项的系数和 答案:(1)63729=;(2)所有偶次项的系数和为6313642-=; 所有奇次项的系数和为6313652+= 六、板书设计(略) 七、课后记:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.复习目标:
1.能利用二项式系数的性质求多项式系数的和与求一些组合数的和. 2.能熟练地逆向运用二项式定理求和.
3.能利用二项式定理求近似值,证明整除问题,证明不等式. 二.课前预习:
1.1003
)32(+的展开式中无理项的个数是 ( A ) ()A 84 ()B 85 ()C 86 ()D 87 2.设1510105)(2
3
4
5
++-+-=x x x x x x f ,则)(1
x f
-等于 ( C )
()A 51x + ()B 521--x ()C 521-+x ()D 51x -
3.如果21872221221=++++n n n n n C C C ,则=++++n
n n n n C C C C 210128. 4.n
n
n n n C n C C 11)1(3121121+-+-+- =1
1+n . 5.9)23(z y x +-展开式中含432z y x 的项为4
3290720z y x -. 6.若1001002210100
)1()1()1()
21(-++-+-+=+x a x a x a a x ,
则=++++99
531a a a a 2
15100-.
四.例题分析:
例1.已知}{n a 是等比数列,公比为q ,设n
n n n n n C a C a C a a S 123121+++++= (其中
+∈>N n n ,2),且n
n n n n n C C C C S ++++= 2101,如果1
lim
n
n
n S S ∞→存在,求公比q 的取值范围.
解:由题意11-⋅=n n q a a ,n
n S 21=,
)
0()
1()1(122
1
11221111≠+=++++=++++=q q a C q C q qC a C q a C q a qC a a S n
n n
n
n
n
n
n
n n n n
∴n
n n n n q a q a S S )21(2
)1(111+=+=.如果1lim n n n S S ∞→存在,则1|21|<+q 或121=+q , ∴212<+<-q 或1=q ,故13≤<-q 且0≠q .
例2.(1)求多项式6734102
34)157()53()
323(--⋅-⋅---x x x x x x 展开式各项系数和.
(2)多项式1000231000
)22(+--⋅-x x x x
展开式中x 的偶次幂各项系数和与x 奇次幂各项
系数和各是多少?
解:(1)设
)
()157()53()323()(2
21067
3410234N n x
a x a x a a x x x x x x x f n
n ∈++++=--⋅-⋅---= ,
其各项系数和为n a a a a ++++ 210.
又∵102
674102210316)157()53()3213()1(⋅=--⋅-⋅---=++++=n a a a a f ,
∴各项系数和为102
3
16⋅.
(2)设30013001101000231000
)22()(x a x a a x x x x
x f +++=+--⋅-= , ∴0)1(3001210=++++=a a a a f ,2)1(3001210=--+-=-a a a a f ,故
1300131-=+++a a a ,1300020=+++a a a ,
∴)(x f 展开式中x 的偶次幂各项系数和为1,x 奇次幂各项系数和为-1.
例3.证明:(1)
∑==n
k n k n k
C 0
32
)(N n ∈;
(2)1
2221223222120223222--⋅=++++++n n n n n n n n n C C C C C C )(N n ∈;
(3))(3)
11
(2N n n
n ∈<+
<;(4)2222212)1(21-⋅+=⋅++⋅+⋅n n
n n n
n n n C C C
由(i)知
例4.
小结:
五.课后作业: 班级 学号 姓名 1.若n
x
x )1(23
+
的展开式中只有第6项的系数最大,则不含x 的项为( C ) ()A 462 ()B 252 ()C 210 ()D 10
2.用88除78788
+,所得余数是 ( ) ()A 0 ()B 1 ()C 8 ()D 80
3.已知2002年4月20日是星期五,那么90
10天后的今天是星期 .
4.某公司的股票今天的指数是2,以后每天的指数都比上一天的指数增加%02.0,则100天后这家公司的股票指数约为2.442(精确到0.001).
5.已知5
5443322105)23(x a x a x a x a x a a x +++++=-,则
(1)5432a a a a +++的值为568;(2)=++++||||||||||54321a a a a a 2882. 6.若n ax 2)1(+和1
2)(++n a x 的展开式中含n x 项的系数相等(*
N n ∈,0≠a ),则a 的
取值范围为]3
2,21(
7.求满足500323210<+++++n
n n n n n nC C C C C 的最大整数n .
原不等式化为n ·2n-1
<499
∵27
=128,∴n=8时,8·27
=210
=1024>500. 当n=7时,7·26
=7×64=448<449. 故所求的最大整数为n=7.
8.求证:2
22222120)()()()(n n n n n n C C C C C =++++
证明 由(1+x)n ·(1+x)n =(1+x)2n
,两边展开得:
比较等式两边x n
的系数,它们应当相等,所以有:
9.已知(1+3x)n
的展开式中,末三项的二项式系数的和等于 121,求展开式中系数最大的项.
∴ n=15或 n=-16(舍)
设第 r+1项与第 r项的系数分别为t r+1,t r
∴t r+1≥t r则可得3(15-r+1)>r解得r≤12
∴当r取小于12的自然数时,都有t r<t r+1当r=12时,t r+1=t r。