Numerical Research on Stochastic Duffing System

合集下载

JCR分区(2011年版)

JCR分区(2011年版)

刊名简称刊名全称ISSN小类名称(中文)0269-9648工程:工业PROBABILITY IN THE ENGINEERING AND INFORPROBAB ENG INFORAPPL MATH MODEL A PPLIED MATHEMATICAL MODELLING0307-904X工程:综合0927-6467工程:综合RUSS J NUMER ANARUSSIAN JOURNAL OF NUMERICAL ANALYSIS AN1239-6095环境科学ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MBOREAL ENVIRON R0167-9473计算机:跨学科应用COMPUT STAT DATACOMPUTATIONAL STATISTICS & DATA ANALYSISJ COMB OPTIM JOURNAL OF COMBINATORIAL OPTIMIZATION1382-6905计算机:跨学科应用0094-9655计算机:跨学科应用J STAT COMPUT SIJOURNAL OF STATISTICAL COMPUTATION AND S1387-3954计算机:跨学科应用MATH COMP MODELMATHEMATICAL AND COMPUTER MODELLING OF DMATHEMATICAL AND COMPUTER MODELLING0895-7177计算机:跨学科应用MATH COMPUT MODEMATHEMATICS AND COMPUTERS IN SIMULATION0378-4754计算机:跨学科应用MATH COMPUT SIMUQUEUEING SYST QUEUEING SYSTEMS0257-0130计算机:跨学科应用1615-3375计算机:理论方法FOUNDATIONS OF COMPUTATIONAL MATHEMATICSFOUND COMPUT MATFUZZY SET SYSTFUZZY SETS AND SYSTEMS0165-0114计算机:理论方法COMPUT COMPLEXCOMPUTATIONAL COMPLEXITY1016-3328计算机:理论方法STAT COMPUT STATISTICS AND COMPUTING0960-3174计算机:理论方法COMBINATORICS PROBABILITY & COMPUTING0963-5483计算机:理论方法COMB PROBAB COMPDISCRETE & COMPUTATIONAL GEOMETRY0179-5376计算机:理论方法DISCRETE COMPUT0218-1959计算机:理论方法INT J COMPUT GEOINTERNATIONAL JOURNAL OF COMPUTATIONAL G1521-1398计算机:理论方法J COMPUT ANAL APJOURNAL OF COMPUTATIONAL ANALYSIS AND APMATH PROGRAM MATHEMATICAL PROGRAMMING0025-5610计算机:软件工程BIT BIT NUMERICAL MATHEMATICS 0006-3835计算机:软件工程1365-8050计算机:软件工程DISCRETE MATHEMATICS AND THEORETICAL COMDISCRETE MATH THMATHEMATICAL AND COMPUTER MODELLING0895-7177计算机:软件工程MATH COMPUT MODEMATH COMPUT SIMUMATHEMATICS AND COMPUTERS IN SIMULATION0378-4754计算机:软件工程RANDOM STRUCTURES & ALGORITHMS1042-9832计算机:软件工程RANDOM STRUCT AL0392-4432科学史与科学哲学B STOR SCI MATBollettino di Storia delle Scienze MatemHIST MATH HISTORIA MATHEMATICA0315-0860科学史与科学哲学NEXUS NETW J Nexus Network Journal1590-5896科学史与科学哲学J NONLINEAR SCI J OURNAL OF NONLINEAR SCIENCE0938-8974力学APPL MATH MODEL A PPLIED MATHEMATICAL MODELLING0307-904X力学0253-4827力学APPL MATH MECH-EAPPLIED MATHEMATICS AND MECHANICS-ENGLIS1392-5113力学NONLINEAR ANAL-MNonlinear Analysis-Modelling and ControlNONLINEAR OSCIL N onlinear Oscillations1536-0059力学0044-2267力学ZAMM-Zeitschrift fur Angewandte MathematZAMM-Z ANGEW MATABSTR APPL ANAL A bstract and Applied Analysis 1085-3375数学ACTA MATHEMATICA0001-5962数学ACTA MATH-DJURSHANN MATH ANNALS OF MATHEMATICS0003-486X数学0273-0979数学B AM MATH SOC BULLETIN OF THE AMERICAN MATHEMATICAL SO0010-3640数学COMMUN PUR APPLCOMMUNICATIONS ON PURE AND APPLIED MATHECONSTR APPROX CONSTRUCTIVE APPROXIMATION0176-4276数学DUKE MATH J DUKE MATHEMATICAL JOURNAL0012-7094数学INVENT MATH INVENTIONES MATHEMATICAE0020-9910数学0894-0347数学J AM MATH SOC JOURNAL OF THE AMERICAN MATHEMATICAL SOC0021-7824数学JOURNAL DE MATHEMATIQUES PURES ET APPLIQJ MATH PURE APPL0065-9266数学MEM AM MATH SOC M EMOIRS OF THE AMERICAN MATHEMATICAL SOCPUBL MATH-PARIS P UBLICATIONS MATHEMATIQUES DE L IHES0073-8301数学ADV MATH ADVANCES IN MATHEMATICS0001-8708数学Aequationes Mathematicae0001-9054数学AEQUATIONES MATHAM J MATH AMERICAN JOURNAL OF MATHEMATICS0002-9327数学ANAL APPL Analysis and Applications0219-5305数学ANAL PDE Analysis & PDE1948-206X数学ANN MAT PUR APPLANNALI DI MATEMATICA PURA ED APPLICATA 0373-3114数学0012-9593数学ANN SCI ECOLE NOANNALES SCIENTIFIQUES DE L ECOLE NORMALEB SYMB LOG BULLETIN OF SYMBOLIC LOGIC1079-8986数学BOUND VALUE PROBBoundary Value Problems 1687-2762数学0944-2669数学CALC VAR PARTIALCALCULUS OF VARIATIONS AND PARTIAL DIFFECarpathian Journal of Mathematics1584-2851数学CARPATHIAN J MATCOMBINATORICA COMBINATORICA0209-9683数学COMMENTARII MATHEMATICI HELVETICI0010-2571数学COMMENT MATH HEL0219-1997数学COMMUNICATIONS IN CONTEMPORARY MATHEMATICOMMUN CONTEMP M0360-5302数学COMMUNICATIONS IN PARTIAL DIFFERENTIAL ECOMMUN PART DIFFCOMPUTATIONAL GEOMETRY-THEORY AND APPLIC0925-7721数学COMP GEOM-THEORCOMPOS MATH COMPOSITIO MATHEMATICA0010-437X数学1078-0947数学DISCRETE CONT DYDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMDOC MATH Documenta Mathematica 1431-0643数学FIXED POINT THEOFixed Point Theory 1583-5022数学Fixed Point Theory and Applications 1687-1820数学FIXED POINT THEOFOUNDATIONS OF COMPUTATIONAL MATHEMATICS1615-3375数学FOUND COMPUT MATGEOM FUNCT ANAL G EOMETRIC AND FUNCTIONAL ANALYSIS1016-443X数学GEOM TOPOL GEOMETRY & TOPOLOGY1364-0380数学INDIANA U MATH JINDIANA UNIVERSITY MATHEMATICS JOURNAL0022-2518数学1705-5105数学International Journal of Numerical AnalyINT J NUMER ANALJ ALGEBR COMB JOURNAL OF ALGEBRAIC COMBINATORICS0925-9899数学JOURNAL OF ALGEBRAIC GEOMETRY1056-3911数学J ALGEBRAIC GEOM0095-8956数学J COMB THEORY B J OURNAL OF COMBINATORIAL THEORY SERIES BJ CONVEX ANAL JOURNAL OF CONVEX ANALYSIS0944-6532数学JOURNAL OF DIFFERENTIAL EQUATIONS0022-0396数学J DIFFER EQUATIOJ DIFFER GEOM JOURNAL OF DIFFERENTIAL GEOMETRY0022-040X数学1040-7294数学J DYN DIFFER EQUJournal of Dynamics and Differential Equ1435-9855数学J EUR MATH SOCJOURNAL OF THE EUROPEAN MATHEMATICAL SOCJ FUNCT ANAL JOURNAL OF FUNCTIONAL ANALYSIS0022-1236数学1474-7480数学Journal of the Institute of MathematicsJ INST MATH JUSS0022-247X数学JOURNAL OF MATHEMATICAL ANALYSIS AND APPJ MATH ANAL APPLJ MOD DYNAM Journal of Modern Dynamics1930-5311数学Journal of Noncommutative Geometry1661-6952数学J NONCOMMUT GEOM0075-4102数学JOURNAL FUR DIE REINE UND ANGEWANDTE MATJ REINE ANGEW MAJ TOPOL Journal of Topology1753-8416数学KINET RELAT MOD K inetic and Related Models1937-5093数学MATH ANN MATHEMATISCHE ANNALEN0025-5831数学MILAN J MATH Milan Journal of Mathematics 1424-9286数学NONLINEAR ANALYSIS-THEORY METHODS & APPL0362-546X数学NONLINEAR ANAL-TNUMERICAL LINEAR ALGEBRA WITH APPLICATIO1070-5325数学NUMER LINEAR ALG0024-6115数学P LOND MATH SOC P ROCEEDINGS OF THE LONDON MATHEMATICAL SSelecta Mathematica-New Series 1022-1824数学SEL MATH-NEW SERT AM MATH SOC TRANSACTIONS OF THE AMERICAN MATHEMATICA0002-9947数学1230-3429数学TOPOL METHOD NONTopological Methods in Nonlinear AnalysiADV CALC VAR Advances in Calculus of Variations1864-8258数学Advances in Difference Equations1687-1839数学ADV DIFFER EQU-NADVANCED NONLINEAR STUDIES1536-1365数学ADV NONLINEAR STAlgebraic and Geometric Topology 1472-2739数学ALGEBR GEOM TOPOAlgebra & Number Theory1937-0652数学ALGEBR NUMBER THALGEBR REPRESENTALGEBRAS AND REPRESENTATION THEORY1386-923X数学1239-629X数学ANN ACAD SCI FENANNALES ACADEMIAE SCIENTIARUM FENNICAE-MANNALS OF GLOBAL ANALYSIS AND GEOMETRY0232-704X数学ANN GLOB ANAL GEANN I FOURIER ANNALES DE L INSTITUT FOURIER0373-0956数学ANN PURE APPL LOANNALS OF PURE AND APPLIED LOGIC0168-0072数学0391-173X数学ANN SCUOLA NORM-ANNALI DELLA SCUOLA NORMALE SUPERIORE DI1452-8630数学Applicable Analysis and Discrete MathemaAPPL ANAL DISCR0024-6093数学B LOND MATH SOC B ULLETIN OF THE LONDON MATHEMATICAL SOCICALCOLO CALCOLO0008-0624数学0008-414X数学CAN J MATH CANADIAN JOURNAL OF MATHEMATICS-JOURNALCOMMUNICATIONS IN ANALYSIS AND GEOMETRY1019-8385数学COMMUN ANAL GEOM1534-0392数学COMMUNICATIONS ON PURE AND APPLIED ANALYCOMMUN PUR APPLCOMPUT COMPLEXCOMPUTATIONAL COMPLEXITY1016-3328数学0926-2245数学DIFFER GEOM APPLDIFFERENTIAL GEOMETRY AND ITS APPLICATIOELECTRON J COMB E LECTRONIC JOURNAL OF COMBINATORICS1077-8926数学Electronic Journal of Linear Algebra1081-3810数学ELECTRON J LINEA1935-9179数学ELECTRON RES ANNElectronic Research Announcements in MatERGODIC THEORY AND DYNAMICAL SYSTEMS0143-3857数学ERGOD THEOR DYNEUR J COMBIN EUROPEAN JOURNAL OF COMBINATORICS0195-6698数学EXP MATH EXPERIMENTAL MATHEMATICS1058-6458数学EXPO MATH EXPOSITIONES MATHEMATICAE0723-0869数学FINITE FIELDS AND THEIR APPLICATIONS1071-5797数学FINITE FIELDS THFORUM MATH FORUM MATHEMATICUM0933-7741数学Groups Geometry and Dynamics 1661-7207数学GROUP GEOM DYNAM1073-7928数学INTERNATIONAL MATHEMATICS RESEARCH NOTICINT MATH RES NOTInternational Mathematics Research Paper1687-3017数学INT MATH RES PAP1065-2469数学INTEGR TRANSF SPINTEGRAL TRANSFORMS AND SPECIAL FUNCTIONINTERFACES AND FREE BOUNDARIES1463-9963数学INTERFACE FREE BISR J MATH ISRAEL JOURNAL OF MATHEMATICS0021-2172数学J ALGEBRA JOURNAL OF ALGEBRA0021-8693数学J ANAL MATH JOURNAL D ANALYSE MATHEMATIQUE0021-7670数学J APPROX THEORY J OURNAL OF APPROXIMATION THEORY0021-9045数学J COMB DES JOURNAL OF COMBINATORIAL DESIGNS1063-8539数学0097-3165数学J COMB THEORY A J OURNAL OF COMBINATORIAL THEORY SERIES AJ COMPUT MATH JOURNAL OF COMPUTATIONAL MATHEMATICS0254-9409数学J EVOL EQU JOURNAL OF EVOLUTION EQUATIONS1424-3199数学1661-7738数学J FIX POINT THEOJournal of Fixed Point Theory and Applic0972-6802数学J FUNCT SPACE APJournal of Function Spaces and ApplicatiJ GEOM ANAL JOURNAL OF GEOMETRIC ANALYSIS1050-6926数学J GRAPH THEOR JOURNAL OF GRAPH THEORY0364-9024数学1025-5834数学J INEQUAL APPLJOURNAL OF INEQUALITIES AND APPLICATIONSJ LOND MATH SOC J OURNAL OF THE LONDON MATHEMATICAL SOCIE0024-6107数学0025-5645数学J MATH SOC JPNJOURNAL OF THE MATHEMATICAL SOCIETY OF J1345-4773数学J NONLINEAR CONVJournal of Nonlinear and Convex AnalysisJ NUMER MATH Journal of Numerical Mathematics 1570-2820数学JOURNAL OF PURE AND APPLIED ALGEBRA0022-4049数学J PURE APPL ALGEJ SYMPLECT GEOM J ournal of Symplectic Geometry1527-5256数学JPN J MATH Japanese Journal of Mathematics0289-2316数学K-THEORY K-THEORY0920-3036数学LINEAR & MULTILINEAR ALGEBRA0308-1087数学LINEAR MULTILINEMANUSCRIPTA MATHEMATICA0025-2611数学MANUSCRIPTA MATHMATH MODEL ANAL M athematical Modelling and Analysis 1392-6292数学MATH NACHR MATHEMATISCHE NACHRICHTEN0025-584X数学0305-0041数学MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGMATH PROC CAMBRIMATH RES LETT MATHEMATICAL RESEARCH LETTERS1073-2780数学MATH Z MATHEMATISCHE ZEITSCHRIFT0025-5874数学MICH MATH J MICHIGAN MATHEMATICAL JOURNAL0026-2285数学MONATSH MATH MONATSHEFTE FUR MATHEMATIK0026-9255数学MOSC MATH J Moscow Mathematical Journal1609-3321数学1004-8979数学NUMER MATH-THEORNumerical Mathematics-Theory Methods and0002-9939数学P AM MATH SOC PROCEEDINGS OF THE AMERICAN MATHEMATICAL0013-0915数学PROCEEDINGS OF THE EDINBURGH MATHEMATICAP EDINBURGH MATH0308-2105数学P ROY SOC EDINBPROCEEDINGS OF THE ROYAL SOCIETY OF EDINPOTENTIAL ANALPOTENTIAL ANALYSIS0926-2601数学Q J MATH QUARTERLY JOURNAL OF MATHEMATICS0033-5606数学RAMANUJAN J RAMANUJAN JOURNAL1382-4090数学REV MAT COMPLUT R evista Matematica Complutense 1139-1138数学REV MAT IBEROAM R EVISTA MATEMATICA IBEROAMERICANA0213-2230数学TAIWAN J MATH TAIWANESE JOURNAL OF MATHEMATICS1027-5487数学TOPOLOGY TOPOLOGY0040-9383数学TRANSFORMATION GROUPS1083-4362数学TRANSFORM GROUPS0025-5858数学ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMIABH MATH SEM HAMACTA ARITH ACTA ARITHMETICA0065-1036数学ACTA MATH HUNGACTA MATHEMATICA HUNGARICA0236-5294数学ACTA MATH SCI ACTA MATHEMATICA SCIENTIA0252-9602数学ACTA MATH SIN ACTA MATHEMATICA SINICA-ENGLISH SERIES1439-8516数学ADV GEOM ADVANCES IN GEOMETRY1615-715X数学ALGEBR COLLOQ ALGEBRA COLLOQUIUM1005-3867数学ALGEBR LOG+Algebra and Logic0002-5232数学ALGEBR UNIV ALGEBRA UNIVERSALIS0002-5240数学1224-1784数学Analele Stiintifice ale Universitatii OvAN STI U OVID COAnalele Stiintifice ale Universitatii Al1221-8421数学AN STIINT U AL IANAL MATH Analysis Mathematica0133-3852数学ANN POL MATH Annales Polonici Mathematici 0066-2216数学APPLIED CATEGORICAL STRUCTURES0927-2852数学APPL CATEGOR STRARCH MATH ARCHIV DER MATHEMATIK0003-889X数学ARCH MATH LOGIC A RCHIVE FOR MATHEMATICAL LOGIC1432-0665数学ARK MAT ARKIV FOR MATEMATIK0004-2080数学ARS COMBINATORIA0381-7032数学ARS COMBINATORIAASIAN J MATH Asian Journal of Mathematics 1093-6106数学ASTERISQUE ASTERISQUE0303-1179数学0004-9727数学B AUST MATH SOC B ULLETIN OF THE AUSTRALIAN MATHEMATICAL1370-1444数学BULLETIN OF THE BELGIAN MATHEMATICAL SOCB BELG MATH SOC-B BRAZ MATH SOC B ULLETIN BRAZILIAN MATHEMATICAL SOCIETY1678-7544数学1735-8515数学B IRAN MATH SOC B ulletin of the Iranian Mathematical Soc1015-8634数学B KOREAN MATH SOBulletin of the Korean Mathematical Soci0126-6705数学Bulletin of the Malaysian Mathematical SB MALAYS MATH SC1220-3874数学B MATH SOC SCI MBulletin Mathematique de la Societe des0037-9484数学B SOC MATH FR BULLETIN DE LA SOCIETE MATHEMATIQUE DE FBanach Journal of Mathematical Analysis1735-8787数学BANACH J MATH ANCAN MATH BULL CANADIAN MATHEMATICAL BULLETIN-BULLETIN0008-4395数学CENT EUR J MATH C entral European Journal of Mathematics1895-1074数学CHINESE ANNALS OF MATHEMATICS SERIES B0252-9599数学CHINESE ANN MATHCOLLECT MATH Collectanea Mathematica0010-0757数学COMBINATORICS PROBABILITY & COMPUTING0963-5483数学COMB PROBAB COMPCOMMUN ALGEBRACOMMUNICATIONS IN ALGEBRA0092-7872数学COMPLEX ANAL OPEComplex Analysis and Operator Theory1661-8254数学1747-6933数学COMPLEX VAR ELLIComplex Variables and Elliptic EquationsCR MATH COMPTES RENDUS MATHEMATIQUE1631-073X数学CZECH MATH J CZECHOSLOVAK MATHEMATICAL JOURNAL0011-4642数学DIFF EQUAT+DIFFERENTIAL EQUATIONS0012-2661数学DISCRETE & COMPUTATIONAL GEOMETRY0179-5376数学DISCRETE COMPUTDISCRETE MATH DISCRETE MATHEMATICS0012-365X数学1365-8050数学DISCRETE MATH THDISCRETE MATHEMATICS AND THEORETICAL COMDISS MATH Dissertationes Mathematicae 0012-3862数学DOKL MATH DOKLADY MATHEMATICS1064-5624数学DYNAM SYST APPL D YNAMIC SYSTEMS AND APPLICATIONS1056-2176数学1417-3875数学Electronic Journal of Qualitative TheoryELECTRON J QUALFILOMAT Filomat0354-5180数学Frontiers of Mathematics in China1673-3452数学FRONT MATH CHINA0016-2663数学FUNCT ANAL APPL+FUNCTIONAL ANALYSIS AND ITS APPLICATIONSFUND MATH FUNDAMENTA MATHEMATICAE0016-2736数学Funkcialaj Ekvacioj-Serio Internacia0532-8721数学FUNKC EKVACIOJ-SGEOMETRIAE DEDICATA0046-5755数学GEOMETRIAE DEDICGEORGIAN MATH J G eorgian Mathematical Journal 1072-947X数学GLAS MAT Glasnik Matematicki0017-095X数学GLASGOW MATH JGLASGOW MATHEMATICAL JOURNAL0017-0895数学GRAPHS AND COMBINATORICS0911-0119数学GRAPH COMBINATOR1303-5010数学HACET J MATH STAHacettepe Journal of Mathematics and StaHiroshima Mathematical Journal 0018-2079数学HIROSHIMA MATH JHIST MATH HISTORIA MATHEMATICA0315-0860数学Homology Homotopy and Applications1532-0073数学HOMOL HOMOTOPY AHOUSTON J MATHHOUSTON JOURNAL OF MATHEMATICS0362-1588数学ILLINOIS J MATH I LLINOIS JOURNAL OF MATHEMATICS0019-2082数学INDAGATIONES MATHEMATICAE-NEW SERIES0019-3577数学INDAGAT MATH NEWINDIAN J PURE AP0019-5588数学INDIAN JOURNAL OF PURE & APPLIED MATHEMAINTERNATIONAL JOURNAL OF ALGEBRA AND COM0218-1967数学INT J ALGEBR COMINT J MATH INTERNATIONAL JOURNAL OF MATHEMATICS0129-167X数学International Journal of Number Theory1793-0421数学INT J NUMBER THEINTEGRAL EQUATIONS AND OPERATOR THEORY0378-620X数学INTEGR EQUAT OPEIranian Journal of Fuzzy Systems1735-0654数学IRAN J FUZZY SYSIZV MATH+IZVESTIYA MATHEMATICS1064-5632数学0219-4988数学J ALGEBRA APPL JOURNAL OF ALGEBRA AND ITS APPLICATIONS1446-7887数学J AUST MATH SOC J OURNAL OF THE AUSTRALIAN MATHEMATICAL S1068-3623数学Journal of Contemporary Mathematical AnaJ CONTEMP MATH AJ GROUP THEORYJOURNAL OF GROUP THEORY1433-5883数学1512-2891数学J HOMOTOPY RELATJournal of Homotopy and Related Structur0928-0219数学Journal of Inverse and Ill-Posed ProblemJ INVERSE ILL-PO0218-2165数学J KNOT THEOR RAMJOURNAL OF KNOT THEORY AND ITS RAMIFICAT0304-9914数学J KOREAN MATH SOJOURNAL OF THE KOREAN MATHEMATICAL SOCIEJ K-THEORY Journal of K-Theory1865-2433数学J LIE THEORY JOURNAL OF LIE THEORY0949-5932数学0023-608X数学J MATH KYOTO UJOURNAL OF MATHEMATICS OF KYOTO UNIVERSIJ MATH LOG Journal of Mathematical Logic0219-0613数学1340-5705数学Journal of Mathematical Sciences-The UniJ MATH SCI-U TOKJ NUMBER THEORY J OURNAL OF NUMBER THEORY0022-314X数学J OPERAT THEORJOURNAL OF OPERATOR THEORY0379-4024数学JOURNAL OF SYMBOLIC LOGIC0022-4812数学J SYMBOLIC LOGICKODAI MATH J Kodai Mathematical Journal 0386-5991数学KYUSHU J MATH Kyushu Journal of Mathematics1340-6116数学LITH MATH J Lithuanian Mathematical Journal 0363-1672数学1461-1570数学LMS Journal of Computation and MathematiLMS J COMPUT MATLOG J IGPL LOGIC JOURNAL OF THE IGPL1367-0751数学MATH COMMUN Mathematical Communications1331-0623数学MATHEMATICAL INEQUALITIES & APPLICATIONS1331-4343数学MATH INEQUAL APPMATH INTELL MATHEMATICAL INTELLIGENCER0343-6993数学MATHEMATICAL LOGIC QUARTERLY0942-5616数学MATH LOGIC QUARTMATH NOTES+MATHEMATICAL NOTES0001-4346数学MATH REP Mathematical Reports1582-3067数学MATH SCAND MATHEMATICA SCANDINAVICA0025-5521数学MATH SLOVACA Mathematica Slovaca 0139-9918数学MEDITERR J MATH M editerranean Journal of Mathematics1660-5446数学Miskolc Mathematical Notes1586-8850数学MISKOLC MATH NOTNAGOYA MATH J NAGOYA MATHEMATICAL JOURNAL0027-7630数学OPER MATRICES Operators and Matrices1846-3886数学0167-8094数学ORDER ORDER-A JOURNAL ON THE THEORY OF ORDEREDOSAKA J MATH OSAKA JOURNAL OF MATHEMATICS0030-6126数学0253-4142数学PROCEEDINGS OF THE INDIAN ACADEMY OF SCIP INDIAN AS-MATH0386-2194数学PROCEEDINGS OF THE JAPAN ACADEMY SERIESP JPN ACAD A-MAT0081-5438数学P STEKLOV I MATHProceedings of the Steklov Institute ofPAC J MATH PACIFIC JOURNAL OF MATHEMATICS0030-8730数学Periodica Mathematica Hungarica 0031-5303数学PERIOD MATH HUNGPOSITIVITY POSITIVITY1385-1292数学PUBL MAT PUBLICACIONS MATEMATIQUES0214-1493数学PUBLICATIONES MATHEMATICAE-DEBRECEN0033-3883数学PUBL MATH-DEBREC0034-5318数学PUBLICATIONS OF THE RESEARCH INSTITUTE FPUBL RES I MATHPure and Applied Mathematics Quarterly 1558-8599数学PURE APPL MATH QQUAEST MATH Quaestiones Mathematicae1607-3606数学1578-7303数学RACSAM REV R ACARevista de la Real Academia de CienciasRANDOM STRUCTURES & ALGORITHMS1042-9832数学RANDOM STRUCT AL1120-6330数学Rendiconti Lincei-Matematica e ApplicaziREND LINCEI-MAT0041-8994数学REND SEMIN MAT URENDICONTI DEL SEMINARIO MATEMATICO DELLRESULTS MATH Results in Mathematics 1422-6383数学REV SYMB LOGICReview of Symbolic Logic1755-0203数学0041-6932数学Revista de la Union Matematica ArgentinaREV UNION MAT ARROCKY MT J MATH R OCKY MOUNTAIN JOURNAL OF MATHEMATICS0035-7596数学RUSS MATH SURV+R USSIAN MATHEMATICAL SURVEYS0036-0279数学SB MATH+SBORNIK MATHEMATICS1064-5616数学SEMIGROUP FORUM S EMIGROUP FORUM0037-1912数学SIBERIAN MATHEMATICAL JOURNAL0037-4466数学SIBERIAN MATH J+St Petersburg Mathematical Journal1061-0022数学ST PETERSB MATHSTUD MATH STUDIA MATHEMATICA0039-3223数学0081-6906数学STUD SCI MATH HUSTUDIA SCIENTIARUM MATHEMATICARUM HUNGARTOHOKU MATH J TOHOKU MATHEMATICAL JOURNAL0040-8735数学TOPOL APPL TOPOLOGY AND ITS APPLICATIONS0166-8641数学TURK J MATH Turkish Journal of Mathematics 1300-0098数学UKR MATH J+Ukrainian Mathematical Journal0041-5995数学0232-2064数学Z ANAL ANWEND ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWEND1070-5511数学跨学科应用STRUCTURAL EQUATION MODELING-A MULTIDISCSTRUCT EQU MODELMULTISCALE MODELING & SIMULATION1540-3459数学跨学科应用MULTISCALE MODELMULTIVAR BEHAV RMULTIVARIATE BEHAVIORAL RESEARCH0027-3171数学跨学科应用RISK ANAL RISK ANALYSIS0272-4332数学跨学科应用APPL MATH MODEL A PPLIED MATHEMATICAL MODELLING0307-904X数学跨学科应用BAYESIAN ANAL Bayesian Analysis1931-6690数学跨学科应用EXTREMES Extremes1386-1999数学跨学科应用J CLASSIF JOURNAL OF CLASSIFICATION0176-4268数学跨学科应用MATH FINANC MATHEMATICAL FINANCE0960-1627数学跨学科应用Networks and Heterogeneous Media 1556-1801数学跨学科应用NETW HETEROG MEDPSYCHOMETRIKA PSYCHOMETRIKA0033-3123数学跨学科应用APPLIED STOCHASTIC MODELS IN BUSINESS AN1524-1904数学跨学科应用APPL STOCH MODELASTIN BULL Astin Bulletin0515-0361数学跨学科应用0392-4432数学跨学科应用B STOR SCI MATBollettino di Storia delle Scienze Matem0218-348X数学跨学科应用FRACTALS FRACTALS-COMPLEX GEOMETRY PATTERNS AND SIMA Journal of Management Mathematics1471-678X数学跨学科应用IMA J MANAG MATH0218-1274数学跨学科应用INTERNATIONAL JOURNAL OF BIFURCATION ANDINT J BIFURCAT CINTERNATIONAL JOURNAL OF GAME THEORY0020-7276数学跨学科应用INT J GAME THEORJ GREY SYST-UK Journal of Grey System 0957-3720数学跨学科应用J MATH MUSIC Journal of Mathematics and Music1745-9737数学跨学科应用J MATH SOCIOL JOURNAL OF MATHEMATICAL SOCIOLOGY0022-250X数学跨学科应用1009-6124数学跨学科应用Journal of Systems Science & ComplexityJ SYST SCI COMPLJ TIME SER ANAL J OURNAL OF TIME SERIES ANALYSIS0143-9782数学跨学科应用LIFETIME DATA ANALYSIS1380-7870数学跨学科应用LIFETIME DATA AN0973-5348数学跨学科应用MATH MODEL NAT PMathematical Modelling of Natural PhenomMATH POPUL STUD M athematical Population Studies0889-8480数学跨学科应用MATH SOC SCI MATHEMATICAL SOCIAL SCIENCES0165-4896数学跨学科应用1392-5113数学跨学科应用NONLINEAR ANAL-MNonlinear Analysis-Modelling and ControlSCAND ACTUAR JScandinavian Actuarial Journal0346-1238数学跨学科应用STAT INTERFACEStatistics and Its Interface1938-7989数学跨学科应用0973-5348数学与计算生物学MATH MODEL NAT PMathematical Modelling of Natural PhenomSTAT INTERFACEStatistics and Its Interface1938-7989数学与计算生物学ANN STAT ANNALS OF STATISTICS0090-5364统计学与概率论0162-1459统计学与概率论J AM STAT ASSOC J OURNAL OF THE AMERICAN STATISTICAL ASSO1369-7412统计学与概率论J R STAT SOC BJOURNAL OF THE ROYAL STATISTICAL SOCIETYSTAT SCI STATISTICAL SCIENCE0883-4237统计学与概率论FUZZY SET SYSTFUZZY SETS AND SYSTEMS0165-0114统计学与概率论0735-0015统计学与概率论J BUS ECON STAT J OURNAL OF BUSINESS & ECONOMIC STATISTIC0964-1998统计学与概率论JOURNAL OF THE ROYAL STATISTICAL SOCIETYJ R STAT SOC A SMULTIVARIATE BEHAVIORAL RESEARCH0027-3171统计学与概率论MULTIVAR BEHAV RSTATA J Stata Journal1536-867X统计学与概率论AM STAT AMERICAN STATISTICIAN0003-1305统计学与概率论ANN APPL PROBAB A NNALS OF APPLIED PROBABILITY1050-5164统计学与概率论ANN PROBAB ANNALS OF PROBABILITY0091-1798统计学与概率论BAYESIAN ANAL Bayesian Analysis1931-6690统计学与概率论BERNOULLI BERNOULLI1350-7265统计学与概率论ELECTRONIC JOURNAL OF PROBABILITY1083-6489统计学与概率论ELECTRON J PROBAELECTRON J STAT E lectronic Journal of Statistics1935-7524统计学与概率论EXTREMES Extremes1386-1999统计学与概率论1061-8600统计学与概率论JOURNAL OF COMPUTATIONAL AND GRAPHICAL SJ COMPUT GRAPH SPROBABILITY THEORY AND RELATED FIELDS0178-8051统计学与概率论PROBAB THEORY RESCAND J STAT SCANDINAVIAN JOURNAL OF STATISTICS0303-6898统计学与概率论STAT COMPUT STATISTICS AND COMPUTING0960-3174统计学与概率论0304-4149统计学与概率论STOCH PROC APPL S TOCHASTIC PROCESSES AND THEIR APPLICATITEST TEST1133-0686统计学与概率论ADV APPL PROBAB A DVANCES IN APPLIED PROBABILITY0001-8678统计学与概率论1862-5347统计学与概率论ADV DATA ANAL CLAdvances in Data Analysis and Classifica0246-0203统计学与概率论ANN I H POINCAREANNALES DE L INSTITUT HENRI POINCARE-PRO0020-3157统计学与概率论ANN I STAT MATH A NNALS OF THE INSTITUTE OF STATISTICAL M1524-1904统计学与概率论APPLIED STOCHASTIC MODELS IN BUSINESS ANAPPL STOCH MODELAStA-Advances in Statistical Analysis1863-8171统计学与概率论ASTA-ADV STAT ANASTIN BULL Astin Bulletin0515-0361统计学与概率论1369-1473统计学与概率论AUST NZ J STATAUSTRALIAN & NEW ZEALAND JOURNAL OF STAT0319-5724统计学与概率论CAN J STAT CANADIAN JOURNAL OF STATISTICS-REVUE CANCOMBINATORICS PROBABILITY & COMPUTING0963-5483统计学与概率论COMB PROBAB COMP0361-0918统计学与概率论COMMUNICATIONS IN STATISTICS-SIMULATIONCOMMUN STAT-SIMU0361-0926统计学与概率论COMMUNICATIONS IN STATISTICS-THEORY ANDCOMMUN STAT-THEO0167-9473统计学与概率论COMPUT STAT DATACOMPUTATIONAL STATISTICS & DATA ANALYSISCOMPUTATIONAL STATISTICS0943-4062统计学与概率论COMPUTATION STATHacettepe Journal of Mathematics and Sta1303-5010统计学与概率论HACET J MATH STA0219-0257统计学与概率论INFINITE DIMENSIONAL ANALYSIS QUANTUM PRINFIN DIMENS ANAINTERNATIONAL JOURNAL OF GAME THEORY0020-7276统计学与概率论INT J GAME THEORINT STAT REV INTERNATIONAL STATISTICAL REVIEW0306-7734统计学与概率论J APPL PROBAB JOURNAL OF APPLIED PROBABILITY0021-9002统计学与概率论J APPL STAT JOURNAL OF APPLIED STATISTICS0266-4763统计学与概率论1226-3192统计学与概率论J KOREAN STAT SOJournal of the Korean Statistical SocietJOURNAL OF MULTIVARIATE ANALYSIS0047-259X统计学与概率论J MULTIVARIATE AJ NONPARAMETR STJOURNAL OF NONPARAMETRIC STATISTICS1048-5252统计学与概率论J OFF STAT Journal of Official Statistics0282-423X统计学与概率论0035-9254统计学与概率论JOURNAL OF THE ROYAL STATISTICAL SOCIETYJ R STAT SOC C-A0094-9655统计学与概率论JOURNAL OF STATISTICAL COMPUTATION AND SJ STAT COMPUT SIJOURNAL OF STATISTICAL PLANNING AND INFE0378-3758统计学与概率论J STAT PLAN INFEJ THEOR PROBABJOURNAL OF THEORETICAL PROBABILITY0894-9840统计学与概率论J TIME SER ANAL J OURNAL OF TIME SERIES ANALYSIS0143-9782统计学与概率论LIFETIME DATA ANALYSIS1380-7870统计学与概率论LIFETIME DATA ANMATH POPUL STUD M athematical Population Studies0889-8480统计学与概率论METHODOL COMPUT1387-5841统计学与概率论METHODOLOGY AND COMPUTING IN APPLIED PROMETRIKA METRIKA0026-1335统计学与概率论PAK J STAT Pakistan Journal of Statistics1012-9367统计学与概率论0269-9648统计学与概率论PROBABILITY IN THE ENGINEERING AND INFORPROBAB ENG INFORRevista Colombiana de Estadistica0120-1751统计学与概率论REV COLOMB ESTADREVSTAT-STAT JREVSTAT-Statistical Journal1645-6726统计学与概率论SCAND ACTUAR JScandinavian Actuarial Journal0346-1238统计学与概率论Statistical Methods and Applications1618-2510统计学与概率论STAT METHOD APPLSTAT MODEL STATISTICAL MODELLING1471-082X统计学与概率论STAT NEERL STATISTICA NEERLANDICA0039-0402统计学与概率论STAT PAP STATISTICAL PAPERS0932-5026统计学与概率论STATISTICS & PROBABILITY LETTERS0167-7152统计学与概率论STAT PROBABIL LESTAT SINICA STATISTICA SINICA1017-0405统计学与概率论STATISTICS STATISTICS0233-1888统计学与概率论STOCH ANAL APPL S TOCHASTIC ANALYSIS AND APPLICATIONS0736-2994统计学与概率论STOCH DYNAM Stochastics and Dynamics 0219-4937统计学与概率论STOCH MODELS STOCHASTIC MODELS1532-6349统计学与概率论1744-2508统计学与概率论STOCHASTICS Stochastics-An International Journal ofSURV METHODOL Survey Methodology 0714-0045统计学与概率论0040-585X统计学与概率论THEORY OF PROBABILITY AND ITS APPLICATIOTHEOR PROBAB APPUTILITAS MATHEMAUTILITAS MATHEMATICA0315-3681统计学与概率论Journal of Noncommutative Geometry1661-6952物理:数学物理J NONCOMMUT GEOMJ NONLINEAR SCI J OURNAL OF NONLINEAR SCIENCE0938-8974物理:数学物理MULTISCALE MODELING & SIMULATION1540-3459物理:数学物理MULTISCALE MODELINVERSE PROBL INVERSE PROBLEMS0266-5611物理:数学物理Inverse Problems and Imaging1930-8337物理:数学物理INVERSE PROBL IMAdvances in Applied Clifford Algebras0188-7009物理:数学物理ADV APPL CLIFFOR1935-0090物理:数学物理Applied Mathematics & Information SciencAPPL MATH INFORM1559-3940物理:数学物理Communications in Applied Mathematics anCOMM APP MATH COCOMPUTATIONAL MATHEMATICS AND MATHEMATIC0965-5425物理:数学物理COMP MATH MATH PINFINITE DIMENSIONAL ANALYSIS QUANTUM PR0219-0257物理:数学物理INFIN DIMENS ANA0219-8916物理:数学物理Journal of Hyperbolic Differential EquatJ HYPERBOL DIFFE1812-9471物理:数学物理Journal of Mathematical Physics AnalysisJ MATH PHYS ANAL1385-0172物理:数学物理MATHEMATICAL PHYSICS ANALYSIS AND GEOMETMATH PHYS ANAL GNONLINEAR OSCIL N onlinear Oscillations1536-0059物理:数学物理1223-7027物理:综合University Politehnica of Bucharest ScieU POLITEH BUCH SABSTR APPL ANAL A bstract and Applied Analysis 1085-3375应用数学0010-3640应用数学COMMUN PUR APPLCOMMUNICATIONS ON PURE AND APPLIED MATHE0021-7824应用数学JOURNAL DE MATHEMATIQUES PURES ET APPLIQJ MATH PURE APPL0218-2025应用数学MATHEMATICAL MODELS & METHODS IN APPLIEDMATH MOD METH APNONLINEAR ANALYSIS-REAL WORLD APPLICATIO1468-1218应用数学NONLINEAR ANAL-RSIAM REV SIAM REVIEW0036-1445应用数学ADV COMPUT MATH A DVANCES IN COMPUTATIONAL MATHEMATICS1019-7168应用数学Aequationes Mathematicae0001-9054应用数学AEQUATIONES MATHANAL APPL Analysis and Applications0219-5305应用数学ANAL PDE Analysis & PDE1948-206X应用数学ANNALI DI MATEMATICA PURA ED APPLICATA 0373-3114应用数学ANN MAT PUR APPLAPPL MATH COMPUTAPPLIED MATHEMATICS AND COMPUTATION0096-3003应用数学Boundary Value Problems 1687-2762应用数学BOUND VALUE PROBCALCULUS OF VARIATIONS AND PARTIAL DIFFE0944-2669应用数学CALC VAR PARTIALCarpathian Journal of Mathematics1584-2851应用数学CARPATHIAN J MAT0219-1997应用数学COMMUN CONTEMP MCOMMUNICATIONS IN CONTEMPORARY MATHEMATI0360-5302应用数学COMMUN PART DIFFCOMMUNICATIONS IN PARTIAL DIFFERENTIAL E0925-7721应用数学COMPUTATIONAL GEOMETRY-THEORY AND APPLICCOMP GEOM-THEOR1078-0947应用数学DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMDISCRETE CONT DY0764-583X应用数学ESAIM-MATHEMATICAL MODELLING AND NUMERICESAIM-MATH MODELFixed Point Theory 1583-5022应用数学FIXED POINT THEOFixed Point Theory and Applications 1687-1820应用数学FIXED POINT THEO1615-3375应用数学FOUNDATIONS OF COMPUTATIONAL MATHEMATICSFOUND COMPUT MATFUZZY SET SYSTFUZZY SETS AND SYSTEMS0165-0114应用数学IMA JOURNAL OF NUMERICAL ANALYSIS0272-4979应用数学IMA J NUMER ANALInternational Journal of Numerical Analy1705-5105应用数学INT J NUMER ANAL1040-7294应用数学Journal of Dynamics and Differential EquJ DYN DIFFER EQU1435-9855应用数学J EUR MATH SOCJOURNAL OF THE EUROPEAN MATHEMATICAL SOCJ FOURIER ANAL A1069-5869应用数学JOURNAL OF FOURIER ANALYSIS AND APPLICATJ GLOBAL OPTIMJOURNAL OF GLOBAL OPTIMIZATION0925-5001应用数学JOURNAL OF MATHEMATICAL ANALYSIS AND APP0022-247X应用数学J MATH ANAL APPLJ MOD DYNAM Journal of Modern Dynamics1930-5311应用数学Journal of Noncommutative Geometry1661-6952应用数学J NONCOMMUT GEOMJ NONLINEAR SCI J OURNAL OF NONLINEAR SCIENCE0938-8974应用数学J SCI COMPUT JOURNAL OF SCIENTIFIC COMPUTING0885-7474应用数学KINET RELAT MOD K inetic and Related Models1937-5093应用数学。

基于Duffing振子的信号频谱重构随机共振研究

基于Duffing振子的信号频谱重构随机共振研究

第35卷第21期振动与冲击JOURNAL OF VIBRATION AND SHOCK Vol.35 No.21 2016基于D u f f i n g振子的信号频谱重构随机共振研究赖志慧饶锡新\刘建胜\冷永刚2(1.南昌大学机电工程学院,南昌330031; 2.天津大学机械工程学院,天津300072)M要:针对信号特征频率和采样频率所要求的匹配关系对Duffmg振子变尺度随机共振的限制,研究一种频谱 重构的信号预处理方法,并进一步提出基于Duffmg振子的信号频谱重构随机共振方法。

该方法通过引人频谱重构参数 实现信号特征频率的灵活转化,与变尺度方法和阻尼比参数调节方法相结合,可以实现任意信号特征频率和采样频率下 的Duffmg系统的大参数随机共振,从而扩展其在微弱信号处理中的应用。

数值仿真和故障诊断实例分析均验证了该方 法的有效性。

关键词:Duffmg振子;随机共振;频谱重构;变尺度;故障诊断中图分类号:TH17;TN911.4 文献标志码:A DOI:10. 13465/j. cnki. jvs. 2016.21.002Signal spectrum reconstruction stochastic resonance method based on a Duffing oscillator LAI Zhihui1 ,z, RAO Xixin , LIU Jiansheng1, LENG Yonggang2(1. School of Mechatronical & Electrical Engineering, Nanchang University, Nanchang 330031 , China;2. School of Mechanical Engineering, Tianjin University, Tianjin 300072, China)Abstract :The matching relation between signal characteristic frequency and sampling frequency has a restriction on the scale-varying stochastic resonance (SR) of a Duffing oscillator. Therefore, a signal pre-processing approach based on spectrum reconstruction was studied here, and a signal spectrum reconstruction SR method based on a Duffing oscillator was further proposed. This method introduced spectrum reconstruction parameters to realize the flexible varying of signal characteristic frequency. When combined with the scale varying and damping-ratio-adjustment methods, this method realized the large parametric SR of a Duffing system under any signal characteristic frequency and sampling frequency, thus its application in weak-signal detection was extended. Both numerical simulation and fault diagnosis example analysis verified the effectiveness of the proposed method.Key words:Duffing oscillator;stochastic resonance; spectrum reconstruction;scale varying;fault diagnosis随机共振是1981年BENZI等[1_3]首次提出的,用 以解释过去70万年间地球冰川期和暖气候期交替出 现的现象。

Scenario reduction in stochastic programming_ an approach using probability

Scenario reduction in stochastic programming_ an approach using probability

1. Introduction Various important real-life decision problems can be formulated as convex stochastic programs which can be mostly written in the form min EP f (ω, x) =
An approach using probability metrics
Received: July 2000 / Accepted: May 2002 Published online: February 14, 2003 – c Springer-Verlag 2003 Abstract. Given a convex stochastic programming problem with a discrete initial probability distribution, the problem of optimal scenario reduction is stated as follows: Determine a scenario subset of prescribed cardinality and a probability measure based on this set that is the closest to the initial distribution in terms of a natural (or canonical) probability metric. Arguments from stability analysis indicate that Fortet-Mourier type probability metrics may serve as such canonical metrics. Efficient algorithms are developed that determine optimal reduceal experience is reported for reductions of electrical load scenario trees for power management under uncertainty. For instance, it turns out that after 50% reduction of the scenario tree the optimal reduced tree still has about 90% relative accuracy. Key words. stochastic programming – quantitative stability – Fortet-Mourier metrics – scenario reduction – transportation problem – electrical load scenario tree

Archive of Applied Mechanics manuscript No. (will be inserted by the editor) Developments i

Archive of Applied Mechanics manuscript No. (will be inserted by the editor) Developments i

LEOPOLD-FRANZENS UNIVERSITYChair of Engineering Mechanicso.Univ.-Prof.Dr.-Ing.habil.G.I.Schu¨e ller,Ph.D.G.I.Schueller@uibk.ac.at Technikerstrasse13,A-6020Innsbruck,Austria,EU Tel.:+435125076841Fax.:+435125072905 mechanik@uibk.ac.at,http://mechanik.uibk.ac.atIfM-Publication2-407G.I.Schu¨e ller.Developments in stochastic structural mechanics.Archive of Applied Mechanics,published online,2006.Archive of Applied Mechanics manuscript No.(will be inserted by the editor)Developments in Stochastic Structural MechanicsG.I.Schu¨e llerInstitute of Engineering Mechanics,Leopold-Franzens University,Innsbruck,Aus-tria,EUReceived:date/Revised version:dateAbstract Uncertainties are a central element in structural analysis and design.But even today they are frequently dealt with in an intuitive or qualitative way only.However,as already suggested80years ago,these uncertainties may be quantified by statistical and stochastic procedures. In this contribution it is attempted to shed light on some of the recent advances in the now establishedfield of stochastic structural mechanics and also solicit ideas on possible future developments.1IntroductionThe realistic modeling of structures and the expected loading conditions as well as the mechanisms of their possible deterioration with time are un-doubtedly one of the major goals of structural and engineering mechanics2G.I.Schu¨e ller respectively.It has been recognized that this should also include the quan-titative consideration of the statistical uncertainties of the models and the parameters involved[56].There is also a general agreement that probabilis-tic methods should be strongly rooted in the basic theories of structural en-gineering and engineering mechanics and hence represent the natural next step in the development of thesefields.It is well known that modern methods leading to a quantification of un-certainties of stochastic systems require computational procedures.The de-velopment of these procedures goes in line with the computational methods in current traditional(deterministic)analysis for the solution of problems required by the engineering practice,where certainly computational pro-cedures dominate.Hence,their further development within computational stochastic structural analysis is a most important requirement for dissemi-nation of stochastic concepts into engineering practice.Most naturally,pro-cedures to deal with stochastic systems are computationally considerably more involved than their deterministic counterparts,because the parameter set assumes a(finite or infinite)number of values in contrast to a single point in the parameter space.Hence,in order to be competitive and tractable in practical applications,the computational efficiency of procedures utilized is a crucial issue.Its significance should not be underestimated.Improvements on efficiency can be attributed to two main factors,i.e.by improved hard-ware in terms of ever faster computers and improved software,which means to improve the efficiency of computational algorithms,which also includesDevelopments in Stochastic Structural Mechanics3 utilizing parallel processing and computer farming respectively.For a con-tinuous increase of their efficiency by software developments,computational procedure of stochastic analysis should follow a similar way as it was gone in the seventieth and eighties developing the deterministic FE approach. One important aspect in this fast development was the focus on numerical methods adjusted to the strength and weakness of numerical computational algorithms.In other words,traditional ways of structural analysis devel-oped before the computer age have been dropped,redesigned and adjusted respectively to meet the new requirements posed by the computational fa-cilities.Two main streams of computational procedures in Stochastic Structural Analysis can be observed.Thefirst of this main class is the generation of sample functions by Monte Carlo simulation(MCS).These procedures might be categorized further according to their purpose:–Realizations of prescribed statistical information:samples must be com-patible with prescribed stochastic information such as spectral density, correlation,distribution,etc.,applications are:(1)Unconditional simula-tion of stochastic processes,fields and waves.(2)Conditional simulation compatible with observations and a priori statistical information.–Assessment of the stochastic response for a mathematical model with prescribed statistics(random loading/system parameters)of the param-eters,applications are:(1)Representative sample for the estimation of the overall distribution.4G.I.Schu¨e ller Indiscriminate(blind)generation of samples.Numerical integration of SDE’s.(2)Representative sample for the reliability assessment by gen-erating adverse rare events with positive probability,i.e.by:(a)variance reduction techniques controlling the realizations of RV’s,(b)controlling the evolution in time of sampling functions.The other main class provides numerical solutions to analytical proce-dures.Grouping again according to the respective purpose the following classification can be made:Numerical solutions of Kolmogorov equations(Galerkin’s method,Finite El-ement method,Path Integral method),Moment Closure Schemes,Compu-tation of the Evolution of Moments,Maximum Entropy Procedures,Asymp-totic Stability of Diffusion Processes.In the following,some of the outlined topics will be addressed stressing new developments.These topics are described within the next six subject areas,each focusing on a different issue,i.e.representation of stochastic processes andfields,structural response,stochastic FE methods and parallel processing,structural reliability and optimization,and stochastic dynamics. In this context it should be mentioned that aside from the MIT-Conference series the USNCCM,ECCM and WCCM’s do have a larger part of sessions addressing computational stochastic issues.Developments in Stochastic Structural Mechanics5 2Representation of Stochastic ProcessesMany quantities involving randomfluctuations in time and space might be adequately described by stochastic processes,fields and waves.Typical ex-amples of engineering interest are earthquake ground motion,sea waves, wind turbulence,road roughness,imperfection of shells,fluctuating prop-erties in random media,etc.For this setup,probabilistic characteristics of the process are known from various measurements and investigations in the past.In structural engineering,the available probabilistic characteristics of random quantities affecting the loading or the mechanical system can be often not utilized directly to account for the randomness of the structural response due to its complexity.For example,in the common case of strong earthquake motion,the structural response will be in general non-linear and it might be too difficult to compute the probabilistic characteristics of the response by other means than Monte Carlo simulation.For the purpose of Monte Carlo simulation sample functions of the involved stochastic pro-cess must be generated.These sample functions should represent accurately the characteristics of the underlying stochastic process orfields and might be stationary and non-stationary,homogeneous or non-homogeneous,one-dimensional or multi-dimensional,uni-variate or multi-variate,Gaussian or non-Gaussian,depending very much on the requirements of accuracy of re-alistic representation of the physical behavior and on the available statistical data.6G.I.Schu¨e ller The main requirement on the sample function is its accurate represen-tation of the available stochastic information of the process.The associ-ated mathematical model can be selected in any convenient manner as long it reproduces the required stochastic properties.Therefore,quite different representations have been developed and might be utilized for this purpose. The most common representations are e.g.:ARMA and AR models,Filtered White Noise(SDE),Shot Noise and Filtered Poisson White Noise,Covari-ance Decomposition,Karhunen-Lo`e ve and Polynomial Chaos Expansion, Spectral Representation,Wavelets Representation.Among the various methods listed above,the spectral representation methods appear to be most widely used(see e.g.[71,86]).According to this procedure,samples with specified power spectral density information are generated.For the stationary or homogeneous case the Fast Fourier Transform(FFT)techniques is utilized for a dramatic improvements of its computational efficiency(see e.g.[104,105]).Advances in thisfield provide efficient procedures for the generation of2D and3D homogeneous Gaus-sian stochasticfields using the FFT technique(see e.g.[87]).The spectral representation method generates ergodic sample functions of which each ful-fills exactly the requirements of a target power spectrum.These procedures can be extended to the non-stationary case,to the generation of stochastic waves and to incorporate non-Gaussian stochasticfields by a memoryless nonlinear transformation together with an iterative procedure to meet the target spectral density.Developments in Stochastic Structural Mechanics7 The above spectral representation procedures for an unconditional simula-tion of stochastic processes andfields can also be extended for Conditional simulations techniques for Gaussianfields(see e.g.[43,44])employing the conditional probability density method.The aim of this procedure is the generation of Gaussian random variates U n under the condition that(n−1) realizations u i of U i,i=1,2,...,(n−1)are specified and the a priori known covariances are satisfied.An alternative procedure is based on the so called Kriging method used in geostatistical application and applied also to con-ditional simulation problems in earthquake engineering(see e.g.[98]).The Kriging method has been improved significantly(see e.g.[36])that has made this method theoretically clearer and computationally more efficient.The differences and similarities of the conditional probability density methods and(modified)Kriging methods are discussed in[37]showing the equiva-lence of both procedures if the process is Gaussian with zero mean.A quite general spectral representation utilized for Gaussian random pro-cesses andfields is the Karhunen-Lo`e ve expansion of the covariance function (see e.g.[54,33]).This representation is applicable for stationary(homoge-neous)as well as for non-stationary(inhomogeneous)stochastic processes (fields).The expansion of a stochastic process(field)u(x,θ)takes the formu(x,θ)=¯u(x)+∞i=1ξ(θ) λiφi(x)(1)where the symbolθindicates the random nature of the corresponding quan-tity and where¯u(x)denotes the mean,φi(x)are the eigenfunctions andλi the eigenvalues of the covariance function.The set{ξi(θ)}forms a set of8G.I.Schu¨e ller orthogonal(uncorrelated)zero mean random variables with unit variance.The Karhunen-Lo`e ve expansion is mean square convergent irrespective of its probabilistic nature provided it possesses afinite variance.For the im-portant special case of a Gaussian process orfield the random variables{ξi(θ)}are independent standard normal random variables.In many prac-tical applications where the random quantities vary smoothly with respectto time or space,only few terms are necessary to capture the major part of the randomfluctuation of the process.Its major advantage is the reduction from a large number of correlated random variables to few most important uncorrelated ones.Hence this representation is especially suitable for band limited colored excitation and stochastic FE representation of random me-dia where random variables are usually strongly correlated.It might also be utilized to represent the correlated stochastic response of MDOF-systems by few most important variables and hence achieving a space reduction.A generalization of the above Karhunen-Lo`e ve expansion has been proposed for application where the covariance function is not known a priori(see[16, 33,32]).The stochastic process(field)u(x,θ)takes the formu(x,θ)=a0(x)Γ0+∞i1=1a i1(x)Γ1(ξi1(θ))+∞i1=1i1i2=1a i1i2(x)Γ2(ξi1(θ),ξi2(θ))+ (2)which is denoted as the Polynomial Chaos Expansion.Introducing a one-to-one mapping to a set with ordered indices{Ψi(θ)}and truncating eqn.2Developments in Stochastic Structural Mechanics9 after the p th term,the above representations reads,u(x,θ)=pj=ou j(x)Ψj(θ)(3)where the symbolΓn(ξi1,...,ξin)denotes the Polynomial Chaos of order nin the independent standard normal random variables.These polynomialsare orthogonal so that the expectation(or inner product)<ΨiΨj>=δij beingδij the Kronecker symbol.For the special case of a Gaussian random process the above representation coincides with the Karhunen-Lo`e ve expan-sion.The Polynomial Chaos expansion is adjustable in two ways:Increasingthe number of random variables{ξi}results in a refinement of the random fluctuations,while an increase of the maximum order of the polynomialcaptures non-linear(non-Gaussian)behavior of the process.However,the relation between accuracy and numerical efforts,still remains to be shown. The spectral representation by Fourier analysis is not well suited to describe local feature in the time or space domain.This disadvantage is overcome in wavelets analysis which provides an alternative of breaking a signal down into its constituent parts.For more details on this approach,it is referred to[24,60].In some cases of applications the physics or data might be inconsistent with the Gaussian distribution.For such cases,non-Gaussian models have been developed employing various concepts to meet the desired target dis-tribution as well as the target correlation structure(spectral density).Cer-tainly the most straight forward procedures is the above mentioned memo-ryless non-linear transformation of Gaussian processes utilizing the spectralrepresentation.An alternative approach utilizes linear and non-linearfil-ters to represent normal and non-Gaussian processes andfields excited by Gaussian white noise.Linearfilters excited by polynomial forms of Poisson white noise have been developed in[59]and[34].These procedures allow the evaluation of moments of arbitrary order without having to resort to closure techniques. Non-linearfilters are utilized to generate a stationary non-Gaussian stochas-tic process in agreement with a givenfirst-order probability density function and the spectral density[48,15].In the Kontorovich-Lyandres procedure as used in[48],the drift and diffusion coefficients are selected such that the solutionfits the target probability density,and the parameters in the solu-tion form are then adjusted to approximate the target spectral density.The approach by Cai and Lin[15]simplifies this procedure by matching the spec-tral density by adjusting only the drift coefficients,which is the followed by adjusting the diffusion coefficient to approximate the distribution of the pro-cess.The latter approach is especially suitable and computationally highly efficient for a long term simulation of stationary stochastic processes since the computational expense increases only linearly with the number n of dis-crete sample points while the spectral approach has a growth rate of n ln n when applying the efficient FFT technique.For generating samples of the non-linearfilter represented by a stochastic differential equations(SDE), well developed numerical procedures are available(see e.g.[47]).3Response of Stochastic SystemsThe assessment of the stochastic response is the main theme in stochastic mechanics.Contrary to the representation of of stochastic processes and fields designed tofit available statistical data and information,the output of the mathematical model is not prescribed and needs to be determined in some stochastic sense.Hence the mathematical model can not be selected freely but is specified a priori.The model involves for stochastic systems ei-ther random system parameters or/and random loading.Please note,due to space limitations,the question of model validation cannot be treated here. For the characterization of available numerical procedures some classifi-cations with regard to the structural model,loading and the description of the stochastic response is most instrumental.Concerning the structural model,a distinction between the properties,i.e.whether it is determinis-tic or stochastic,linear or non-linear,as well as the number of degrees of freedom(DOF)involved,is essential.As a criterion for the feasibility of a particular numerical procedure,the number of DOF’s of the structural system is one of the most crucial parameters.Therefore,a distinction be-tween dynamical-system-models and general FE-discretizations is suggested where dynamical systems are associated with a low state space dimension of the structural model.FE-discretization has no essential restriction re-garding its number of DOF’s.The stochastic loading can be grouped into static and dynamic loading.Stochastic dynamic loading might be charac-terized further by its distribution and correlation and its independence ordependence on the response,resulting in categorization such as Gaussian and non-Gaussian,stationary and non-stationary,white noise or colored, additive and multiplicative(parametric)excitation properties.Apart from the mathematical model,the required terms in which the stochastic re-sponse should be evaluated play an essential role ranging from assessing thefirst two moments of the response to reliability assessments and stabil-ity analysis.The large number of possibilities for evaluating the stochas-tic response as outlined above does not allow for a discussion of the en-tire subject.Therefore only some selected advances and new directions will be addressed.As already mentioned above,one could distinguish between two main categories of computational procedures treating the response of stochastic systems.Thefirst is based on Monte Carlo simulation and the second provides numerical solutions of analytical procedures for obtaining quantitative results.Regarding the numerical solutions of analytical proce-dures,a clear distinction between dynamical-system-models and FE-models should be made.Current research efforts in stochastic dynamics focus to a large extent on dynamical-system-models while there are few new numerical approaches concerning the evaluation of the stochastic dynamic response of e.g.FE-models.Numerical solutions of the Kolmogorov equations are typical examples of belonging to dynamical-system-models where available approaches are computationally feasible only for state space dimensions one to three and in exceptional cases for dimension four.Galerkin’s,Finite El-ement(FE)and Path Integral methods respectively are generally used tosolve numerically the forward(Fokker-Planck)and backward Kolmogorov equations.For example,in[8,92]the FE approach is employed for stationary and transient solutions respectively of the mentioned forward and backward equations for second order systems.First passage probabilities have been ob-tained employing a Petrov-Galerkin FE method to solve the backward and the related Pontryagin-Vitt equations.An instructive comparison between the computational efforts using Monte Carlo simulation and the FE-method is given e.g.in an earlier IASSAR report[85].The Path Integral method follows the evolution of the(transition)prob-ability function over short time intervals,exploiting the fact that short time transition probabilities for normal white noise excitations are locally Gaus-sian distributed.All existing path integration procedures utilize certain in-terpolation schemes where the probability density function(PDF)is rep-resented by values at discrete grid points.In a wider sense,cell mapping methods(see e.g.[38,39])can be regarded as special setups of the path integral procedure.As documented in[9],cumulant neglect closure described in section7.3 has been automated putational procedures for the automated generation and solutions of the closed set of moment equations have been developed.The method can be employed for an arbitrary number of states and closed at arbitrary levels.The approach,however,is limited by available computational resources,since the computational cost grows exponentially with respect to the number of states and the selected closurelevel.The above discussed developments of numerical procedures deal with low dimensional dynamical systems which are employed for investigating strong non-linear behavior subjected to(Gaussian)white noise excitation. Although dynamical system formulations are quite general and extendible to treat non-Gaussian and colored(filtered)excitation of larger systems,the computational expense is growing exponentially rendering most numerical approaches unfeasible for larger systems.This so called”curse of dimen-sionality”is not overcome yet and it is questionable whether it ever will be, despite the fast developing computational possibilities.For this reason,the alternative approach based on Monte Carlo simu-lation(MCS)gains importance.Several aspects favor procedures based on MCS in engineering applications:(1)Considerably smaller growth rate of the computational effort with dimensionality than analytical procedures.(2) Generally applicable,well suited for parallel processing(see section5.1)and computationally straight forward.(3)Non-linear complex behavior does not complicate the basic procedure.(4)Manageable for complex systems.Contrary to numerical solutions of analytical procedures,the employed structural model and the type of stochastic loading does for MCS not play a deceive role.For this reason,MCS procedures might be structured ac-cording to their purpose i.e.where sample functions are generated either for the estimation of the overall distribution or for generating rare adverse events for an efficient reliability assessment.In the former case,the prob-ability space is covered uniformly by an indiscriminate(blind)generationof sample functions representing the random quantities.Basically,at set of random variables will be generated by a pseudo random number generator followed by a deterministic structural analysis.Based on generated random numbers realizations of random processes,fields and waves addressed in section2,are constructed and utilized without any further modification in the following structural analysis.The situation may not be considered to be straight forward,however,in case of a discriminate MCS for the reliability estimation of structures,where rare events contributing considerably to the failure probability should be gener-ated.Since the effectiveness of direct indiscriminate MCS is not satisfactory for producing a statistically relevant number of low probability realizations in the failure domain,the generation of samples is restricted or guided in some way.The most important class are the variance reduction techniques which operate on the probability of realizations of random variables.The most widely used representative of this class in structural reliability assess-ment is Importance Sampling where a suitable sampling distribution con-trols the generation of realizations in the probability space.The challenge in Importance Sampling is the construction of a suitable sampling distribu-tion which depends in general on the specific structural system and on the failure domain(see e.g.[84]).Hence,the generation of sample functions is no longer independent from the structural system and failure criterion as for indiscriminate direct MCS.Due to these dependencies,computational procedures for an automated establishment of sampling distributions areurgently needed.Adaptive numerical strategies utilizing Importance Direc-tional sampling(e.g.[11])are steps in this direction.The effectiveness of the Importance sampling approach depends crucially on the complexity of the system response as well as an the number of random variables(see also section5.2).Static problems(linear and nonlinear)with few random vari-ables might be treated effectively by this approach.Linear systems where the randomness is represented by a large number of RVs can also be treated efficiently employingfirst order reliability methods(see e.g.[27]).This ap-proach,however,is questionable for the case of non-linear stochastic dynam-ics involving a large set of random variables,where the computational effort required for establishing a suitable sampling distribution might exceed the effort needed for indiscriminate direct MCS.Instead of controlling the realization of random variables,alternatively the evolution of the generated sampling can be controlled[68].This ap-proach is limited to stochastic processes andfields with Markovian prop-erties and utilizes an evolutionary programming technique for the genera-tion of more”important”realization in the low probability domain.This approach is especially suitable for white noise excitation and non-linear systems where Importance sampling is rather difficult to apply.Although the approach cannot deal with spectral representations of the stochastic processes,it is capable to make use of linearly and non-linearlyfiltered ex-citation.Again,this is just contrary to Importance sampling which can be applied to spectral representations but not to white noisefiltered excitation.4Stochastic Finite ElementsAs its name suggests,Stochastic Finite Elements are structural models rep-resented by Finite Elements the properties of which involve randomness.In static analysis,the stiffness matrix might be random due to unpredictable variation of some material properties,random coupling strength between structural components,uncertain boundary conditions,etc.For buckling analysis,shape imperfections of the structures have an additional impor-tant effect on the buckling load[76].Considering structural dynamics,in addition to the stiffness matrix,the damping properties and sometimes also the mass matrix might not be predictable with certainty.Discussing numerical Stochastic Finite Elements procedures,two cat-egories should be distinguished clearly.Thefirst is the representation of Stochastic Finite Elements and their global assemblage as random structural matrices.The second category addresses the evaluation of the stochastic re-sponse of the FE-model due to its randomness.Focusingfirst on the Stochastic FE representation,several representa-tions such as the midpoint method[35],the interpolation method[53],the local average method[97],as well as the Weighted-Integral-Method[94,25, 26]have been developed to describe spatial randomfluctuations within the element.As a tendency,the midpoint methods leads to an overestimation of the variance of the response,the local average method to an underestima-tion and the Weighted-Integral-Method leads to the most accurate results. Moreover,the so called mesh-size problem can be resolved utilizing thisrepresentation.After assembling all Finite Elements,the random structural stiffness matrix K,taken as representative example,assumes the form,K(α)=¯K+ni=1K Iiαi+ni=1nj=1K IIijαiαj+ (4)where¯K is the mean of the matrix,K I i and K II ij denote the determinis-ticfirst and second rate of change with respect to the zero mean random variablesαi andαj and n is the total number of random variables.For normally distributed sets of random variables{α},the correlated set can be represented advantageously by the Karhunen-Lo`e ve expansion[33]and for non-Gaussian distributed random variables by its Polynomial chaos ex-pansion[32],K(θ)=¯K+Mi=0ˆKiΨi(θ)(5)where M denotes the total number of chaos polynomials,ˆK i the associated deterministicfluctuation of the matrix andΨi(θ)a polynomial of standard normal random variablesξj(θ)whereθindicates the random nature of the associated variable.In a second step,the random response of the stochastic structural system is determined.The most widely used procedure for evaluating the stochastic response is the well established perturbation approach(see e.g.[53]).It is well adapted to the FE-formulation and capable to evaluatefirst and second moment properties of the response in an efficient manner.The approach, however,is justified only for small deviations from the center value.Since this assumption is satisfied in most practical applications,the obtainedfirst two moment properties are evaluated satisfactorily.However,the tails of the。

关于社会科学研究方法的英文文献

关于社会科学研究方法的英文文献

关于社会科学研究方法的英文文献There are various research methods in the field ofsocial sciences, and a comprehensive review of English literature on this topic would be quite extensive. However, I can provide a brief overview of some common research methods in social sciences and suggest some English-language literature that you may find helpful.In social sciences, research methods often include qualitative and quantitative approaches. Qualitative methods involve in-depth interviews, focus groups, participant observation, and content analysis, among others. On the other hand, quantitative methods include surveys, experiments, and statistical analysis of numerical data.For a general overview of social science research methods, you may find "Research Design: Qualitative, Quantitative, and Mixed Methods Approaches" by John W. Creswell to be a valuable resource. This book coversvarious research designs and methods, providing insightsinto both qualitative and quantitative approaches.Another widely cited work is "The SAGE Handbook of Qualitative Research" edited by Norman K. Denzin and Yvonna S. Lincoln. This comprehensive handbook offers a wide range of perspectives on qualitative research methods, making it a valuable resource for researchers in the social sciences.For those interested in quantitative research methods, "Research Methods in the Social Sciences" by Chava Frankfort-Nachmias and David Nachmias provides a comprehensive overview of quantitative research techniques, including survey research, experiments, and statistical analysis.Additionally, "Qualitative Data Analysis: A Methods Sourcebook" by Matthew B. Miles and A. Michael Huberman offers a detailed exploration of qualitative data analysis methods, making it a valuable resource for researchers conducting qualitative studies in the social sciences.It's important to note that the field of social scienceresearch methods is vast, and there are numerous other resources available depending on the specific area of interest within the social sciences. As such, I recommend consulting academic databases and library resources for a more comprehensive understanding of the literature available on this topic.。

金融博士书目

金融博士书目

金融博士书目经济学、金融学博士书目(A:数学分析微分方程矩阵代数)微观金融学包括金融市场及金融机构研究、投资学金融工程学金融经济学、公司金融财务管理等方面,宏观金融学包括货币经济学货币银行学、国际金融学等方面,实证和数量方法包括数理金融学、金融计量经济学等方面,以下书目侧重数学基础、经济理论和数理金融学部分。

◎函数与分析《什么是数学》,牛津丛书●集合论Paul R. Halmos,Naive Set Theory 朴素集合论(美)哈莫斯(好书,深入浅出但过简洁)集合论(英文版)Thomas Jech(有深度)Moschovakis,Notes on Set Theory集合论基础(英文版)——图灵原版数学·统计学系列(美)恩德滕●数学分析○微积分Tom M. Apostol, Calculus vol Ⅰ&Ⅱ(数学家写的经典高等微积分教材/参考书,写法严谨,40年未再版,致力于更深刻的理解,去除微积分和数学分析间隔,衔接分析学、微分方程、线性代数、微分几何和概率论等的学习,学实分析的前奏,线性代数应用最好的多元微积分书,练习很棒,对初学者会难读难懂,但具有其他教材无法具备的优点。

Stewart 的书范围相同,也较简单。

)Carol and Robert Ash,The Calculus Tutoring Book(不错的微积分辅导教材)R. Courant, F. John, Introduction to Calculus and Analysis vol Ⅰ&Ⅱ(适合工科,物理和应用多)Morris Kline,Calculus, an intuitive approachRon LarsonCalculus (With Analytic Geometry(微积分入门教材,难得的清晰简化,与Stewart同为流行教材)《高等微积分》Lynn H.Loomis / Shlomo StermbergMorris Kline,Calculus: An Intuitive and Physical Approach (解释清晰的辅导教材)Richard Silverman,Modern Calculus with Analytic GeometryMichael,Spivak,Calculus(有趣味,适合数学系,读完它或者Stewart的就可以读Rudin 的Principles of Mathematical Analysis 或者Marsden的Elementary Classical Analysis,然后读Royden的Real Analysis学勒贝格积分和测度论或者Rudin的Functional Analysis 学习巴拿赫和希尔伯特空间上的算子和谱理论)James Stewart,Calculus(流行教材,适合理科及数学系,可以用Larson书补充,但解释比它略好,如果觉得难就用Larson的吧)Earl W. Swokowski,Cengage Advantage Books: Calculus: The Classic Edition(适合工科)Silvanus P. Thompson,Calculus Made Easy(适合微积分初学者,易读易懂)○实分析(数学本科实变分析水平)(比较静态分析)Understanding Analysis,Stephen Abbott,(实分析入门好书,虽然不面面俱到但清晰简明,Rudin, Bartle, Browder等人毕竟不擅于写入门书,多维讲得少)T. M. Apostol, Mathematical AnalysisProblems in Real Analysis 实分析习题集(美)阿里普兰斯,(美)伯金肖《数学分析》方企勤,北大胡适耕,实变函数《分析学》Elliott H. Lieb / Michael LossH. L. Royden, Real AnalysisW. Rudin, Principles of Mathematical AnalysisElias M.Stein,Rami Shakarchi, Real Analysis:MeasureTheory,Integration and Hilbert Spaces,实分析(英文版) 《数学分析八讲》辛钦《数学分析新讲》张筑生,北大社周民强,实变函数论,北大周民强《数学分析》上海科技社○测度论(与实变分析有重叠)概率与测度论(英文版)(美)阿什(Ash.R.B.),(美)多朗-戴德(Doleans-Dade,C.A.)?Halmos,Measure Theory,测度论(英文版)(德)霍尔姆斯○傅里叶分析(实变分析和小波分析各有一半)小波分析导论(美)崔锦泰H. Davis, Fourier Series and Orthogonal FunctionsFolland,Real Analysis:Modern Techniques and Their ApplicationsFolland,Fourier Analysis and its Applications,数学物理方程:傅里叶分析及其应用(英文版)——时代教育.国外高校优秀教材精选(美)傅兰德傅里叶分析(英文版)——时代教育·国外高校优秀教材精选(美)格拉法科斯B. B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the MakingKatanelson,An Introduction to Harmonic AnalysisR. T. Seeley, An Introduction to Fourier Series and IntegralsStein,Shakarchi,Fourier Analysis:An Introduction○复分析(数学本科复变函数水平)L. V. Ahlfors, Complex Analysis ,复分析——华章数学译丛,(美)阿尔福斯(Ahlfors,L.V.)Brown,Churchill,Complex Variables and Applications Convey, Functions of One Complex Variable Ⅰ&Ⅱ《简明复分析》龚升, 北大社Greene,Krantz,Function Theory of One Complex VariableMarsden,Hoffman,Basic Complex AnalysisPalka,An Introduction to Complex Function TheoryW. Rudin, Real and Complex Analysis 《实分析与复分析》鲁丁(公认标准教材,最好有测度论基础)Siegels,Complex VariablesStein,Shakarchi,Complex Analysis 《复变函数》庄坼泰●泛函分析(资产组合的价值)○基础泛函分析(实变函数、算子理论和小波分析)实变函数与泛函分析基础,程其衰,高教社Friedman,Foundations of Modern Analysis《实变与泛函》胡适耕《泛函分析引论及其应用》克里兹格泛函分析习题集(印)克里希南Problems and methods in analysis,Krysicki夏道行,泛函分析第二教程,高教社夏道行,实变函数与泛函分析《数学分析习题集》谢惠民,高教社泛函分析·第6版(英文版) K.Yosida《泛函分析讲义》张恭庆,北大社○高级泛函分析(算子理论)J.B.Conway, A Course in Functional Analysis,泛函分析教程(英文版)Lax,Functional AnalysisRudin,Functional Analysis,泛函分析(英文版)[美]鲁丁(分布和傅立叶变换经典,要有拓扑基础)Zimmer,Essential Results of Functional Analysis○小波分析Daubeches,Ten Lectures on WaveletsFrazier,An Introduction to Wavelets Throughout Linear Algebra Hernandez,《时间序列的小波方法》PercivalPinsky,Introduction to Fourier Analysis and WaveletsWeiss,A First Course on WaveletsWojtaszczyk,An Mathematical Introduction to Wavelets Analysis●微分方程(期权定价、动态分析)○常微分方程和偏微分方程(微分方程稳定性,最优消费组合)V. I. Arnold, Ordinary Differential Equations,常微分方程(英文版)(现代化,较难)W. F. Boyce, R. C. Diprima, Elementary Differential Equations and Boundary Value Problems《数学物理方程》陈恕行,复旦E. A. Coddington, Theory of ordinary differential equationsA. A. Dezin, Partial differential equationsL. C. Evans, Partial Differential Equations丁同仁《常微分方程教程》高教《常微分方程习题集》菲利波夫,上海科技社G. B. Folland, Introduction to Partial Differential EquationsFritz John, Partial Differential Equations《常微分方程》李勇The Laplace Transform: Theory and Applications,Joel L. Schiff(适合自学)G. Simmons, Differntial Equations With Applications and Historecal Notes索托梅约尔《微分方程定义的曲线》《常微分方程》王高雄,中山大学社《微分方程与边界值问题》Zill○偏微分方程的有限差分方法(期权定价)福西斯,偏微分方程的有限差分方法Kwok,Mathematical Models of Financial Derivatives(有限差分方法美式期权定价)?Wilmott,Dewynne,Howison,The Mathematics of Financial Derivatives (有限差分方法美式期权定价)○统计模拟方法、蒙特卡洛方法Monte Carlo method in finance (美式期权定价)D. Dacunha-Castelle, M. Duflo,Probabilités et Statistiques IIFisherman,Monte Carlo Glasserman,Monte Carlo Mathods in Financial Engineering (金融蒙特卡洛方法的经典书,汇集了各类金融产品)Peter Jaeckel,Monte Carlo Methods in Finance(金融数学好,没Glasserman的好)?D. P. Heyman and M. J. Sobel, editors,Stochastic Models, volume 2 of Handbooks in O. R. and M. S., pages 331-434. Elsevier Science Publishers B.V. (North Holland) Jouini,Option Pricing,Interest Rates and Risk ManagementD. Lamberton, B. Lapeyre, Introduction to Stochastic Calculus Applied to Finance (连续时间)N. Newton,Variance reduction methods for diffusion process :H. Niederreiter,Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Appl. Math. SIAMW.H. Press and al.,Numerical recepies.B.D. Ripley. Stochastic SimulationL.C.G. Rogers et D. Talay, editors,Numerical Methods in Finance. Publicationsof the Newton Institute.D.V. Stroock, S.R.S. Varadhan,Multidimensional diffusion processesD. Talay,Simulation and numerical analysis of stochastic differential systems, a review. In P. Krée and W. Wedig, editors,Probabilistic Methods in Applied Physics, volume 451 of Lecture Notes in Physics, chapter 3, pages 54-96.P.Wilmott and al.,Option Pricing (Mathematical models and computation). Benninga,Czaczkes,Financial Modeling ○数值方法、数值实现方法Numerical Linear Algebra and Its Applications,科学社K. E. Atkinson, An Introduction to Numerical AnalysisR. Burden, J. Faires, Numerical Methods《逼近论教程》CheneyP. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation, Cambridge Texts in Applied MathematicsA. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge Texts in Applied Mathematics 《数值逼近》蒋尔雄《数值分析》李庆杨,清华《数值计算方法》林成森J. Stoer, R. Bulirsch, An Introduction to Numerical AnalysisJ. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations L. Trefethen, D. Bau, Numerical Linear Algebra《数值线性代数》徐树芳,北大其他(不必)《数学建模》Giordano《离散数学及其应用》Rosen《组合数学教程》Van Lint◎几何学和拓扑学(凸集、凹集)●拓扑学○点集拓扑学Munkres,Topology:A First Course《拓扑学》James R.MunkresSpivak,Calculus on Manifolds◎代数学(深于数学系高等代数)(静态均衡分析)○线性代数、矩阵论(资产组合的价值)M. Artin,AlgebraAxler, Linear Algebra Done RightCurtis,Linear Algeria:An Introductory ApproachW. Fleming, Functions of Several VariablesFriedberg, Linear Algebra Hoffman & Kunz, Linear AlgebraP.R. Halmos,Finite-Dimensional Vector Spaces(经典教材,数学专业的线性代数,注意它讲抽象代数结构而不是矩阵计算,难读)J. Hubbard, B. Hubbard, Vector Calculus, Linear Algebra, and Differential Forms: A Unified ApproachN. Jacobson,Basic Algebra Ⅰ&ⅡJain《线性代数》Lang,Undergraduate AlgeriaPeter D. Lax,Linear Algebra and Its Applications(适合数学系)G. Strang, Linear Algebra and its Applications(适合理工科,线性代数最清晰教材,应用讲得很多,他的网上讲座很重要)●经济最优化Dixit,Optimization in Economic Theory●一般均衡Debreu,Theory of Value●分离定理Hildenbrand,Kirman,Equilibrium Analysis(均衡问题一般处理)Magill,Quinzii,Theory of Incomplete Markets(非完备市场的均衡)Mas-Dollel,Whinston,Microeconomic Theory(均衡问题一般处理)Stokey,Lucas,Recursive Methods in Economic Dynamics (一般宏观均衡)经济学、金融学博士书目(B:概率论、数理统计、随机)◎概率统计●概率论(金融产品收益估计、不确定条件下的决策、期权定价)○基础概率理论(数学系概率论水平)《概率论》(三册)复旦Davidson,Stochastic Limit TheoryDurrett,The Essential of Probability,概率论第3版(英文版)W. Feller,An Introduction to Probability Theory and its Applications概率论及其应用(第3版)——图灵数学·统计学丛书《概率论基础》李贤平,高教G. R. Grimmett, D. R. Stirzaker, Probability and Random ProcessesRoss,S. A first couse in probability,中国统计影印版;概率论基础教程(第7版)——图灵数学·统计学丛书(例子多)《概率论》汪仁官,北大王寿仁,概率论基础和随机过程,科学社《概率论》杨振明,南开,科学社○基于测度论的概率论测度论与概率论基础,程式宏,北大D. L. Cohn, Measure TheoryDudley,Real Analysis and ProbabilityDurrett,Probability:Theory and ExamplesJacod,Protter,Probability Essentials Resnick,A Probability PathShirayev,Probability严加安,测度论讲义,科学社钟开莱,A Course in Probability Theory○随机过程微积分Introduction of diffusion processes (期权定价)K. L. Chung, Elementary Probability Theory with Stochastic ProcessesCox,Miller,The Theory of StochasticR. Durrett, Stochastic calculus黄志远,随机分析入门黄志远《随机分析学基础》科学社姜礼尚,期权定价的数学模型和方法,高教社《随机过程导论》KaoKarlin,Taylor,A First Course in Stochastic Prosses(适合硕士生)Karlin,Taylor,A Second Course in Stochastic Prosses(适合硕士生)随机过程,劳斯,中国统计J. R. Norris,Markov Chains(需要一定基础)Bernt Oksendal, Stochastic differential equations(绝佳随机微分方程入门书,专注于布朗运动,比Karatsas和Shreve的书简短好读,最好有概率论基础,看完该书能看懂金融学术文献,金融部分没有Shreve的好)Protter,Stochastic Integration and Differential Equations (文笔优美)D. Revuz, M. Yor, Continuous martingales and Brownian motion(连续鞅)Ross,Introduction to probability model(适合入门)Steel,Stochastic Calculus and Financial Application(与Oksendal的水平相当,侧重金融,叙述有趣味而削弱了学术性,随机微分、鞅)《随机过程通论》王梓坤,北师大○概率论、随机微积分应用(连续时间金融)Arnold,Stochastic Differential Equations《概率论及其在投资、保险、工程中的应用》BeanDamien Lamberton,Bernard Lapeyre. Introduction to stochastic calculus applied t o finance.David Freedman.Browian motion and diffusion.Dykin E. B. Markov Processes.Gihman I.I., Skorohod A. V.The theory of Stochastic processes 基赫曼,随机过程论,科学Lipster R. ,Shiryaev A.N. Statistics of random processes.Malliaris,Brock,Stochastic Methods in Economics and FinanceMerton,Continuous-time FinanceSalih N. Neftci,Introduction to the Mathematics of Financial DerivativesSteven E. Shreve ,Stochastic Calculus for Finance I: The Binomial Asset Pric ing Model;II: Continuous-Time Models(最佳的随机微积分金融(定价理论)入门书,易读的金融工程书,没有测度论基础最初几章会难些,离散时间模型,比Naftci的清晰,S hreve的网上教程也很优秀)Sheryayev A. N. Ottimal stopping rules.Wilmott p., J.Dewynne,S. Howison. Option Pricing: Mathematical Models and Compu tations.Stokey,Lucas,Recursive Methods in Economic Dynamics Wentzell A. D. A Course in the Theory of Stochastic Processes.Ziemba,Vickson,Stochastic Optimization Models in Finance○概率论、随机微积分应用(高级)Nielsen,Pricing and Hedging of Derivative SecuritiesRoss,《数理金融初步》An Introduction to Mathematical Finance:Options and othe r TopicsShimko,Finance in Continuous Time:A Primer○概率论、鞅论P. Billingsley,Probability and MeasureK. L. Chung & R. J. Williams,Introduction to Stochastic IntegrationDoob,Stochastic Processes严加安,随机分析选讲,科学○概率论、鞅论Stochastic processes and derivative products (高级)J. Cox et M. Rubinstein : Options MarketIoannis Karatzas and Steven E. Shreve,Brownian Motion and Stochastic Calculu s(难读的重要的高级随机过程教材,若没有相当数学功底,还是先读Oksendal的吧,结合Rogers & Williams的书读会好些,期权定价,鞅)M. Musiela - M. Rutkowski : (1998) Martingales Methods in Financial Modelling ?Rogers & Williams,Diffusions, Markov Processes, and Martingales: Volume 1, F oundations;Volume 2, Ito Calculus (深入浅出,要会实复分析、马尔可夫链、拉普拉斯转换,特别要读第1卷)David Williams,Probability with Martingales(易读,测度论的鞅论方法入门书,概率论高级教材)○鞅论、随机过程应用Duffie,Rahi,Financial Market Innovation and Security Design:An Introduction,Journal of Economic Theory Kallianpur,Karandikar,Introduction to Option Pricing TheoryDothan,Prices in Financial Markets (离散时间模型)Hunt,Kennedy,Financial Derivatives in Theory and Practice何声武,汪家冈,严加安,半鞅与随机分析,科学社Ingersoll,Theory of Financial Decision MakingElliott Kopp,Mathematics of Financial Markets(连续时间)Marek Musiela,Rutkowski,Martingale Methods in Financial Modeling(资产定价的鞅论方法最佳入门书,读完Hull书后的首选,先读Rogers & Williams、Karatzas and Sh reve以及Bjork打好基础)○弱收敛与随机过程收敛Billingsley,Convergence of Probability MeasureDavidson,Stochastic Limit TheoremEthier,Kurtz,Markov Process:Characterization and Convergence Hall,Marting ale Limit TheoremsJocod,Shereve,Limited Theorems for Stochastic Process Van der Vart,Weller,Weak Convergence and Empirical Process◎运筹学●最优化、博弈论、数学规划○随机控制、最优控制(资产组合构建)Borkar,Optimal control of diffusion processesBensoussan,Lions,Controle Impulsionnel et Inequations Variationnelles Chiang,Elements of Dynamic Optimization Dixit,Pindyck,Investment under UncertaintyFleming,Rishel,Deterministic and Stochastic Optimal ControlHarrison,Brownian Motion and Stochastic Flow SystemsKamien,Schwartz,Dynamic OptimizationKrylov,Controlled diffusion processes○控制论(最优化问题)●数理统计(资产组合决策、风险管理)○基础数理统计(非基于测度论)R. L. Berger, Cassell, Statistical InferenceBickel,Dokosum,Mathematical Stasistics:Basic Ideas andSelected TopicsBirrens,Introdution to the Mathematical and Statistical Foundation of Econom etrics数理统计学讲义,陈家鼎,高教Gallant,An Introduction to Econometric TheoryR. Larsen, M. Mars, An Introduction to Mathematical Statistics《概率论及数理统计》李贤平,复旦社Papoulis,Probability,random vaiables,and stochastic processStone,《概率统计》《概率论及数理统计》中山大学统计系,高教社○基于测度论的数理统计(计量理论研究)Berger,Statistical Decision Theory and Bayesian Analysis陈希儒,高等数理统计Shao Jun,Mathematical StatisticsLehmann,Casella,Theory of Piont EstimationLehmann,Romano,Testing Statistical Hypotheses《数理统计与数据分析》Rice○渐近统计Van der Vart,Asymptotic Statistics○现代统计理论、参数估计方法、非参数统计方法参数计量经济学、半参数计量经济学、自助法计量经济学、经验似然经济学、金融学博士书目(C:计量经济学、数理金融)统计学基础部分1、《统计学》《探索性数据分析》 David Freedman等,中国统计(统计思想讲得好)2、Mind on statistics 机械工业(只需高中数学水平)3、Mathematical Statistics and Data Analysis 机械工业(这本书理念很好,讲了很多新东西)4、Business Statistics a decision making approach 中国统计(实用)5、Understanding Statistics in the behavioral science 中国统计回归部分1、《应用线性回归》中国统计(蓝皮书系列,有一定的深度,非常精彩)2、Regression Analysis by example,(吸引人,推导少)3、《Logistics回归模型——方法与应用》王济川郭志刚高教(不多的国内经典统计教材)多元1、《应用多元分析》王学民上海财大(国内很好的多元统计教材)2、Analyzing Multivariate Data,Lattin等机械工业(直观,对数学要求不高)3、Applied Multivariate Statistical Analysis,Johnson & Wichem,中国统计(评价很高)《应用回归分析和其他多元方法》Kleinbaum《多元数据分析》Lattin时间序列1、《商务和经济预测中的时间序列模型》弗朗西斯著(侧重应用,经典)2、Forecasting and Time Series an applied approach,Bowerman & Connell(主讲Box-Jenkins(ARIMA)方法,附上了SAS和Minitab程序)3、《时间序列分析:预测与控制》 Box,Jenkins 中国统计《预测与时间序列》Bowerman抽样1、《抽样技术》科克伦著(该领域权威,经典的书。

【供应链金融风险研究国内外文献综述2300字】

供应链金融风险研究国内外文献综述1 国外研究现状从上世纪八十年代开始供应链金融的定义逐步被人们关注,国外涉及到供应链金融的思想观点与实践的应用相对成熟,对其定义的内涵外延比国内更为广泛,包括基于债券、股票等金融衍生商品这类动产质押业务风险研究、供应链金融的契约设计等方面。

M.Theodore,Paul D.Hutchison(2002)提出了供应链风险及其管理的相关概念,现金流管控是供应链金融领域十分关键的内容,供应链风控中的核心就是成功的现金流管控。

Cossin and Hricko(2003)基于企业违约概率与质押物价值,研究了具有价格风险商品作为质押的风险工具,质押物有助于进一步缓释银行信贷风险的作用。

Jimenez and Saurina(2004)研究了资产支持信贷中风险的影响因素包括质押物、银行(借款人)类型以及银行企业的关系等,合理的质押率有效缓释风险暴露,减少银行信贷损失。

Menkhoff,Neuberger and Suwanaporn(2006)的研究表明在不同国家,质押物对风险缓释的作用不同,质押物缓释风险的作用在发展中国家比发达国家显得更为重要。

Martin R(2007)系统分析了供应链资金流管控成本和危机、提升资金流效益的具体情况,指出根据供应链金融可让资金管理更加高效,但要严苛控制相应风险。

Lai and Debo(2009)对有资金局限的供应链存货中的相应问题进行了分析,通过库存契约设计能有效识别供应链上下游风险因子,从而提高供应链库存风险评价的准确性。

Hamadi和Matoussi(2010)根据剖析Logistic模型BP技术评估供应链金融风险的具体状况,表面三层BP神经网络模型在对上市房地产公司风险评价方面具有更好的准确性。

Qin and Ding(2011)分析了供应链金融领域里的风险变化现象,根据相应的风险迁徙模型,基于符合供应链金融条件,降低了借贷与信贷的风险。

An algorithmic introduction to numerical simulation of stochastic differential equations

There are a number of topics related to numerical SDEs that can be confusing, and can raise questions that are as much philosophical as mathematical. Within the limitations of accessibility, we have tried to explain clearly the issues surrounding
Our intended readership includes
• undergraduate and beginning graduate students in mathematics, statistics, physics, economics, finance, business, computer science, engineering and the life sciences, who, perhaps having been exposed to SDE models, wish to learn more about how to simulate them,
polished. Please feel free to email comments/lists of typos to: djh “at” .
Our intention in this book is to provide a punchy, accessible introduction to the numerical solution of stochastic differential equations (SDEs). With the aim of making this topic available to the widest possible readership, we have kept the prerequisites to a minimum. We assume only a competence in algebra and calculus at the level reached by a typical first year undergraduate mathematics class. Some familiarity with basic concepts from numerical analysis and probability is also desirable, but not absolutely necessary.

A Parallel Algorithm for solving BSDEs-Application to the pricing and hedging of American options


arXiv:1102.4666v1 [math.PR] 23 Feb 2011
Abstract We present a parallel algorithm for solving backward stochastic differential equations (BSDEs in short) which are very useful theoretic tools to deal with many financial problems ranging from option pricing option to risk management. Our algorithm based on Gobet and Labart (2010) exploits the link between BSDEs and non linear partial differential equations (PDEs in short) and hence enables to solve high dimensional non linear PDEs. In this work, we apply it to the pricing and hedging of American options in high dimensional local volatility models, which remains very computationally demanding. We have tested our algorithm up to dimension 10 on a cluster of 512 CPUs and we obtained linear speedups which proves the scalability of our implementation. Keywords : backward stochastic differential equations, parallel computing, MonteCarlo methods, non linear PDE, American options, local volatility model.

发动机爆震室气相化学反应机理及爆轰波性质的数值研究

第26卷第4期上盜丈爹家握(自然科学版)Vol.26No.4 2020年8月JOURNAL OF SHANGHAI UNIVERSITY(NATURAL SCIENCE EDITION)Aug.2020DOI:10.12066力.issn.1007-2861.2216开放科学(资源服务)标识码(OSID):发动机爆震室气相化学反应机理及爆轰波性质的数值研究饶飞雄,丁珏,翁培奋,李孝伟(上海大学上海市应用数学和力学研究所,上海200072)摘要:爆轰波结构中存在气体动力学和化学反应的非线性强耦合作用。

针对二十步基元反应模型和基于敏感性分析简化的九步反应模型,结合二维欧拉方程,采用Roe格式求解对流项、二阶迎风格式进行插值,对脉冲爆馬发动机爆馬室内H2/O2爆轰过程进行数值研究,获得了与爆轰经典CJ理论和实验结果较为一致的爆轰参数,表明采用带有化学反应的模型是可行的。

通过数值分析爆轰波胞格的精细结构,得出:相比于九步基元反应模型,二十步的基元反应模型能较为准确地描述三波点的碰撞和演化,更好地解释反应区与入射激波的解耦,而与马赫干强耦合现象。

基于二十步基元反应模型数值讨论了爆馬室中添加惰性气体Ar对反应的稀释作用,以及气相初始压强降低对氢氧混合气体爆轰性质的影响。

关键词:基元反应;敏感性分析;爆轰波胞格结构;三波点碰撞中图分类号:O381文献标志码:A文章编号:1007-2861(2020)04-0606-11Numerical study on gasous chemical reaction mechanism and detonation wave in the detonationchamber of engineRAO Feixiong,DING Jue,WENG Peifen,LI Xiaowei(Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai200072,China)Abstract:The strong nonlinear coupling of gas dynamics and chemical reactions exists in the structure of detonation wave.Based on sensitivity analysis,a20-step element reaction model and9-step reaction model are utilized with Euler equations.Roe scheme is used to solve the convective term and second order upwind format is used for interpolation.A numerical study on the detonation of H2/O2in a pulse detonation engine is conducted.Calculated detonation parameters agree with CJ theory and experimental data,which收稿日期:2017-03-08基金项目:国家自然科学基金资助项目(11472167)通信作者:丁珏(1973—),女,副研究员,博士,研究方向为两相燃烧、爆轰等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Procedia Engineering 29 (2012) 1979 – 19831877-7058 © 2011 Published by Elsevier Ltd.doi:10.1016/j.proeng.2012.01.247Available online at vailable online at 2012 International Workshop on Information and Electronics Engineering (IWIEE)Numerical Research on Stochastic Duffing SystemMingyu Wang a*, Fengying Su aa School of Information,Xi’an University of Finance and Economics,Xi’an 710100 ,ChinaAbstractIn this paper, the numerical simulation method is applied to investigate the nonlinear stochastic bifurcation systems. In order to obtain a better understanding of the relationship between the Lyapunov exponents and stochastic bifurcation, the Duffing system under stochastic external excitations is examined by way of the stochastic process simulation.The simulation results are compared with the results of some other analytical methods, such as the stochastic averaging method, the perturbation method and the Laplace asymptotic evaluation method. It is shown that these analytical methods are all valid if the intensity of the noise is small. And the numerical method can be applied to the case of arbitrary noise intensity. © 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Harbin University of Science and Technology Keywords: nonlinear stochastic systems; Duffing system; Lyapunov exponents; numerical simulation1.IntroductionConsider the deterministic dynamic system described by following equation 0(,),(0)n x f x x x R α==∈& (1)where 12(,,)T r r R αααα=∈L is parameter vector, and f is a n-dimension nonlinear function,suppose α is disturbed by noise, then the corresponding dynamical equation can be described by the stochastic differential equation* * Corresponding author. Tel.: +86-029-********. E-mail address : wmyufe@.1980 Mingyu Wang and Fengying Su / Procedia Engineering 29 (2012) 1979 – 19830(,()),(0)n x f x t x x R ασξ=+=∈& (2) where ()t ξ is r -dimension stochastic process. When the stochastic system (2) is at the condition of edge from one steady movement change into another steady movement, the small changes of the control parameters of the system can produce effect, so it is necessary to study the bifurcation problem of the nonlinear stochastic system first. In discussion of a deterministic system, we can use the changes of the topology for the phase track to describe the bifurcation phenomena. But the formulation of the topology for the phase track is no longer fit for the stochastic system. The stochastic response behavior of the process should be described by the probability density function. The structure changes of the corresponding steady-state probability density function can be used to describe the stochastic bifurcation phenomena [1,2,3]. Let s x be a steady solution of (2), in order to discuss the stability of solution and the random bifurcate problem, we get the following stochastic differential equations 0((),()),(0)ns v A x t t v v v R ξ==∈& (3) where Jacobi matrix(,)i j n nf A x x ξ×⎛⎞∂=⎜⎟⎜⎟∂⎝⎠ (4) the exponential growth rate of the solution of (3) is determined by the following Lyapunov exponents in probability 1: 001()lim ln (,)n v v t v t λ→∞= (5) The theory of Lyapunov exponents is an important tools in dynamical systems, starting with the pioneer work of Liao [4] and Oseledec [5]. We refer to [6,7,8] for the general theory of the Lyapunov exponents and its recent developments. One of the key problems of the research of stochastic bifurcation is how to calculate the largest Lyapunov exponents for nonlinear stochastic systems. The calculation of the largest Lyapunov exponent was provided by Khasminskii [9] at first. When the disturbance is small, the approximation of the largest Lyapunov exponent can be obtained by stochastic averaging method [10] or the perturbation method [11] . We adopt the numerical simulation method to calculate the largest Lyapunov exponent of the nonlinear stochastic systems.2.Numerical calculation of the Lyapunov exponent of the stochastic systemWe still consider the stochastic dynamic system described by the equation (2). 0(,()),(0)n x f x t x x R ασξ=+=∈& (2)for convenience, we assume 1()t ξ,2()t ξ,…, ()r t ξ are independent standard normal white noise process, and the corresponding linearized system is0,(0)n v Av v v R ==∈& (3) If 0σ=, then the system is deterministic. We will use the numerical simulation method to calculatethe Lyapunov exponents, especially the largest Lyapunov exponent of the stochastic system.1981Mingyu Wang and Fengying Su / Procedia Engineering 29 (2012) 1979 – 1983We know, at the given moment 0t , random process ()i t ξ equivalent as a random variable. We imagine in a "transient", 0()i t ξ value for random numbers, then in that "transient", the response of the system (2) and its linearized system can be obtain by numerical simulation method. If the random process is ergodic, and the random numbers can be given much enough, then the Lyapunov exponents can be calculated by numerical simulation method. Consider nonhomogeneous filter Poisson process()1()()N t n nn x t Y t t δ==−∑ (6) where N (t) is a Poisson process with arrival rate v , n Y is an i.i.d. sequence of random variables, and the mean value 0n E Y =, and independent to N (t). ()n t t δ− is Dirac δfunction, so the mean value and covariance function of X (t) are respectively as ()0X t μ= (7) 221121121(,)()()()()()XX K t t E Y v t t t I t t t δδ=−=− (8) if Poisson process is homogeneous, i.e. arrival rate v (t) is the constant, then 2112121(,)()()(,)XX XX K t t I t t t R t t δ=−= (9) So X (t) is white noise. If v (t) is big enough, then the distribution of white noise process is normal. Therefore the continuous white noise process can be instead of the homogeneous Poisson pulse process. Let the state equation of the random dynamic system (2) be12212(,,;)x x x F x x t α=⎧⎨=⎩&& (10) the corresponding linearized system be122122(,,;)v v v A x x t v α=⎧⎨=⎩&& (11) where α of (10) and (11) is the abbreviations of ()t ασξ+. So the calculation process of Lyapunovexponents is similar to the deterministic system. Just in the numerical simulation process, input a random number within the integrating process, i.e. in small enough time intervals input a random number with normal distribution, so as toii αασξ=+ (12) 3.Calculation exampleTo investigate whether the algorithm is valid, we will use the algorithm to calculate the Lyapunov exponents of the Duffing system under stochastic external excitations and the results are compared with1982 Mingyu Wang and Fengying Su / Procedia Engineering 29 (2012) 1979 – 1983the results of some other analytical methods, such as the stochastic averaging method, the perturbation method and the Laplace asymptotic evaluation method. Consider the Duffing system described by following equation 3cos()x cx x x F bt +++=&&& (13) System (13) may occur symmetrical rupture bifurcation, period-doubling bifurcation and even chaos movement when external excitations change. Now let c=0.1, b=0.95, and amplitude F is disturbed by noise, then the corresponding dynamical equation can be described by following equation3(())cos()x cxx x F t bt σξ+++=+&&& (14) where ξ(t) is unit normal white noise process. Fig. 1 and Fig. 2 are the curve of the largest Lyapunov exponent with the change of 2F .Fig. 1 The largest Lyapunov exponent with σ=0 Fig. 2 The largest Lyapunov exponent with σ=0.1Fig 3 and Fig 4 show that the Lyapunov exponent has cardinally identical trends in the circumstances of the less noise and no noise intensity. But it is different for the amplitude of the scope of different excitation effect.Fig. 3 The largest Lyapunov exponent with σ=0.1 Fig. 4 The largest Lyapunov exponent with σ=0.1Fig. 3 is the partial enlargement of the figure 4 when F 2 changes in 1126~1128. It can be seen that the effect of noise is to move the bifurcation point from 1126.795 to 1126.25. And the stability and trend of the system before or after bifurcation is consistent with no noise. But when F 2 is in other variation area, noise not only can make drift bifurcation point occurs, the system can be made from stable to unstable, such as F 2 changes in nearby 1136 (see Fig. 4). Or the system is made from unstable into stable, such as F 2 changes in nearby 1139.65 F2 (see Fig. 5).1983 Mingyu Wang and Fengying Su / Procedia Engineering 29 (2012) 1979 – 1983Fig. 5 The largest Lyapunov exponent with σ=0.1The similar conclusions can also be obtained if we study the incentive frequency of noise disturbance.4.ConclusionFor stochastic system, we can not determine the precise value of the Lyapunov exponents. So the stochastic averaging method, the perturbation method and the Laplace asymptotic evaluation method can usually be used to get approximate value of the Lyapunov exponents. But these method are no longervalid if the intensity of the noise is not small. In this paper, the numerical method for computing the Lyapunov exponents of the nonlinear stochastic systems is presented by way of the stochastic process simulation. It is shown that the numerical method can be applied to the case of arbitrary noise intensity.References[1] Horsthemake, W and Lefever, R. Noise-Induced Transitions. Berlin: Springer-Verlag. 1984 .[2] Zhu Weiqiu. The Probability Density Functions of the Stationary Response of Certain Classes of Nonlinear Systems to Stochastic Excitation. Acta Mechanica Sinica. 1991; 23(1):92-102 (in Chinese).[3] Rong Haiwu, Wang Xiangdong, Xu Wei et al. On double-peak probability density functions of a Duffing oscillator undernarrow-band random excitations. Acta Physica Sinica. 2005; 54(6):2557-2561 (in Chinese).[4] Liao S T. Certain ergodic preperties of a differential systems on a compact differentiable manifold. Acta Sci Natur Univ Pekinensis. 1963; 9:241-265, 309-326.[5] Oseldec VI. A Multiplicative Ergodic Throrem Lyapunov Characteric Numbers for Dynamical Systems. Trans. Moscow.Math. Soc., 1968; 19:197-231.[6] Arnold L. Lyapunov Exponents of Nonlinear Stochastic Systems. Proc. IUTAM, Nonlinear Stochastic Dynamic Engineering Systems. Innsbruck, Austria. F. Ziegler, G.I. Schuller (Eds.), Berlin: Springer-Verlag. 1987; 181-201.[7] Barreira L, Pesin Y. Lyapunov Exponents and Smooth Ergodic Theory. University Lecture Series 23, Providence, RI: AmerMath Soc, 2002.[8] Zhu Yujun, Zhang Jinlian. Lyapunov Exponents for continuous random transformations. Science China Math, 2010;53(2):413-424.[9] Khasminskii R Z. Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems. Theory Prob. Appl., 1967; 12:144-147.[10] Stratonovitch R L. Topics in the Theory of Random Noise, Gordon and Breach, Vol.1, 1963, Vol.2, 1967.[11] Arnold L Papanicolaou G and Wihstutz V. Asymptotic Analysis of the Lyapunov Exponent and Rotation Number of the Random Oscillator and Applications. SIAM J. Appl. Math. 1986; 46(3):427:450.。

相关文档
最新文档