交通科技大赛终稿

交通科技大赛终稿
交通科技大赛终稿

交通科技大赛终稿

第一部分:绪论

1.1设计背景

石漠化是土地退化的一种极端形式,西南地区是我国遭受石漠化最为严峻的地区,也是我国石漠化治理的重点地区,缺水、少土和土质贫瘠是造成土地石漠化的要紧缘故,专门是今年遭遇百年一遇的洪涝使石漠化更加严峻,严峻旱情导致西南5省6130多万人受灾,目前,部分旱区绝收后面临口粮危机。这场灾难还出现出蔓延和加剧的态势,面对如此一场重大的自然灾难,我们一方面要考虑采取切实有效的方法施救,另一方面,我们更应该从长远的角度来考虑21世纪中国的进展,从全然上遏止生态环境危机的蔓延。大规模收集自然界的雨水也应该成为我们关注的新技术。

图1今年石漠化地区洪涝时土地的开裂情形

表面上看来我国石漠化地区的水资源比较丰富,然而由于石漠化地区的专门的地势结构,夏、秋季节大量白花花的雨水流走,专门是公路上的雨水.如果我们能够在公路收集雨水技术上有新的突破,把这些雨水收集起来,在洪涝的时候这些收集的雨水对缓解供水压力就会起到不可估量的作用。

图2石漠化地区大量雨水流走的情形

公路雨水的收集利用不仅仅解决的是水的咨询题,他能够解决路面积水给交通造成的拥堵、事故、公路的破坏等咨询题。对水土流失、河水污染等咨询题也有一定的缓解作用。

图3 石漠化地区公路路面积水对交通造成的阻碍

图4 雨水对公路的破坏

1.2石漠化地区雨水收集量分析

假设本系统设计的公路全长为73.5公里,双向四车道,路幅为L=24米,则其积水面积为A=1764000m2,以贵州省1998年~2008年5~8月平均月降雨量150.86mm为参考数据,则该高速公路的月集水量可达Q0=266117.04 m3。考虑到路面收集雨水的损耗,设收集率为Ia=80%。Qi= IaQ0=26611 7.04×80%=212893.63 m3,即212893.63吨。

1.3国内外雨水收集研究进展

国外有专门多国家差不多开展了雨水利用工程,近20年来,美、法、德、日、澳等经济发达、都市化进程进展较早的国家,均将都市雨水资源利用作为解决都市水源咨询题的战略措施推广。

日本最早实施“雨水利用”工程。东京都墨田区把降到各家屋顶的雨水通过导水管收集到水箱中,然后用于冲厕所、浇庭园和洗车等。

德国Ludwigshafen差不多运行十年的公共汽车洗车工程利用1000 m2屋面雨水作为要紧的冲洗水源;法兰克福Possmann苹果轧汁厂将绿色屋面雨水作为冷却循环水源等。

从国内外来看,开发雨水作为一种水源还没引起人们的足够重视。尽管国外有许多收集雨水的成功范例,然而他们都只局限于屋面雨水收集或者都市道路雨水收集,没有考虑到公路雨水收集也是一个专门好的场所。

目前,就国内来讲,我国自上世纪90年代起,北京、上海、南京等都市开始结合自身情形相继开展雨水资源利用的研究和应用,然而该技术并没有大面积的推广。

1.4设计目的

本系统设计的目的:确实是把公路的雨水收集起来,用来配合公路的沿线绿化带的建设,例如灌溉、洗车、公路养护等。

1.5可行性分析

一方面,西南地区位于东亚大陆的季风区内,气候类型属中国亚热带高原季风潮湿气候,常年雨量充沛,雨水充沛是西南地区的一个要紧的气候特点,这是我们能不能收集雨水的一个先决条件。

另一方面,随着西部大开发战略的实施,西南地区的公路建设迎来了黄金时期。各省都在加大对自己的基础设施建设,专门是交通方面的建设。西南地区公路的快速进展为本系统设计的可行性提供了保证。

第二部分:公路雨水收集利用系统设计

2.1设计思路

我们的设计思路是提供一种实现公路雨水收集再利用系统,包括公路面层、防渗层、公路垫层、集水沟、可置换的初级过滤系统、透水渗透填料、反滤积物、横向排水管、纵向排水管、蓄水池。其面层即为公路的表层,其与公路垫层之间为防渗层;公路垫层位于地层土壤以上,其上为防渗层,由防水材料制成,;在上述三层结构两侧,沿公路延伸方向挖有深沟,在该深沟内的地层土壤表面以及公路垫层的断面铺设有防渗层,该防渗层与上述公路垫层与可渗路面之间的防渗层连为一体;同时在深沟底部沿公路延伸方向设置有纵向排水管,在公路集水沟上设计可置换的初级过滤系统,能操纵路面带来的树叶、垃圾、油类和悬浮固体等污染物,纵向排水管周围用反滤织物填充,反滤织物上方为透水填料,透水填料表层为集水沟。沿该纵向排水管延伸方向每隔一定距离连接一个与之交叉相通的横向排水管,该横向排水管伸出深沟以外,横向排水管的出水端连接到带有u型管的蓄水池。

可置换的初级过滤系统具有过滤、截污功能,而且能够多次使用。本系统还能有效地操纵雨水对土壤及地下水的污染。

2.2

附图讲明

下面结合附图和具体实施方式对本简易装置作进一步的详细讲明。附图所示为本简易装置的横断面图,由于横断面对称,故只显示一侧。

图5 石漠化地区公路雨水收集系统总体图

图中所示标号分不为:

1、可置换初级过滤系统

2、集水沟

3、透水渗透填料

4、反滤积物

5、纵向排水管

6、横向排水管

7、带有u 型管的蓄水池

8、面层

9、放水层 10、垫层

为了更好地讲明本系统的实施方式,我们做了挖方和填方的断面图

图7挖方断面图

填方断面图

1、可置换初级过滤系统

2、集水沟

3、透水渗透填料

4、反滤积物

5、纵向排水管

6、双向横向排水管

7、面层

8、防渗层

9、垫层

2.3本系统优点 2.

3.1纵向排水管

在深沟底部延公路延伸方向设置有纵向排水管。在该纵向排水管的管体上有小孔;纵向排水管通常采纳聚氯乙烯PVC 塑料管和聚乙烯PE 塑料管;纵向排水管管壁上方等间距(120°o)布设3排槽口或孔口,其开口总面积应为42cm2以上(可设直径10mm 、间距50mm 的小孔,每束每延米20个孔)。纵向排水管管径按设计流量由水利运算确定,通常在在70-150mm 内选用。

纵向排水管的埋设深度应保证不被车辆或施工机械压裂,并应超过当地的冰冻深度。在非冰冻地区,新建路面时,排水管管底常与防渗层底面

(如图8)所示。

图8 纵向排水管断面图

2.3.2横向排水管和反滤织物

双向横向出水管选用不带槽或孔的聚氯乙烯或聚乙烯塑料管,管径与排水管相同。其间距和安设位置由水利运算并考虑邻近地面高程和公路纵横断面情形确定,一样在50m-100m 范畴内选用。出水管的横向坡度不宜小于5%,横向排水管的端头通过半径不小于30cm 的90°弯管与排水管相接,出水口的下方应铺设水泥混凝土防冲刷垫板。埋设出水管所开挖的沟,须用低透水材料回填。

出水管外露管口用镀锌铁丝网或格栅罩住,以防杂物、植物等侵入,同时设置防逆水阀,防止水回流。

在上述纵向排水管周围用反滤积物(土工布)填充水填料的底面和外侧围以反滤织物(土工布),以防垫、基层和路肩内的细粒侵人而堵塞填料间隙或管孔。反滤织物可选用由聚醋类、尼龙或聚丙烯材料制成的无纺织物,能透水,但细粒土不能随水一起透过。土工织物可采纳无纺土工布,其单位面积质量宜为300g/cm2~500g/cm2,我们通过试验得反滤积物性能要求如表1所示。

表1 反滤积物 质量 (N/m 2)

握持强度 (N )

撕裂强度 (N )

顶破强度 (N )

刺破强度 (N )

O 95等效 孔径(mm )

渗透系数(cm/s )

≥300 ≥700 ≥250 ≥1350 ≥250 ≤0.21 ≥0.05

2.3.3透水填料和集水沟

关于透水性水泥稳固碎石混合料,间隙率应≤20%,有效孔隙率应≤1 5%,渗透系数应≤1500m/d,7天浸水抗压强度≤3.5MPa。集料与水泥的质

量比可在9.0:1~10.5:1的范畴内选用,水泥用量≤160kg/m(实际用量

由配比设计定),通过孔隙率、渗透系数和抗压强度试验后确定混合料配比。

粗集料最大粒径不大于40mm,粒径4.5mm以下的细粒含量不超过1 6%,2.36mm以下的细粒含量不超过6%,为幸免带水排水管被堵塞,透水

填料3在通过率率为85%时的粒径应比纵向排水管5的槽口宽或孔径口直

径大1.0~1.2倍。透水性水泥稳固碎石排水基层的集料级配以(表2)的级

配为参考级配进行室内材料组成设计,下表是我们试验透水性水泥稳固碎

石建议级配。

表2 透水性水泥稳固碎石建议级配

粒径

31.5 26.5 12.5 4.75 2.36 0.075 (mm)

100 95~100 25~60 0~10 0~5 0~2

通过率

(%)

透水填料上方为集水沟,集水沟顶部的高度略低于公路面层表面。

集水沟的内侧边缘可设在行车路面边缘处,有时为了排水管被施工机械压

裂,或者幸免露肩铺面受集水沟沉降变形的阻碍,必要时将集水沟向外侧

移出60cm~90cm。

集水沟底面的最小宽度,对新建路面,不应小于30cm;对改建路面,

应能保证排水管两侧各有至少3cm宽的透水填料其间距和安全位置由水利

运算并考虑临近地面高程和公路纵横断面情形而定,一样在50~100cm范畴类选用。

在挖方路段坡坡度按土质类不采纳1:1.0-1:1.5,梯形集水沟的底宽和深度不应小于0.4m。

受条件限制而需采纳矩梯集水沟形横断面时,应在顶面加带槽孔的混凝土盖板,这种情形要紧关于挖方路段。

可置换初级过滤系统周围的截水沟用防渗层铺设。

2.3.4可置换的初级系统

所述的可置换初级过滤系统,能操纵路面带来的树叶、垃圾、油类和悬浮固体等污染物。

所述的初级可置换系统是由1-2mm直径的不锈钢编织而成的,栅空5-8mm,其形状为圆角的长方形,其大小由水利运算确定,滤料采纳洁净、坚硬而耐久的碎石或卵石,关于碎石其压碎值不应大于30%,最大粒径可为4-5cm,粒径4.75mm以下细料的含量不应大于10%。

所述的初级可置换系统确实是指在雨后能够把该系统拿出来,把里面的浮渣去掉,然后再次使用,里面放置碎石,不仅能更好地过滤公路路面带来的树叶、垃圾、悬浮固体等污染为,还能够节约本系统的成本,同时能够就地取材。

可置换的初级过滤系统边缘应与集水沟表面平齐。

2.3.5带u型管的蓄水池

所述的蓄水池包括:可移动的盖板、u型管、冲刷垫板、排水管、水廊道、接水槽、沉水池、抽沙泵和抽水泵,u型管设在距离蓄水池底部不高的外墙上,排水管设也设在蓄水池的外墙上,如此能把余外的雨水排走,幸免造成对蓄水池的破坏,在蓄水池底部建立矮墙,该矮墙将蓄水池分隔成两个流水廊道。在矮墙的两侧有水泥混凝土做成防冲刷垫板,或出水口的下方的蓄水池表面进行浆砌片石防护,应保证出水口的下方即为防刷垫板。防冲刷垫板设置在蓄水池底部的表面。

所述的蓄水池带有u形管,目的确实是能容易测出蓄水池里德水位,为不锈钢制成,其管径大小在1.5cm-2cm内选用

所述的带

图蓄水池俯视断面图

1蓄水池处 6板

2.3.6

集水沟输送系统储存系统

净化系统

收集系统

图7 雨水收集流程图

实例1要紧用于挖方路段,要紧是在地下建立蓄水池,蓄水池在地下的深度要要考虑水压咨询题,为了更好地排水和排沙,抽水泵连接沉水池,抽沙泵连接沉水池;或者抽沙泵设置在沉沙池底部,抽水泵设置在沉沙池内离底部一定高度。

实例2要紧用于填方路段,排沙管道连接沉水池;或者排沙管设置在沉沙池底部,排水管设置在沉沙池内离底部一定高度。,蓄水池在地面的高度要按照实际的水压来确定。

2.3.7实例评判

实例1在地下建立蓄水池,能加大工程量,成本比实例2相应地增加,在修建时,还要考虑到蓄水池里的水结冰时,造成蓄水池的空间扩大,这时会对公路的结构造成破坏,建立蓄水池时应在蓄水池的空间预留一定的位置,实例1所述的蓄水池应尽量建在挖方边坡高于路面2m之内,如此能减少工程量,同时能更好地对蓄水池的结构进行爱护,同时实例1的蓄水池的材料要求比实例2高,其可移动盖板承担的荷载比实例2高得多。

实例1能节约用地,同时实例1安全性比实例2的要好。

实例2是地上建立蓄水池,要考虑蓄水池的抗冻,其底部应尽量超过当地的冰冻深度。同时实例2修建蓄水池要占用大量的土地,会加快公路两旁的土地资源紧缺步伐,其安全性实例1差。

2.3.8本系统较其他系统的创新之处,下要用与挖方路段,考虑到水压咨询题,蓄水池要紧建在

经对现有的技术文献检索发觉。申请专利号200620056718,名称为:一种实现雨水收集再利用的公路结构.该结构包括纵向排水管、横向排水管、集水沟、透水填料、反滤积物。该结构不足之处在于;1)该结构尽管提供了一种实现雨水收集再利用的公路结构,然而没有提出收集雨水再利用的设想,它只包括了收集系统和输送系统两部分,没有净化系统和蓄水系统;2)该结构提供了一种可置换的初级过滤系统,能有效过滤树叶、垃圾、悬浮颗粒等污染物,如此能有效地防止这些污染物侵人而堵塞填料间隙或管孔

2.3.9本系统的不足之处

本系统尽管有较多的创新之处,但依旧存在着不足之处:1)水中废油的含量没有得到有效地处理,一些设备在公路现有的条件下容易丢失;

2) 如果是强降雨,那么有部分雨水将得不到有效地收集。,下要用与挖方路段,考虑到水压咨询题,蓄水池要紧建在

5;

可置换初级过滤系统

3.1设计可置换初级系统的渗入量

图 本系统优化设计的路面情况

汇水面积和径流系数

设可置换初级系统间距为L,

两个出水口之间的公路的汇水面积为

F=L×11.25×10-6km2

由附表4,查得沥青混泥土路面径流系数为¢=0.95

汇流历时

设汇流历时为40min

设计重现期

按公路的重要程度,由附表2,取设计重现期为5年

降雨强度

按公路所在地区,由JTJ018~97公路排水设计规范,查得该地区5年重现期l0min降雨历时的降雨强度为q5,10=2.6mm/min。由附表3,查得该地区5年重现期时的重现期转换系数为Cp=1.0。,由JTJ018~97公路排水

设计规范,查得该地区的60min 降雨强度转换系数为C60=0.45,再附表6查得40min 降雨历时转换系数为C5=0.55,因此,按式

Q=cPct q5.10

式中 q5,10——5年重现期和l0min 降雨历时的标准降雨强度(mm /min);

cP ——重现期转换系数,为设计重现期降雨强度4。同标准重现期降雨强度4的比值(qp/q5);

ct ——降雨历时转换系数,为降雨历时t 的降雨强度qt 同10min 降雨历时的降雨强度q10的比值(qt/ q10);

可运算得到降雨强度为 q=1.0×0.55×2.6=1.43mm/min 设计径流量 按下式运算确定: Q=16.67¢qF

式中 Q ——设计径流量(m3/s);

q ——设计重现期和降雨历时内的平均降雨强度(mm/min) ¢——径流系数 F ——汇水面积(km2) 因此径流量为

Q=16.67× 0.95×1.43× 1× 11.25×10-6=0.000257m3/s 如选取出水口间距为L=1m ,则设计径流量为 Q=0.000251×1=0.000257m3/s

如果设计可置换初级系统的渗入率为Ia=0.85 Qi= Q ×Ia=0.000257×0.85=2.188×10-4 m3/s

3.2横向排水管和纵向排水管的设计

排水管和出水管的排水量,可按满宁公式运算确定: Q0=vA

2

/13/2R n

1v i

式中 Q0——排水管或出水管的排水能力(m3/s ); v ——管内水流的平均流速(m/s ); A ——过水断面面积(m2);

n ——管壁的粗糙系数,PVC 塑料管取0.010; R ——水力半径(m );

i ——水力坡度,一样取用管的底坡,可取纵坡1.10%。 取管径d=0.24m ,则R=d/4=0.06m ,A=πd2/4

=0.0452 m2,v=1.607m/s ,满足JTJ018~97中规定的非金属管的最大流速为5m/s ,

则排水管泄水量

Q0=0.0452×1.607=0.0726m3/s

横向出水管间距取为L0m ,则排水管需要排泄的表面水渗入量相应为 L0=2QO/Qi = 2×0.0726/(2.188×10-4)=654m

以横向排水管的间距在600m 左右,排水管排水能力满足要求。因此,纵向排水管的管径为24cm ,纵向排水管的管径为可选用8cm 。

集水沟的最小宽度B=2×3+24=30cm ,满足JTJ018~97中规定截水沟的最小宽度不应小于30cm 。

3.3按表面水渗入量进行透水填料设计

可利用达西定律确定纵向每延米透水的泄水能力Q0: Q0=KbiA=Kbihh

式中 Q0——纵向每延米透水层排水量(m3/d/m ); K ——透水材料的渗透系数(m/d);

i ——渗流路径的平均水力坡度,当基层有纵坡iz 和横坡ih 时,水力坡度为合成坡度2

h 2z i i +;

ih ——透水层横坡

A ——纵向每延米透水层层的过水断面面积(m2),无纵坡时,A=h ,有 纵坡时,

i i h A h

= h ―透水层厚度(m)。

如所选透水材料的渗透系数为2000m/d ,则透水基层排泄设计渗人量所需的厚度为:

H=Qi/kbih=19.00/(2000×0.02)=0.472m

考虑到透水基层顶面的间隙有可能因面层施工而被堵塞,取透水基层的设计厚度为0.474m 。

如选用透水基层设计厚度为0.402m ,并设基层顶底面部分间隙被堵塞的深度约为0.02m ,基层的有效厚度为0.400m 。则透水材料所要求具有的渗透系数为

H=Qi/kbih =19.00/(0.400×0.02)=2375 m/d 3.4自由水在透水层的渗流时刻

渗入透水层的自由水在透水层内的渗流时刻为: s

v 3600L t s

=

渗流路径长度为: 2h

2z s i i 1B L +=

渗流速度为: 2

h

2z g

s i i k n 1v +=

式中 ng ——透水材料的有效间隙率。 t ——渗流时刻(h); Ls ——渗流路径长(M); Vs —— 渗流速度(m/s);

Kb ——透水材料的渗透系数(m/s); B ——透水材料的有效孔隙率。

按照试验段纵坡iz=1.10%,横向超高坡度ih=2%,透水性水泥稳固碎石有效间隙率取ne=15%,渗透系数Kb=2375m/d ,则渗流速度为: m/s

10195.4/404.361011.002.0237515.01

322-?==+??=d m v s

渗流路径长度为: m 839.1202.0011.0125.11L 2

2s =+?=

渗入透水层的自由水在透水层内的渗流时刻为:

h 850.0004195

.0360012.839

A =?=

按照JTJ018~97排水设计规范,渗入水在排水层内的最大渗流时刻不

应超过2h ,渗流路径长度不应超过45-60m 。经检验自由水在排水层内的渗流路径长度和渗流时刻均能满足设计要求。

3.5蓄水池的结构设计

蓄水池的间距设计;由以上算可得,蓄水池的间距应和横向排水管的间距一致,取L= 600 m 。

容积设计;由以上运算可得,在间距为600 m 时,每月能收集的雨水为 m3。要紧规格尺寸长5m ,宽5m ,深5m 。

结构设计;建筑材料:浆砌石池,需在拐角处采取防漏加固措施。池体由池底、池墙、池顶、顶盖组成。池底用浆砌石和混凝土浇筑。底部原状土夯实后,用75号水泥浆砌石,并灌浆处理,然后在其上浇筑10cm 厚c19混凝土。

井壁处理;在挖深到一定的深度(不超过2m,施工者踩上木蹬能进行井壁处理的操作时就要进行一次井壁处理,然后再进行下一步的施工,否则阻碍施工质量,并添加防渗剂。

第四部分:研究结论和展望

4.1本系统的要紧设计成果

本系统旨在收集公路路面雨水,实现了可连续进展和生态环境的改善,在提升人们生活的同时尽量减少能源白费,对操纵雨水渗透到地下污染和滞留、和净化回用雨水提供了可能性。

4.2本系统的创新之处

本系统的创新之处还在于:1)提供了一种实现雨水收集再利用的公路系统,包括收集系统、过滤系统、输水系统、回用系统四个部分;2)该结构提供了一种可置换的初级过滤系统,能有效过滤树叶、垃圾、悬浮颗粒等污染物,如此能有效地防止这些污染物侵人而堵塞填料间隙或管孔。3)本系统具有专门强的有用性,能够低成本、高效率地收集公路路面雨水。

附录1

附表1 沟壁或管壁的粗糙系数

沟或管类不n 沟或管类不n

塑料管(聚氯乙烯)0.010 土质明沟0.022 石棉水泥管0.012 带杂草土质明沟0.027 水泥混凝土管0.013 砂砾质明沟0.025 陶土管0.013 岩石质明沟0.035

铸铁管0.015 植草皮明沟(流速

0.035-0.050

0.6m/s)

波浪管0.027 植草皮明沟(流速0.050-0.090

1.8m/s)

沥青路面(光滑)0.013 浆砌片石明沟0.025 沥青路面(粗糙)0.016 干砌片明沟0.032

水泥混凝土路面(镘抹面)0.014 水泥混凝土明沟

(镘抹面)

0.015

水泥混凝土路面(拉毛)0.016 水泥混凝土明沟

(推测)

0.012

附表2 设计降雨重现期(单位:年)

公路等级路面和路肩表面排水路界内坡面排水

高速公路和一级公路 5 15

二级及二级以下公路 3 10

附表3 重现期转换系数(cp)

地区

重现期p(年)

3 5 10 15 海南、广东、广西、云南、贵州、四川东、湖

南、湖北、福建、江西、安徽、江苏、浙江、

0.86 1.00 1.17 1.27

上海、台湾

黑龙江、吉林、辽宁、北京、天津、河北、山

0.83 1.00 1.22 1.36

西、河南、山东、四川西、西藏

0.76 1.00 1.34 1.54 内蒙古、陕西、甘肃、宁夏、青海、新疆(非

洪涝区)

内蒙古、陕西、甘肃、宁夏、青海、新疆(洪

0.71 1.00 1.44 1.72

涝区*)

注:*洪涝区约相当于5年一遇10min降雨强度小于0.5mm/min的地区。

附表4 径流系数(¢)

地表种类径流系数(¢)地表种类径流系数(¢)沥青混凝土路面0.95 陡峻的山地0.75-0.90

水泥混凝土路面0.90 起伏的山地0.60-0.80

透水性沥青路面0.60-0.80 起伏的草地0.40-0.65 粒料路面0.40-0.60 平坦的耕地0.45-0.60

0.10-0.30 落叶林地0.35-0.60

粗粒土坡面和路

0.40-0.65 针叶林地0.25-0.50

细粒土坡面和路

硬质岩石坡面 0.70-0.85 水田、水面

0.70-0.80

软质岩石坡面

0.50-0.75

附表5 沟管水力半径和过水断面面积运算公式 断面形状 断面图

断面面积 水力半径(R)

矩 形

b h

bh A =

2h b bh R +=

圆 形 d

4

d A 2

π=

4d R =

半圆形

d

8

d A 2

π=

4d R =

附表6 表降雨历时转换系数(ct ) C 60

降雨历时t (min)

3 5 10 15 20 30 40 50 60 90 120 0.30 1.40 1.25 1.00 0.77 0.6

4 0.50 0.40 0.34 0.30 0.22 0.18 0.3

5 1.40 1.25 1.00 0.80 0.68 0.55 0.45 0.39 0.35 0.2

6 0.21 0.40 1.40 1.25 1.00 0.82 0.72 0.59 0.50 0.44 0.40 0.30 0.25 0.45 1.40 1.25 1.00 0.84 0.76 0.63 0.55 0.50 0.45 0.34 0.29 0.50 1.40 1.25 1.00 0.8

7 0.80 0.6

8 0.60 0.55 0.50 0.3

9 0.33

附录2

附表1 公路雨水收集的总体图

附表2 可置换初级系统俯视图附表3 蓄水池俯视图

相关主题
相关文档
最新文档