【数学】圆柱与圆锥单元易错题
(易错题)小学数学六年级下册第三单元圆柱与圆锥检测(有答案解析)(3)

(易错题)小学数学六年级下册第三单元圆柱与圆锥检测(有答案解析)(3)一、选择题1.学校学术报告厅内有5根相同的圆柱形立柱,柱子的高是4米,底面的周长是π米。
给这5根柱子刷油漆,每平方米用油漆0.4千克,一共需要油漆()千克。
A. 2πB. πC. 4πD. 8π2.把一个圆锥的底面半径扩大到原来的3倍,高不变,它的体积扩大到原来()倍。
A. 3 B. 9 C. 273.一个圆柱的展开图如图(单位:厘米),它的表面积是()平方厘米.A. 36πB. 60πC. 66πD. 72π4.如图是一个直角三角形,两条直角边分别是6cm和2cm,以较长边为轴,旋转一周所形成的立体图形的体积是()立方厘米.A. 25.12B. 12.56C. 75.365.把一个圆柱铸成一个圆锥体,它的()不变。
A. 体积B. 表面积C. 侧面积6.一个圆柱形水管,内直径是20厘米,水在管内的流速是40cm/秒,一分钟流过的水是()立方分米。
A. 30144B. 7536C. 753.6D. 3014.4 7.两个圆柱的底面积相等,高之比是2:3 ,则体积之比是()A. 2:3B. 4:9C. 8:27D. 4:6 8.一个圆柱形玻璃容器内盛有水,底面半径是r,把一个圆锥形铅锤浸没水中,水面上升了h,这个铅锤的体积是()。
A. πr2hB. πr2hC. πr39.一根圆柱形木料长 1.5m,把它截成3个大小完全一样的小圆柱,表面积增加了37.68dm2,这根木料的横截面积是()dm2。
A. 12.56B. 9.42C. 6.2810.正方体、圆柱和圆锥的底面积相等,高也相等,下面说法正确的是()。
A. 圆柱的体积比正方体的体积小一些B. 圆锥的体积是正方体体积的C. 圆柱的体积与圆锥的体积相等D. 正方体的体积比圆柱的体积小一些11.圆柱的底面半径和高都乘3,它的体积应乘()A. 3B. 6C. 2712.将圆柱的侧面展开成一个平行四边形与展开成一个长方形比()。
2023-2024学年人教版六年级数学下册圆柱与圆锥常考易错应用题训练(附参考答案)

2023-2024学年六年级下册数学圆柱与圆锥常考易错应用题训练1.一个圆柱体,如果把它的高截短4dm,它的表面积减少125.6dm²。
这个圆柱体积减少多少立方分米?2.一个正方体包装箱,从里面量棱长是4.1dm。
用它装一件底面周长是12.56dm,体积是62.8dm3的圆柱形玻璃器皿,能否装得下?3.乐乐将一个铁皮油桶在地上滚动一圈,量得其痕迹长12.56分米、宽6分米。
制作这个油桶至少需要铁皮多少平方分米?(桶口和盖忽略不计)4.把一块长10厘米、宽8厘米、高3.14厘米的长方体铁块完全浸没在一个盛有水的圆柱形玻璃容器内,容器的底面直径为20厘米,容器内的水面会上升多少?(已知水不会溢出)5.工地有一堆圆锥形沙土,底面周长是31.4m,高1.5m,把这堆沙土用渣土车运出工地,每辆渣土车每次运8m3,用一辆渣土车运出这些沙土,大约需运多少次?6.一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米7.节约用水是我们每个人的义务,学校的自来水管内直径为0.2分米,自来水的流速是每秒5分米,若忘记关上水龙头,一分钟将浪费多少升水?8.下图中,以红色线为轴,快速旋转后会形成一个立体图形,请求出这个立体图形的体积。
9.下面是一个圆柱的展开图,制作这样的一个圆柱至少需要铁皮多少平方分米?10.一个无盖的圆柱形铁皮水桶,底面直径是30厘米,高是50厘米。
(得数保留整数) (1)做这样一个水桶,至少需用铁皮多少平方厘米?(2)这个水桶最多能盛水多少升?11.一个圆锥形沙堆,底面周长是12.56米,高是1.8米,把这些沙铺在6米宽的公路上,如果沙后2厘米,可以铺多长?12.一个圆锥形沙堆,底面周长是37.68m,高是5m,用这堆沙在10m宽的公路上铺5cm 厚的路面,能铺多长?,做这个水桶至少13.一个无盖的圆柱形铁皮水桶,高为10分米,底面直径是高的25用铁皮多少平方分米?(得数保留整数)14.把一个高是64厘米的圆柱按照5:3的比截成了两个圆柱,截后的表面积比原来增加了484平方厘米。
六年级数学下册《圆柱和圆锥》易错题精选

1500立方厘米=(1500 )毫升=( 1.5 )升
圆锥的侧面展开图是一个(扇形),圆锥有(1)条高。
二、易错判断题
长方体中最多有4个面可能是正方形。
(×)
一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形。
(×)
如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱。
(×)
如果两个圆柱的侧面积相等,那么他们的底面周长也相等。
(×)
把一个圆柱的底面直径扩大2倍,高不变,那么它的侧面积也扩大2倍。
(√)
圆柱体的高越大,它的侧面积就越大。
( ×)
三、易错应用题
1.画出下面圆柱的展开图,并求出它的表面积。
(单位:厘米)。
【精品】圆柱与圆锥单元易错题

【精品】圆柱与圆锥单元易错题一、圆柱与圆锥1.看图计算.(1)求圆柱的表面积(单位:dm)(2)求零件的体积(单位:cm)【答案】(1)解:3.14×10×20+3.14×(10÷2)2×2=628+3.14×25×2=628+157=785(平方分米)答:圆柱的表面积是785平方分米。
(2)解: ×3.14×(2÷2)2×3+3.14×(2÷2)2×4= ×3.14×1×3+3.14×1×4=3.14+12.56=15.7(立方厘米)答:零件的体积是15.7立方厘米。
【解析】【分析】(1)圆柱的表面积是两个底面积加上一个侧面积,根据圆面积公式计算出底面积,用底面周长乘高求出侧面积;(2)圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式计算,用圆柱的体积加上圆锥的体积就是总体积。
2.计算圆锥的体积。
【答案】解:3.14×2²×15×=3.14×4×5=62.8(dm³)【解析】【分析】圆锥的体积=底面积×高×,根据圆锥的体积公式计算体积即可。
3.求圆柱的表面积和圆锥的体积。
(1)(2)【答案】(1)解:2×3.14×3×4+2×3.14×32=103.62(cm2)(2)解:【解析】【分析】(1)圆柱的表面积=圆柱的底面积×2+圆柱的侧面积,圆柱的底面积=πr2,圆柱的侧面积=圆柱的底面周长×高,圆柱的底面周长=2πr;(2)圆锥的体积=πr2h。
4.一根圆柱形木材长20分米,把它截成3段,表面积增加了12.56平方分米。
第三单元圆柱与圆锥易错点检测卷(单元测试)-小学数学六年级下册人教版(含答案)

第三单元圆柱与圆锥易错点检测卷(单元测试)-小学数学六年级下册人教版一、选择题1.底面直径是6m的圆柱形水池,它的占地面积是()2m。
A.21.98B.28.26C.56.52D.113.042.根据所给信息,下面图形可以用方程“1603x x+=”来表示的有()个。
A.4B.3C.2D.13.一段重20千克的圆柱体钢柱,把它锻造成与它等底的圆锥,这个圆锥的高和圆柱的高比较()。
A.圆锥和圆柱的高相等B.圆锥的高是圆柱的1 3C.圆锥的高是圆柱的3倍D.圆锥的高是圆柱的234.一个圆柱的侧面展开图是正方形,下面说法正确的是()。
A.底面周长和高相等B.底面直径和高相等C.底面半径和高相等D.以上都不对5.一个圆柱与圆锥等体积等高,已知圆锥的底面积是36平方厘米。
则圆柱的底面积是()平方厘米。
A.108B.12C.36D.96.如图,以左边所在的直线为轴,旋转360°后得到的立体图形是()。
A.B.C.D.二、填空题7.圆柱的底面半径和高都乘3,它的体积应乘( )。
8.底面周长是9.42cm,高10cm的圆柱,侧面积是( )cm2。
9.一根长5米的圆柱,截成3段小圆柱,表面积总和增加了12平方分米,原来圆柱的体积是( )立方分米。
10.一个圆柱,已知高增加1cm,它的侧面积就增加31.4cm2,如果高是12cm,这个圆柱的体积是( )cm3,把这个圆柱削成一个最大的圆锥体,削掉部分的体积是( )cm3。
11.一个三角形三个内角的度数比是1∶1∶2,则这个三角形有( )条对称轴;如果短边长6厘米,那么以它所在直线为轴旋转一周,形成的立体图形的体积是( )立方厘米。
12.有一个无盖圆柱形玻璃杯,底面周长是31.4厘米,高15厘米,这个玻璃杯的表面积是( )平方厘米,容积是( )立方厘米。
(玻璃厚度忽略不计)13.图1是某圆柱形饮料规格尺寸,把这样的12瓶圆柱状饮料装入纸盒中(紧密放置)如图2。
第3单元圆柱与圆锥易错点检测卷(单元测试)-小学数学六年级下册人教版(含解析)

第3单元圆柱与圆锥易错点检测卷(单元测试)-小学数学六年级下册人教版一、选择题1.把一块圆锥形的橡皮泥捏成与它等底的圆柱,这时高度是原来的()。
A.13B.34C.3倍D.无法确定2.一个圆柱和一个圆锥高的比是1∶4,底面积的比是2∶1,体积的比是()。
A.2∶1B.4∶3C.3∶2D.2∶33.如图,在一个底面半径是6cm的圆柱形容器中,放入一个底面半径2cm的圆锥形物体(完全浸没),水面上升了4m(水没有溢出),圆锥形物体的体积是多少?下面列式正确的是()。
A.3.14×22×4B.3.14×62×4C.314×62×4×13D.3.14×22×4×134.一个圆柱和一个圆锥的体积相等,高也相等,若圆柱的底面面积是12.56平方厘米,则圆锥的底面面积是()平方厘米。
A.4.18B.12.56C.37.68D.113.045.用一块长25.12厘米,宽18.84厘米的长方形铁皮,配上下面()圆形铁片正好可以做成圆柱形容器。
(单位:厘米)A.B.C.D.6.一个圆柱,它的侧面展开图是一个边长为18.84cm的正方形,这个圆柱的底面半径是()cm。
A.18.84B.6C.4.71D.3二、填空题7.一个圆柱体,沿着它的高切开,切面是一个边长为4cm的正方形,这个圆柱体的体积是( )3cm。
8.如图:一种压路机的前轮是圆柱形,轮宽2米,直径1米。
前轮滚动一周,前进了( )米,压过的路面的形状是( ),面积是( )平方米。
(π取3.14)9.如下图,把一个圆柱分成若干等份,拼成一个近似的长方体,长方体的宽是2dm,高是5dm,长方体的长是( )dm,圆柱的体积是( )3dm。
10.以如图所示中长方形ABCD的AB边为轴旋转一周,得到的图形是( ),它的体积是( )立方厘米。
11.等底等高的圆柱体和圆锥体积之差是4.8dm3,圆柱的体积是( )dm3。
第二单元圆柱与圆锥易错题综合自检卷(单元测试)-小学数学六年级下册苏教版

第二单元圆柱与圆锥易错题综合自检卷(单元测试)-小学数学六年级下册苏教版一、选择题1.圆柱的底面半径和高都扩大2倍,体积扩大()。
A.2倍B.4倍C.8倍2.正方体、圆柱和圆锥的底面积相等,高也相等,下面()的说法是正确的。
A.圆柱的体积比正方体的体积小一些B.圆柱的体积和圆锥的体积相等C.圆锥的体积是正方体体积的1 33.一段长是12dm、底面半径是3dm的圆柱形木料,把它锯成长短不同三小段圆柱形木料,表面积增加了()dm2。
A.28.26B.84.78C.113.044.如图所示,绕3cm这条边旋转一周,得到的圆锥的体积是()立方厘米。
A.50.24B.37.68C.150.725.一个圆柱形无盖水桶,它的底面直径是6分米,高是5分米,要做一个这样的水桶,至少需要()平方分米的铁皮。
A.122.46B.94.2C.565.26.一个圆柱的侧面积是50.24平方分米,底面半径是4分米,它的高是()。
A.2厘米B.2分米C.20米二、填空题7.一个圆柱的底面积是15平方分米,高是7分米,体积是( )立方分米。
8.一个圆柱形容器和一个圆锥形容器,圆锥的底面积是圆柱的一半,用圆锥形容器装满水倒入圆柱形容器中,倒4次正好倒满,已知圆柱形容器深6分米,则圆锥形容器深( )分米。
9.直角三角形的两条直角边分别是3厘米,4厘米。
若以其中一条直角边所在的直线为轴旋转一周,得到一个体积最大的圆锥,这个圆锥的体积是( )立方厘米。
10.一个圆柱形木块,下图是从上面和前面分别看到的图形。
这个圆柱的侧面积是( )平方分米,体积是( )立方分米。
11.一个正方体木块的棱长是4dm,把它削成一个最大的圆柱,这个圆柱的体积是( ) 3dm。
12.如图,容器内注入一些细沙,能填满圆锥,还能填部分圆柱(如图所示)。
若将这个容器倒立,则沙子的高度是( )厘米。
13.一块圆柱体木料,底面积是36平方厘米,高是6厘米,要把它削成一个最大的圆锥,这个圆锥的体积是( )立方厘米。
圆柱与圆锥易错题目(1)

圆柱与圆锥易错题目(1)一、圆柱与圆锥1.看图计算.(1)求圆柱的表面积(单位:dm)(2)求零件的体积(单位:cm)【答案】(1)解:3.14×10×20+3.14×(10÷2)2×2=628+3.14×25×2=628+157=785(平方分米)答:圆柱的表面积是785平方分米。
(2)解: ×3.14×(2÷2)2×3+3.14×(2÷2)2×4= ×3.14×1×3+3.14×1×4=3.14+12.56=15.7(立方厘米)答:零件的体积是15.7立方厘米。
【解析】【分析】(1)圆柱的表面积是两个底面积加上一个侧面积,根据圆面积公式计算出底面积,用底面周长乘高求出侧面积;(2)圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式计算,用圆柱的体积加上圆锥的体积就是总体积。
2.计算圆锥的体积。
【答案】解:3.14×2²×15×=3.14×4×5=62.8(dm³)【解析】【分析】圆锥的体积=底面积×高×,根据圆锥的体积公式计算体积即可。
3.一根圆柱形木材长20分米,把它截成3段,表面积增加了12.56平方分米。
这根木材体积是多少立方米?【答案】解:12.56÷4×20=62.8(立方分米)=0.0628(立方米)答:这根木材体积是0.0628立方米。
【解析】【分析】将圆柱形木材截成3段,增加了4个底面积,用增加的表面积除以4即可求出圆柱的底面积,然后用底面积乘高即可求出这根圆柱形木材的体积。
4.将一根底面直径是20厘米,长1米的圆木沿着直径劈成相等的两半。
每半块木头的表面积和体积是多少?【答案】解:1米=100厘米,表面积:3.14×(20÷2)2+[3.14×20×100]÷2+20×100=5454(平方厘米)体积:3.14×(20÷2)2×100÷2=15700(立方厘米)答:每半块木头的表面积是5454平方厘米,体积是15700立方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【数学】圆柱与圆锥单元易错题一、圆柱与圆锥1.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。
【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.2.一根圆柱形木材长20分米,把它截成3段,表面积增加了12.56平方分米。
这根木材体积是多少立方米?【答案】解:12.56÷4×20=62.8(立方分米)=0.0628(立方米)答:这根木材体积是0.0628立方米。
【解析】【分析】将圆柱形木材截成3段,增加了4个底面积,用增加的表面积除以4即可求出圆柱的底面积,然后用底面积乘高即可求出这根圆柱形木材的体积。
3.在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高1.5米.每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)【答案】解:圆锥的体积: ×[3.14×(4÷2)2]×1.5= ×1.5×12.56=6.28(立方米)这堆沙的吨数:1.7×6.28=10.676(吨)≈11(吨)答:这堆沙约重11吨。
【解析】【分析】这堆沙大约的重量=这堆沙的体积×每立方米大约的重量,其中这堆沙的体积=圆锥的体积=πr2h,得数要保留整数,就是把得出的数的十分位上的数进行“四舍五入”即可。
4.求圆柱体的表面积和体积.【答案】表面积:3.14×5×2×8+3.14×52×2=252.6+157=409.6(平方厘米)体积:3.14×52×8=3.14×25×8=628(立方厘米)答:圆柱的表面积是409.6平方厘米,体积是628立方厘米。
【解析】【分析】圆柱的表面积=2r2+2rh,体积=r2h,据此代入数据解答即可。
5.求下图(单位:厘米)钢管的体积。
【答案】解:10÷2=5(厘米);8÷2=4(厘米);3.14×(52-42)×100=3.14×(25-16)×100=3.14×9×100=28.26×100=2826(立方厘米).【解析】【分析】根据题意可知,这根钢管的体积=底面积×高,底面是一个圆环,根据圆环的面积S=π(R2-r2),据此先求出底面积,然后乘钢管的长度,即可得到这根钢管的体积,据此列式解答.6.(1)按1:3的比画出长方形缩小后的图形,按2:1的比画出直角三角形放大后的图形。
(每个小方格表示1cm2)(2)沿原来三角形的直角边旋转,可以得到一个圆锥,圆锥的体积最大是多少立方厘米?【答案】(1)(2)π×32×2=×3.14×9×2=3.14×3×2=9.42×2=18.84(立方厘米)答:圆锥的体积最大是18.84立方厘米.【解析】【分析】(1)原来的长方形长是6厘米,宽是3厘米,按1:3的比画出长方形缩小后的图形,缩小后的长方形长是2厘米,宽是1厘米,据此作图;原来的三角形的两条直角边分别是2厘米,3厘米,按2:1的比画出直角三角形放大后的图形,放大后的两条直角边分别是4厘米,6厘米,据此作图;(2)要求沿原来三角形的直角边旋转,可以得到一个圆锥,圆锥的体积最大是多少立方厘米,以直角三角形中较长的直角边为圆锥的底面半径,较短直角边为圆锥的高,据此应用公式:V=πr2h,据此列式解答.7.圆柱的底面半径和高都是2厘米,把它浸入一个均匀水槽内的水中,量得水位上升了4厘米.再把一个底面直径为6厘米的圆锥浸入水中,水位又上升了 4.5厘米.求圆锥的高.【答案】解:3.14×22×2÷4=3.14×4×2÷4=6.28(平方厘米)6.28×4.5×3÷[3.14×(6÷2)2]=3.14×27÷[3.14×9]=3(厘米)答:圆锥的高是3厘米。
【解析】【分析】将圆柱进入水中,水位上升了4厘米,那么据此可以计算出水槽的底面积,即水槽的底面积=圆柱的体积÷放入圆柱后水位上升的高度,圆柱的体积= πr2h,据此可以计算得出水槽的底面积,那么圆锥的体积=水槽的底面积×放入圆锥后水位上升的高度,然后根据圆锥的体积= πr2h,即可求得圆柱的高,据此代入数据作答即可。
8.一个底面直径为20厘米的圆柱形容器里,盛有一些水。
把一个底面半径为3厘米的圆锥形铅锤完全浸没在水中,水面上升0.3厘米,这个铅锤的高是多少厘米?【答案】解:3.14×(20÷2)2×0.3÷ ÷(3.14×32)=10(厘米)答:这个铅锤的高是10厘米。
【解析】【分析】圆锥的体积=上升的水面的体积,而上升的水面的形状是一个圆柱,故用圆柱的体积公式求出上升的水面的体积,公式为:V=πr²h。
最后求出这个铅锤的高:h=V÷÷S,或h=3V÷S(S是圆锥的底面积)。
9.有一个圆锥形沙堆,底面半径是10米,高是4.8米,把这些沙子均匀地铺在一条宽20米,厚40厘米的通道上,可以铺多长?【答案】 40厘米=0.4米3.14×102×4.8÷3÷(20×0.4)=502.4÷8=62.8(米)答:可以铺62.8米。
【解析】【分析】可铺的米数=圆锥的底面积×高÷3÷(宽×厚)10.压路机的滚筒是个圆柱,它的宽是2米,滚筒横截面半径是0.6米,如果滚筒每分钟滚动5周,那么1小时可压路多少平方米?【答案】解:1小时=60分0.6×2×3.14×5×60=18.84×60=1130.4(米)1130.4×2=2260.8(平方米)答:压过的路面是2260.8平方米。
【解析】【分析】1小时=60分钟,1小时可以压路的平方米数=滚筒的侧面积×每分钟滚筒滚动的周数×60,其中滚筒的侧面积=滚筒的半径×2×π×滚筒的宽,据此代入数据作答即可。
11.一个圆柱形游泳池,底面周长为62.8米,深2米。
(1)在池内侧面和池底抹上水泥,抹水泥的面积多少平方米?(2)水面离池口0.5米,这时池里的水有多少立方米?【答案】(1)解:62.8÷3.14÷2=10(米)3.14×10²+62.8×2=314+125.6=439.6(平方米)答:抹水泥的面积是439.6平方米。
(2)解:3.14×10²×(2-0.5)=314×1.95=612.3(立方米)答:这时池里的水有612.3立方米。
【解析】【分析】(1)用底面周长除以3.14再除以2求出底面半径,用底面积加上侧面积就是抹水泥部分的面积;(2)用底面积乘水面的高度即可求出水的体积。
12.(1)计算下面立体图形的表面积(2)计算下面立体图形的体积【答案】(1)244.92dm2(2)56.52m3【解析】【解答】解:(1)先计算出圆柱的半径:18.84÷3.14÷2=3dm;再计算圆柱的两个底面积:3×3×3.14×2=56.52dm2;接着计算圆柱的侧面积:18.84×10=188.4dm2;最后圆柱的表面积为:56.52+188.4=244.92dm2;(2)先计算出圆锥的半径:6÷2=3m;再计算圆锥的体积为:×3×3×3.14×6=56.52m3。
故答案为:(1)244.92dm2;(2)56.52m3。
【分析】圆柱的表面积=底面积×2+侧面积;圆锥的体积=×底面积×高。
13.解答.(1)有一张长为30分米,宽为20分米的长方形铁皮,在这张铁皮中截出一张最大的正方形铁皮,求这个正方形的面积.(2)如图1,在第(1)题中截得的正方形铁皮的四个角上分别剪去边长为5分米的小正方形,做成一个无盖的长方体容器(盖子用剩余的铁皮做成),求这个容器的容积(铁皮的厚度忽略不计).(3)现有一辆油罐车,如图2所示,用于储油的罐体内部是一个圆柱,圆柱的底面直径为12分米,长为42分米,现要把一满罐的油分别装在若干个像第(2)题这样的容器中,则至少需要几个这样的容器.【答案】(1)解:20×20=400(平方分米);答:这个正方行的面积是400平方分米(2)解:(20﹣5×2)×(20﹣5×2)×5,=100×5,=500(立方分米);答:这个容器的容积是500立方分米(3)解:3.14×(12÷2)2×42÷500,=4747.68÷500,≈10(个);答:至少需要10个这样的容器【解析】【分析】(1)在一张长30分米,宽20分米的长方形纸上剪下一个最大的正方形,最大的正方形边长为20分米,再根据正方形的面积公式计算即可.(2)折成的长方体容器的长、宽、高分别为(20﹣5×2)分米、(20﹣5×2)分米、5分米,根据长方体的体积=长×宽×高,将数据代入公式即可求出这个容器的容积.(3)用圆柱形油罐的容积除以一个长方体容器的容积,即所需容器的个数,据此解答.此题考查的知识点:长方形内最大正方形的边长与长方形的宽相等、长方体和圆柱的体积公式.14.如图是一个无盖圆柱形塑料桶示意图(单位:分米)(1)画出它的侧面展开图的示意图;这个展开图的面积是________平方分米.(2)若桶的厚度不计,用它来装水,最多能装________升(得数用“去尾法”保留整升)【答案】(1)62.8(2)62【解析】【解答】解:(1)圆柱的底面周长:3.14×2×2=12.56(平方分米),圆柱的侧面积:12.56×5=62.8(平方分米);圆柱的侧面展开后,如下图所示:(2)3.14×22×5,=3.14×4×5,=12.56×5,=62.8(立方分米),≈62(升);答:圆柱的侧面展开后的面积是62.8平方分米,这个桶最多能装水62升.故答案为:62.8,62.【分析】(1)由圆柱的侧面展开图的特点可知:圆柱的侧面展开后是一个长方形,长方形的长等于等于圆柱的底面周长,宽等于圆柱的高,利用长方形的面积公式即可求解;(2)此题实际上是求圆柱的容积,利用圆柱的体积V=Sh,即可求出这个塑料桶的容积.此题主要考查圆柱的侧面展开图的特点以及圆柱的体积的计算方法.15.阅读材料,回答问题:材料一:张师傅用如图所示的两块铁皮制造了一个无盖的最大圆柱体(铁皮厚度和接头忽略不计),做为某小学简易水池.材料二:某小学四月份平均每天用水一池.材料三:如图折线统计图是表示自来水厂规定的月用水量与水费总价的关系.(1)某小学四月份用水________吨(每立方米水重1吨).(2)从折线统计图中可以看出月用水量少于或等于________吨,每吨按________元收费,多于________吨的,其多出的吨数每吨按________元收费.(3)某小学四月份应交水费多少元?(写出计算过程)【答案】(1)188.4(2)100;2;100;3(3)解:4月份应缴的水费:100×2+(188.4﹣100)×3,=200+265.2,=465.2(元);答:4月份应交水费465.2元.【解析】【解答】解:(1)水池底面半径:6.28÷2÷3.14=1(米),水池体积:3.14×12×2=6.28(立方米),一水池水的重量:6.28×1吨=6.28(吨);4月份的用水量:6.28×30=188.4(吨);(2)由图意可知:月用水量少于或等于100吨,每吨的价格是200÷100=2(元);多于100吨的,多出部分的价格是[(500﹣200)÷(200﹣100)]=300÷100=3(元);故答案为:(1)188.4;(2)100,2,100,3.【分析】(1)由题意可知:此简易水池的底面直径应等于正方形铁皮的边长,这样才能保证做成的圆柱体最大;利用圆柱体的体积公式即可求出此水池的体积,进而求得一水池水的重量;4月份的天数是30天,则可以求得4月份的用水总量;(2)由图意可知:月用水量少于或等于100吨,每吨的价格是(200÷100)元;多于100吨的,多出部分的价格是[(500﹣200)÷(200﹣100)]元;(3)把4月份的用水量分成小于或等于100吨和多于100吨两部分,分别用两种价格计算出各自的费用,加在一起,即为4月份应缴的水费.解答此题的关键是:求出水池的体积,再计算每天的用水量;多出部分水的价格应是多出的总价除以多出的水量;要求4月的水费,要按照两种价格计算.。