高一上学期数学期中考试试题及答案

合集下载

湖南省长沙市2024-2025学年高一上学期11月期中考试数学试卷含答案

湖南省长沙市2024-2025学年高一上学期11月期中考试数学试卷含答案

2024-2025学年湖南省长沙市百强校(YZ)高一上期中考试数学试题❖一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合{|21}A x x =-<≤,{|03}B x x =<≤,则A B = ()A.(]2,3- B.()2,0- C.(]0,1 D.(]1,3【答案】C 【解析】【分析】由交集的运算法则求解即可.【详解】解:{}{}2103A x x B x x =-<≤=<≤ ,,{}01A B x x ∴⋂=<≤,故选:C.2.函数1()2f x x =+-的定义域为()A.2|2}3{x x x >≠且 B.2{|2}3x x x <>且C.3{|2}2x x ≤≤ D.3{|2}2x x x ≥≠且【答案】D 【解析】【分析】利用函数有意义,列出不等式组求解即得.【详解】函数1()2f x x =+-的意义,则230x -≥且20x -≠,解得32x ≥且2x ≠,所以原函数的定义域为3{|2}2x x x ≥≠且.故选:D 3.已知()()5,62,6x x f x f x x -≥⎧=⎨+<⎩,则()4f =()A.3 B.2C.1D.0【答案】C 【解析】【分析】根据分段函数解析式列式求解即可.【详解】由题意可得:()()46651f f ==-=.故选:C.4.设x ∈R ,则“2x ≤”是“11x -≤”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】从充分性和必要性两个方面考虑.【详解】先说充分性:当2x ≤,比如2x =-,此时:12131x -=--=≤不成立,所以“2x ≤”不是“11x -≤”的充分条件;再说必要性:11x -≤⇒111x -≤-≤⇒02x ≤≤,所以2x ≤成立,所以“2x ≤”是“11x -≤”的必要条件.故“2x ≤”是“11x -≤”的必要不充分条件.故选:B5.若不等式210x tx -+<对一切132x ⎛⎫∈ ⎪⎝⎭,恒成立,则实数t 的取值范围为()A.52t ≥B.52t >C.2t ≥D.103t ≥【答案】D 【解析】【分析】首先分离参数,然后结合对勾函数的性质求得函数的最值,从而可确定t 的取值范围.【详解】因为不等式210x tx -+<对一切132x ⎛⎫∈ ⎪⎝⎭,恒成立,所以211x t x x x+>=+在区间132⎛⎫ ⎪⎝⎭,上恒成立,由对勾函数的性质可知函数1y x x =+在区间112⎛⎫⎪⎝⎭上单调递减,在区间()13,上单调递增,且当12x =时,15222y =+=,当3x =时,110333y =+=,所以1103x x +<,故103t ≥,故选:D6.若实数,x y 满足221x y xy ++=,则x y +的最大值是A.6B.3C.4D.23【答案】B 【解析】【分析】根据22x y xy +⎛⎫≤ ⎪⎝⎭,将等式转化为不等式,求x y +的最大值.【详解】()22211x y xy x y xy ++=⇒+-=,22x y xy +⎛⎫≤ ⎪⎝⎭,()2212x y x y +⎛⎫∴+-≤ ⎪⎝⎭,解得()2314x y +≤,x y ≤+≤x y ∴+故选B.【点睛】本题考查了基本不等式求最值,属于基础题型.7.已知函数()1f x +是偶函数,当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=-⎪⎝⎭,(2)b f =,(3)c f =,则a ,b ,c 的大小关系为()A.c b a << B.b a c<< C.b c a<< D.a b c<<【答案】B 【解析】【分析】根据题意先求出函数()f x 在(1,)+∞上为单调增函数且关于直线1x =对称,然后利用函数的单调性和对称性即可求解.【详解】∵当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,∴当121x x <<时,()()210f x f x ->,即()()21f x f x >,∴函数()f x 在(1,)+∞上为单调增函数,∵函数(1)f x +是偶函数,即()()11f x f x +=-,∴函数()f x 的图象关于直线1x =对称,∴1522a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,又函数()f x 在(1,)+∞上为单调增函数,∴5(2)(3)2f f f ⎛⎫<<⎪⎝⎭,即1(2)(3)2f f f ⎛⎫<-< ⎪⎝⎭,∴b a c <<,故选:B.8.幂函数()()22251m m f x m m x+-=--在区间()0,∞+上单调递增,且0a b +>,则()()f a f b +的值()A.恒大于0B.恒小于0C.等于0D.无法判断【答案】A 【解析】【分析】由已知条件求出m 的值,则可得幂函数的解析式,再利用幂函数的性质判断即可【详解】由函数()()22251m m f x m m x+-=--是幂函数,可得211m m --=,解得2m =或1m =-.当2m =时,()3f x x =;当1m =-时,()6f x x -=.因为函数()f x 在()0,∞+上是单调递增函数,故()3f x x =.又0a b +>,所以a b >-,所以()()()f a f b f b >-=-,则()()0f a f b +>.故选:A .二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.{}0∅∈B.集合{|2,Z}{|Z}2xx x n n x =∈=∈C.集合{}{}3,44,3= D.集合22{|}{|}x y x y y x ===【答案】BC 【解析】【分析】根据集合间的基本关系逐一判定即可.【详解】解:对于A ,{}0∅⊆,故A 错误;对于B ,由Z 2x ∈,可得x 为偶数,所以集合{|2,Z}{|Z}2xx x n n x =∈=∈,故B 正确;对于C ,集合{}{}3,44,3=,故C 正确;对于D ,集合2{|}R x y x ==,2{|}{|0}y y x y y ==≥,故D 错误.故选:BC.10.已知20ax bx c ++>的解集是()2,3-,则下列说法正确的是()A.>0B.不等式20cx bx a ++<的解集是11,23⎛⎫- ⎪⎝⎭C.1234b b ++的最小值是83D.当2c =时,()236f x ax bx =+,[]12,x n n ∈的值域是[]3,1-,则21n n -的取值范围是[]2,4【答案】BCD 【解析】【分析】对A ,B ,利用一元二次不等式与相应函数和方程的关系求解判断;对C ,利用基本不等式求最值,对D ,利用二次函数图象与性质,进行分析可得结果.【详解】对于A ,由题意可知:2,3-是关于x 的方程B 2+B +=0的两个根,且0a <,故A 错误;对于B ,由题意可知:16bac a⎧-=⎪⎪⎨⎪=-⎪⎩,可得,6b a c a =-=-,0a <.不等式20cx bx a ++<化为:260ax ax a --+<,由0a <可得2610x x +-<,解得1123x -<<,所以不等式20cx bx a ++<的解集为1123⎛⎫- ⎪⎝⎭,,故B 正确;对于C ,因为=-b a ,0b >,可得()121214483434343333b b b b +=++-≥-=++,当且仅当()12134343b b =++,即23b =时,等号成立,所以1234b b ++的最小值是83,故C 正确;对于D ,当2c =时,13b a =-=,则()222362(1)1f x ax bx x x x =+=-+=--+,当=1时,()f x 取到最大值()11f =,由()3f x =-得,=−1或3x =,()[]212,36f x ax bx x n n =+∈,的值域是[]3,1-,因()f x 在[]12,n n 上的最小值为3-,最大值为1,从而得121,13n n =-≤≤或1211,3n n -≤≤=,因此2124n n ≤-≤,故D 正确.故选:BCD.11.已知函数()f x 是定义在R 上的奇函数,当>0时,()21f x x x =-+,则下列结论正确的是()A.()02f =-B.()f x 的单调递增区间为()1,0-,()1,+∞C.当0x <时,()21f x x x=+-D.()0xf x <的解集为()()1,00,1-⋃【答案】BCD 【解析】【分析】由奇函数()f x 在=0处有定义,可得()00f =,可判断A ;由>0的函数的解析式,结合奇函数的定义可得0x <时的函数解析式,可判断C ;判断>0时的()f x 的单调性,可得0x <时的()f x 的单调性,不等式()0xf x <等价为>0且()0f x <,0x <且()0f x >,结合()()110f f -==,解不等式可判断D ;由()y f x =的图象与=op 的图象特点,结合单调性可判断B.【详解】对于A ,函数()f x 是定义在R 上的奇函数,可得()00f =,故A 错误;对于C ,当>0时,()21f x x x =-+,设0x <,则0x ->,()21f x x x-=---,又−=−,所以0x <时,()21f x x x=+-,故C 正确;对于D ,由>0时,()21f x x x =-+,可得1=0,又y x =和21y x =-+在()0,∞+递增,可得()f x 在()0,∞+递增,由奇函数的图象关于原点对称,可得()f x 在(),0∞-递增,且()10f -=,所以()0xf x <等价为>0op <0=o1)或<0op >0=o −1),解得01x <<或10x -<<,故D 正确;对于B ,因为()f x 在(),0∞-和()0,∞+上递增,且()()110f f =-=,由()y f x =的图象可看做=op 的图象位于x 轴上方的图象不变,将x 轴下方的图象翻折到x 轴上方得到,所以()y f x =的递增区间为()1,0-,1,+∞,故B 正确.故选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12.已知a =,b =,则a ______b .(填“>”或“<”)【答案】<【解析】【分析】对,a b 进行分子有理化,然后通过比较分母的大小,从而可得结果.【详解】a ==b ==,>0+>,<<所以a b <.故答案为:<13.已知()5311f x ax bx cx x=-+++,且()35f -=-,则()3f =__________.【答案】7【解析】【分析】根据题意,由函数的解析式可得()()2f x f x -+=,结合()35f -=-即可求解.【详解】()5311f x ax bx cx x=-+++,则()()531()()1f x a x b x c x x ⎛⎫-=---+-+-+ ⎪⎝⎭5311ax bx cx x ⎛⎫=--+++ ⎪⎝⎭则有()()2f x f x -+=,若()35f -=-,则()()3257.f =--=故答案为:7.14.定义{},min ,=,>a a b a b b a b≤⎧⎨⎩,若函数(){}2min 33,33f x x x x =-+--+,且()f x 在区间[],m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[],m n 长度的最大值为________.【答案】74.【解析】【分析】根据定义作出函数()=y f x 的图像,根据函数值域,求出对应点的坐标,利用数形结合进行判断即可.【详解】根据定义作出函数()=y f x 的图像如图:(实线部分的曲线).其中()()1,13,3A B 、,即23|3|,13()=3+3,1<<3x x x f x x x x --≤≥-⎧⎨⎩或.当()34f x =时,当1x ≤或3x ≥时,由3334x --=,解得:34C x =或214G x =;当()74f x =时,当13x <<时,由27334x x -+=解得:52E x =.由图像知,若函数()f x 在区间[],m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[],m n 长度的最大值为537244E C x x -=-=.故答案为:74四、解答题:本题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.15.(1)计算:111224127()10()()20024-+⨯⨯(2)已知11223x x-+=,求22122x x x x --+-+-的值.【答案】(1)25;(2)9.【解析】【分析】(1)(2)利用指数性质、运算法则直接求解.【详解】(1)原式131144221103(1)151025.2++=+⨯⨯-=+-+=(2)由11223x x-+=,得129x x -++=,则17x x -+=,2247x x -+=,所以22124729272x x x x --+--==+--.16.若关于x 的不等式2310ax x +->的解集是112A x x ⎧⎫=<<⎨⎬⎩⎭.(1)求a 的值;(2)设集合=2<<1−,若“x A ∈”是“x B ∈”的充分条件,求实数m 的取值范围.【答案】(1)−2(2)0m ≤【解析】【分析】(1)根据一元二次不等式的解集,利用根与系数的关系,即可求得答案;(2)由题意可得A B ⊆,由此列不等式求解,即得答案.【小问1详解】因为关于x 的不等式2310ax x +->的解集是112x x ⎧⎫<<⎨⎬⎩⎭,故2310ax x +-=的两根为1,12,且0a <,故11122a a⨯=-⇒=-;【小问2详解】由题意集合{}21B x m x m =<<-,“x A ∈”是“x B ∈”的充分条件,故A B ⊆,由于112A xx ⎧⎫=<<⎨⎬⎩⎭,故B 不为空集,则1221121m m m m ⎧≤⎪⎪-≥⎨⎪<-⎪⎩,解得0m ≤.17.函数()29x x ax f b--=是定义在区间()3,3-上的奇函数,且()11.4f =(1)确定()f x 的解析式,并用定义证明()f x 在区间()3,3-上的单调性;(2)解关于t 的不等式()()10.f t f t -+<【答案】(1)()229xf x x =-;证明见解析(2)12,2⎛⎫- ⎪⎝⎭【解析】【分析】(1)利用函数在()3,3-上有定义且为奇函数,则()00f =,求出b 的值,再由()114f =求出a 的值,即可确定()f x 的解析式;直接利用定义法证明函数()f x 在()3,3-上的单调性;(2)由奇函数的性质知()()1f t f t -<-,由函数单调性得313331t t t t -<-<⎧⎪-<<⎨⎪-<-⎩,求解即可.【小问1详解】根据题意,函数()29ax bf x x -=-是定义在()3,3-上的奇函数,则()009bf -==,解可得0b =;又由()114f =,则有()1184a f ==,解可得2a =,则()229xf x x=-,又()()()222299x xf x f x x x --==-=----,符合题意,故()229xf x x=-.设1233x x -<<<,则()()()()()()2212211212222212122929229999x x x x x x f x f x x x x x ----=-=----()()()()121222122999x x x x x x +-=--,又由1233x x -<<<,则1290x x +>,120x x -<,2190x ->,2290x ->,则()()120f x f x -<,即()()12f x f x <,则函数()f x 在()3,3-上为增函数;【小问2详解】由(1)知()f x 为奇函数且在()3,3-上为增函数.则()()()()101f t f t f t f t -+<⇒-<-()()1f t f t ⇒-<-,故313331t t t t-<-<⎧⎪-<<⎨⎪-<-⎩,解可得:122t -<<,即不等式的解集为12,2⎛⎫- ⎪⎝⎭.18.某机床厂今年年初用100万元购入一台数控机床,并立即投入生产使用.已知该机床在使用过程中所需要的各种支出费用总和t (单位:万元)与使用时间x (*,20x x ∈≤N ,单位:年)之间满足函数关系式为:228.t x x =+该机床每年的生产总收入为50万元.设使用x 年后数控机床的盈利额为y 万元.(盈利额等于总收入减去购买成本及所有使用支出费用).(1)写出y 与x 之间的函数关系式;(2)从第几年开始,该机床开始盈利(盈利额为正值)?(3)该机床使用过程中,已知年平均折旧率为4%(固定资产使用1年后,价值的损耗与前一年价值的比率).现对该机床的处理方案有两种:第一方案:当盈利额达到最大值时,再将该机床卖出;第二方案:当年平均盈利额达到最大值时,再将该机床卖出.研究一下哪种处理方案较为合理?请说明理由.(参考数据:70.960.751≈,80.960.721≈,90.960.693≈,100.960.665≈)【答案】(1)2242100y x x =-+-,()*,20x x ∈≤N (2)第3年(3)选第一方案较为合理,理由见解析【解析】【分析】(1)利用盈利额等于总收入减去购买成本及所有使用支出费用,得到y 与x 之间的函数关系式;(2)令0y >,解一元二次不等式即可;(3)利用二次函数求最值,求出第一方案总获利,由100100242422y x x x x x ⎛⎫=-+-=-+ ⎪⎝⎭,利用函数单调性求出第二方案总获利,再比较即可.【小问1详解】由题意,使用过程中所需要的各种支出费用总和t 与使用时间x 之间的函数关系式为228t x x =+,且该机床每年的生产总收入为50万元,设使用x 年后数控机床的盈利额为y 万元,可得y 与x 之间的函数关系式()225028100242100y x x x x x =-+-=-+-,()*,20x x ∈≤N ;【小问2详解】由(1)知:2242100y x x =-+-,()*,20x x ∈≤N ,令0y >,可得22421000x x -+->,解得212412124122x -+<<,因为1516<<,所以521322-<<,213718.22+<<因为*x ∈N ,所以318x ≤≤且*x ∈N ,故从第3年开始盈利.【小问3详解】由(1)知2242100y x x =-+-,()*,20x x ∈≤N ,因为22212412421002()22y x x x =-+-=--+,所以当10x =或11x =时,营利额达到最大值为120万元,使用10年后机床剩余价值为:10100(14%)66.5-≈(万元),所以按第一方案处理,总获利为12066.5186.5+=(万元);又由100100242422y x x x x x ⎛⎫=-+-=-+ ⎪⎝⎭,令()100422h x x x ⎛⎫=-+⎪⎝⎭,()020x <≤,12020x x ∀<<≤,则()()()()12121212121250100100222x x x x h x h x x x x x x x --⎛⎫⎛⎫-=-+++=- ⎪ ⎪⎝⎭⎝⎭,当120x x <<<时,12120,500x x x x -<-<,则()()120h x h x -<,即()()12h x h x <,因此可得ℎ在(上单调递增;1220x x <<≤时,12120,500x x x x -<->,则()()120h x h x ->,即()()12h x h x >,因此可得ℎ20⎤⎦上单调递减;又78<<,当7x =时,年平均盈利为967万元,当8x =时,年平均盈利为272万元,又962772>,所以当第7年时,年平均盈利额达到最大值,此时机床剩余价值为:7100(14%)75.1-≈(万元),所以按第二方案处理,总获利为96775.1171.17⨯+=(万元).由于186.5171.1>,则选第一方案较为合理.【点睛】方法点睛:解答函数应用题的一般步骤:(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.19.定义:对于定义在区间I 上的函数()f x 和正数(01)αα<≤,若存在正数M ,使不等式()()1212|f x f x M x x |α-≤-对任意1x ,2x I ∈恒成立,则称函数()f x 在区间I 上满足α阶李普希兹条件.(1)判断函数y x =,3y x =在R 上是否满足1阶李普希兹条件;(2)证明函数y =在区间[)1,+∞上满足12阶李普希兹条件,并求出M 的取值范围;(3)若函数y =[)1,+∞上满足α阶李普希兹条件,求α的范围.【答案】(1)y x =满足1阶李普希兹条件,3y x =不满足1阶李普希兹条件.(2)证明见解析,1M ≥(3)112α≤≤.【解析】【分析】(1)结合题意根据1阶李普希兹条件的含义即可求解;(2)结合已知条件以及题干定义即可求解.(3)分情况讨论α的取值范围结合定义从而即可求解.【小问1详解】y x =满足1阶李普希兹条件,3y x =不满足1阶李普希兹条件.理由:对于y x =,1212||||x x M x x -≤-,只需1M ≥,所以存在正数1M ≥,对任意1x ,2R x ∈使()()1212f x f x M x x -≤-成立,所以y x =满足1阶李普希兹条件;对于3y x =,331212||||x x M x x -≤-,不妨设12x x >,则≥12+12+22=1+22−12>()21234x x +,()[)212304y x x ∞=+∈+,,即不存在正数M ,使不等式()()1212f x f x M x x -≤-对任意1x ,2x I ∈恒成立,所以3y x =不满足1阶李普希兹条件.【小问2详解】证明:不妨设121x x >≥,()()12f x f x ∴-=()()()()()1212212120,1f x f x x x x x -∴=--,故1M ≥时,对1x ∀,[)21,x ∈+∞,均有()()121212()f x f x M xx -≤-,故函数y =在区间[)1,+∞上满足12阶李普希兹条件,1M ≥;【小问3详解】①首先证明102α<<时不成立,假设函数y =在区间[)1+∞,上满足1(02αα<<阶李普希兹条件,12()M x x α≤-,令124x x =,则有22(4)M x x α-≤-,即122221.3M x α-≥>=取()212231x M α-=+,则1221133x M α-=+,则13M M >+,矛盾,所以假设不成立.②然后证明112α≤≤时成立,不妨设12121(x x x x >≥=时显然成立),令212(1)x k x k =>,()()(121f x f x k ∴-==-()22122221x x k x x k x ∴-=-=-;要证函数y =在区间[)1,∞+上满足112αα⎛⎫≤≤⎪⎝⎭阶李普希兹条件,只需证存在正数M12()M x x α≤-成立,即证(221(1)k M k x αα--,又1222211(1)(1)k k x k k ααα---≤--,当(k ∈时,22(1)1k k α-≥-,所以221111(1)11k k k k k α--≤=<--+;当)2k ∈时,1222(1)(1)k k α-≥-,所以211(1)k k α-≤=<-;当[)2,k ∞∈+时,121(1)(1)1(1)(1)(1)k k k k k k ααααα----=≤<-++,故取1M≥,不等式即可成立.综上,α的取值范围为1 1. 2α≤≤【点睛】难点点睛:本题考查函数新定义问题,难度大.解答时要根据题目所给α阶李普希兹条件的定义分析所给函数的结合不等式分析可解答.。

北京市2024-2025学年高一上学期期中考试数学试卷含答案

北京市2024-2025学年高一上学期期中考试数学试卷含答案

2024年高一第一学期期中试卷数学(答案在最后)一、选择题(共10小题,每小题4分,共40分)1.已知集合{}31M x x =-<<,{}14N x x =-≤<,则M N = ()A.{}31x x -<< B.{}3x x >- C.{}11x x -≤< D.{}4x x <2.设命题p : n ∃∈N ,225n n >+,则p 的否定是()A. n ∀∈N ,225n n >+ B. n ∀∈N ,225n n ≤+C.n ∃∈N ,225n n ≤+ D.n ∃∈N ,N 225n n <+3.下列各组函数中,两个函数相同的是()A.3y =和y x=B.2y =和y x=C.y =和2y =D.y =和2x y x=4.下列函数在区间()0,+∞上为增函数的是()A.2xy = B.()21y x =- C.1y x-= D.3xy -=5.若实数a ,b 满足a b >,则下列不等式成立的是()A.a b> B.a c b c+>+ C.22a b > D.22ac bc>6.“4a ≥”是“二次函数()2f x x ax a =-+有零点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.在下列区间中,一定包含函数()25xf x x =+-零点的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,48.已知函数()1,01,0x f x x x≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是()A.()1,2 B.(),2-∞- C.()(),12,-∞+∞ D.(][),12,-∞+∞ 9.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,都有()()21210f x f x x x -<-,且()30f =,则不等式()0f x >的解集是()A.()(),30,3-∞-B.()()3,03,-+∞C.()3,3- D.()(),33,-∞-+∞ 10.现实生活中,空旷田野间两根电线杆之间的电线与峡谷上空横跨深涧的观光索道的钢索有相似的曲线形态,这类曲线在数学上常被称为悬链线.在合适的坐标系中,这类曲线可用函数()()2e 0,e 2.71828ex xa bf x ab +=≠=⋅⋅⋅来表示.下列结论正确的是()A.若0ab >,则()f x 为奇函数B.若0ab >,则()f x 有最小值C.若0ab <,则()f x 为增函数D.若0ab <,则()f x 存在零点二、填空题(共5小题,每小题5分,共25分)11.函数()f x =的定义域为__________.12.已知函数()()1104f x x x x=++>,则当且仅当x =_________时,()f x 有最小值________.13.已知集合{}2,0A a =,{}3,9B a =-,若满足{}9A B = ,则实数a 的值为________.14.已知函数()y f x =在R 上是奇函数,当0x ≤时,()21xf x =-,则()1f =________;当0x >时,()f x =________.15.已知非空集合A ,B 满足以下四个条件:①{}1,2,3,4,5,6A B = ;②A B =∅ ;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(ⅰ)如果集合A 中只有1个元素,那么集合A 的元素是__________;(ⅱ)有序集合对(),A B 的个数是__________.三、解答题(共6小题,第16题9分,第17-19题6分,第20题7分,第21题6分)16.已知集合{}14A x x =-≤≤,{}11B x a x a =-≤≤+.(1)若4a =,求A B ;(2)若A B A = ,求a 的取值范围.17.解下列关于x 的不等式:(1)2112x x +≤-(2)213x -≥(3)()()2220ax a x a +--≥∈R 18.已知函数()22xxf x a -=⋅-是定义在R 上的奇函数.(1)求a 的值,并用定义法证明()f x 在R 上单调递增;(2)解关于x 的不等式()()23540f x x f x -+->.19.某工厂要建造一个长方体的无盖贮水池,其容积为34800m ,深为3m ,如果池底造价为每平方米150元,池壁每平方米造价为120元,怎么设计水池能使总造价最低?最低造价是多少?20.已知函数()()21f x mx m x m =--+.(1)若不等式()0f x >的解集为R ,求m 的取值范围;(2)若不等式()0f x ≤对一切()0,x ∈+∞恒成立,求m 的取值范围;21.设k 是正整数,集合A 至少有两个元素,且* N A ⊆.如果对于A 中的任意两个不同的元素x ,y ,都有x y k -≠,则称A 具有性质()P k .(1)试判断集合{}1,2,3,4B =和{}1,4,7,10C =是否具有性质()2P ?并说明理由;(2)若集合{}{}1212,,,1,2,,20A a a a =⋅⋅⋅⊆⋅⋅⋅,求证:A 不可能具有性质()3P ;(3)若集合{}1,2,,2023A ⊆⋅⋅⋅,且同时具有性质()4P 和()7P ,求集合A 中元素个数的最大值.高一第一学期期中试卷数学参考答案与试题解析一、选择题(共10小题)CBAABABDCD二、共填空题(共5小题)11.[)1,+∞12.12;213.-314.12;()12xf x -=-15.5;10三、解答题(共6小题)17.(1){}23A B x x =≤≤ .(2)a 的取值范围是7,2⎛⎤-∞ ⎥⎝⎦.16.(1)()3,2-;(2)(][),12,-∞-+∞ (3)综上所述:当0a =时,不等式解集为(],1-∞-;当0a >时,不等式解集为(]2,1,a ⎡⎫-∞-+∞⎪⎢⎣⎭;当20a -<<时,不等式解集为2,1a⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式解集为{}1-;当2a <-时,不等式解集为21,a⎡⎤-⎢⎥⎣⎦.18.(1)1a =,证明略(2)()()()()()2235403544f x x f x f x x f x f x -+->⇒->--=-∴23542x x x x ->-⇒>或23x <-.19.水池总造价()()16001502331207201600150x f x xy x y x ⎛⎫=⨯++⨯=+⨯+⨯ ⎪⎝⎭72024000057600240000297600≥+=+=元.当且仅当40x m =,40y m =时取等号.∴设计水池底面为边长为40m 的正方形能使总造价最低,最低造价是297600元.20.(1)m 的取值范围为1,3⎛⎫+∞ ⎪⎝⎭;(2)m 的取值范围为(],1-∞-;21.(1)集合B 不具有性质()2P ,集合C 具有性质()2P (2)证明:将集合{}1,2,,20⋅⋅⋅中的元素分为如下11个集合,{1,4},{2,5},{3,6},{7,10},{8,11}.{9,12},{13,16},{14,17},{15,18},{19},{20},所以从集合{}1,2,,20⋅⋅⋅中取12个元素,则前9个集合至少要选10个元素,所以必有2个元素取自前9个集合中的同一集合,即存在两个元素其差为3,所以A 不可能具有性质()3P ;(3)先说明连续11项中集合A 中最多选取5项,以1,2,3……,11为例.构造抽屉{1,8},{2,9},{3,10},{4,11},{5},{6},{7}.①5,6,7同时选,因为具有性质()4P 和()7P ,所以选5则不选1,9;选6则不选2,10;选7则不选3,11;则只剩4,8.故1,2,3……,11中属于集合A 的元素个数不超过5个.②5,6,7选2个,若只选5,6,则1,2,9,10,7不可选,又{4,11}只能选一个元素,3,8可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选5,7,则只能从2,4,8,10中选,但4,8不能同时选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选6,7,则2,3,10,11,5不可选,又{1,8}只能选一个元素,4,9可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.③5,6,7中只选1个,又四个集合{1,8},{2,9},{3,10},{4,11}每个集合至多选1个元素,故1,2,3……,11中属于集合A 的元素个数不超过5个.由上述①②③可知,连续11项自然数中属于集合A 的元素至多只有5个,如取1,4,6,7,9.因为2023=183×11+10,则把每11个连续自然数分组,前183组每组至多选取5项;从2014开始,最后10个数至多选取5项,故集合A 的元素最多有184×5=920个.给出如下选取方法:从1,2,3……,11中选取1,4,6,7,9;然后在这5个数的基础上每次累加11,构造183次.此时集合A的元素为:1,4,6,7,9;12,15,17,18,20;23,26,28,29,31;……;2014,2017,2019,2020,2022,共920个元素.经检验可得该集合符合要求,故集合A的元素最多有920个.。

浙江省嘉兴市2024-2025学年高一上学期期中联考数学试题含答案

浙江省嘉兴市2024-2025学年高一上学期期中联考数学试题含答案

2024学年第一学期嘉兴八校联盟期中联考高一年级数学学科试题(答案在最后)考生须知:1.本卷满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分(共58分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个合题目要求的.1.设集合{}{}21,2,1,0,1,2A x x B =-<<=--,则A B = ()A .{}1,0-B .{}0C .{}0,1D .{}1,0,1-2.已知1,12是方程20x bx a -+=的两个根,则a 的值为()A .12-B .2C .12D .2-3.“1x =”是“21x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知幂函数ay x =的图象过点(9,3),则a 等于()A .3B .2C .32D .125.已知0.20.50.23,3,log 5a b c ===,则,,a b c 的大小关系是()A .a b c <<B .c a b <<C .c b a <<D .a c b <<6.方程2ln 50x x +-=的解所在区间为()A .(4,5)B .(3,4)C .(2,3)D .(1,2)7.已知函数()22xf x =-,则函数()y f x =的图象可能是()A .B .C .D .8.已知函数()f x 为定义在R 上的奇函数,且在[0,1)为减函数,在[1,+)∞为增函数,且(2)0f =,则不等式(1)()0x f x +≥的解集为()A .(,2][0,1][2,)-∞-+∞B .(,1][0,1][2,+)-∞-∞C .(,2][1,0][1,)-∞--+∞ D .(,2][1,0][2,)-∞--+∞ 二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列叙述正确的是()A .2,230x R x x ∃∈-->B .命题“,12x R y ∃∈<≤”的否定是“,1x R y ∀∈≤或2y >”C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件D .命题“2,0x R x ∀∈>”的否定是真命题10.已知集合{}1,2,3A =,集合{},B x y x A y A =-∈∈,则()A .{}1,2,3AB = B .{}1,0,1,2,3A B =-C .0B∈D .1B-∈11.下列说法不正确的是()A .函数1()f x x=在定义域内是减函数B .若函数()g x 是奇函数,则一定有(0)0g =C .已知函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩在R 上是增函数,则实数a 的取值范围是[3,1]--D .若函数()f x 的定义域为[2,2]-,则(21)f x -的定义域为13[,22-非选择题部分(共92分)三、填空题:本大题共3小题,每小题5分,共15分.12.函数22,1()23,1x x f x x x ⎧-≤=⎨+>⎩,则((2))f f -的值是▲.13.计算:0ln 2lg 252lg 2eπ+-+=▲.14.x R ∀∈,用函数()m x 表示函数()f x 、()g x 中的最小者,记为{}()min (),()m x f x g x =.若()min m x ={}21,(1)x x -+--,则()m x 的最大值为▲.四、解答题:本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤15.(本题满分13分)已知集合{}13A x x =<<,集合{}21B x m x m =<<-.(1)当1m =-时,求A B ;(2)若A B ⊆.求实数m 的取值范围.16.(本题满分15分)已知函数2()23()f x x ax a R =-+∈.(1)若函数()f x 在(,2]-∞上是减函数,求a 的取值范围;(2)当[1,1]x ∈-时,讨论函数()f x 的最小值.17.(本题满分15分)已知函数()af x x x=+,且(1)2f =.(1)求a ;(2)根据定义证明函数()f x 在区间(1,)+∞上单调递增;(3)在区间(1,)+∞上,若函数()f x 满足(2)(21)f a f a +>-,求实数a 的取值范围.18.(本题满分17分)已知函数()ln(1)ln(1)f x x x =--+,记集合A 为()f x 的定义域.(1)求集合A ;(2)判断函数()f x 的奇偶性;(3)当x A ∈时,求函数221()(2x xg x +=的值域.19.(本题满分17分)某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现注意力指数p 与听课时间t 之间的关系满足如图所示的曲线.当(0,14]t ∈时,曲线是二次函数图象的一部分,当[14,45]t ∈时,曲线是函数log (5)83a y t =-+,(0a >且1a ≠)图象的一部分.根据专家研究,当注意力指数p 大于80时听课效果最佳.(1)试求()p f t =的函数关系式;(2)老师在什么时段内讲解核心内容能使学生听课效果最佳?请说明理由.2024学年第一学期嘉兴八校联盟期中联考高一年级数学学科试题答案1234567891011A C A DBCBDABDCDABC12.713.114.015.解:(1)当{}1,22m B x x =-=-<<∵{}13A x x =<<∴{}23A B x x =-<< (2)∵A B⊆2113m m ≤⎧⎨-≥⎩,122m m ⎧≤⎪⎨⎪≤-⎩∴2m ≤-∴(,2]m ∈-∞-16.(1)对称轴:x a =∵为减函数∴2a ≥∴[2,)a ∈+∞(2)①当1a <-时,在[1,1]-,则min ()(1)24f x f a =-=+②当11a -≤≤,在[1,1]-有最低点,2min ()()3f x f a a ==-+③1a >时,在[1,1]-,min ()(1)24f x f a ==-+17.(1)∵(1)2f =∴21a=+∴1a =(2)1()f x x x=+12,(1,)x x ∀∈+∞,且12x x <,则12()()f x f x --121211x x x x =+--211212x x x x x x -=-+12121()(1)x x x x =--∵1212,(1,)x x x x <∈+∞∴121212110,01,10x x x x x x -<<<->∴12()()0f x f x -<,即12()()f x f x <故()f x 在(1,)+∞(3)∵在(1,)+∞,(2)(1)f a f a +>-∴211121a a a a +>⎧⎪->⎨⎪+>-⎩,12a a >-⎧⎪>⎨⎪⎩任意成立∴2a >18.(1)1010x x ->⎧⎨+>⎩,11x x <⎧⎨>-⎩,{}11A x x =-<<(2)1()ln()1xf x x-=+可知定义域关于原点对称111()ln(ln(ln ()111x x xf x f x x x x+---====-+++故()f x 为奇函数.(3)令22t x x =+,对称轴1x =-t 在(1,1)-上,故(1,3)t ∈-又1()2ty =在R 上递减故221()(2x xg x +=的值域是:1(,2)8.19.(1)当(0,14]t ∈,设2()f t at bt c =++代入顶点(12,82)1481(,,)可得:21()[12)824f t t =--+当[14,45]t ∈,由log (5)83(01)a y t a a =-+>≠且代入(14,81),13a =,故:1()log (5)833f t t =-+综上2131(12)82,((0,14])4()log (5)83,([14,45])t t p f t t t ⎧--+∈⎪==⎨-+∈⎪⎩(2)当014t <≤,21()(12)82804f t t =--+>∴1214t -<≤当[14,45]t ∈,13()log (5)8380f t t =-+>∴1432t ≤<∴在(1232)-这段时间安排核心内容效果最佳.。

福建省厦门2024-2025学年高一上学期11月期中考试 数学含答案

福建省厦门2024-2025学年高一上学期11月期中考试 数学含答案

福建省厦门2024-2025学年高一上学期11月期中考试数学试题(答案在最后)(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1},{2}M xx N x x =≥=<∣∣,则R ()M N ⋂=ð()A.[1,2)B.(,1)[2,)-∞+∞ C.[0,1]D.(,0)[2,)-∞⋃+∞2.命题“20,310x x x ∃>-->”的否定是()A.20,310x x x ∃>--≤B.20,310x x x ∃≤--≤C.20,310x x x ∀>--≤ D.20,310x x x ∀≤--≤3.函数()22()log 2f x x x =--的单调递减区间是()A.1,2⎛⎫-∞ ⎪⎝⎭B.(,1)∞-- C.1,2⎛⎫+∞⎪⎝⎭D.(2,)+∞4.已知函数()()()f x x a x b =--(其中a ,b 为常数,且b a <),若()f x 的图象如图所示,则函数()x g x a b =+的图象是()A.B.C.D.5.已知132a -=,21log 3b =,121log 3c =,则().A.a b c >> B.a c b>> C.c a b>> D.c b a>>6.“函数()2()lg 1f x ax ax =-+的定义域为R ”是“04a <<”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.若函数)3()ln1f x mx n x =++(m ,n 为常数)在区间[]1,3上有最大值7,则()f x 在区间[3,1]--上()A.有最大值6B.有最大值5C.有最小值5- D.有最小值7-8.已知函数()f x 对于任意x 、R y ∈,总有()()()2f x f y f x y +=++,且当0x >时,()2f x >,若已知()23f =,则不等式()()226f x f x +->的解集为()A.()2,∞+ B.()1,+∞ C.()3,+∞ D.4,+∞二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设正数m ,n 满足1m n +=,则()A.12m n+的最小值为3+B.+C.的最大值为14D.44m n +的最小值为410.声强级Li (单位:dB )与声强I (单位:2/m ω)之间的关系是:010lgILi I =⨯,其中0I 指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为21/m ω,对应的声强级为120dB ,称为痛阈.某歌唱家唱歌时,声强级范围为[]70,80(单位:dB ).下列选项中正确的是()A.闻阈的声强为1210-2/m ωB.声强级增加10dB ,则声强变为原来的2倍C.此歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2/m ω)D.如果声强变为原来的10倍,对应声强级增加10dB11.已知函数()21,2,5,2,xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则下列说法正确的是()A.1c ≥ B.0a c +<C.25a d < D.222ab d ++的取值范围为()18,34三、填空题:本题共3小题,每小题5分,共15分.12.已知幂函数()y f x =的图象过点(,则()16f =______.13.411log 2324lg lg245(64)49---+-=__________.14.已知()f x 是定义在上的偶函数,且对x ∀∈R ,都有(2)(2)f x f x -=+,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则实数a 的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在①A B A = ,②A B A = ,③A B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{}123A x a x a =-<<+,{}2280B x x x =--≤(1)当2a =时,求A B ;(2)若,求实数a 的取值范围.注:如果选择多个条件解答按第一个解答计分.16.已知函数()()log 1a f x x a =>,关于x 的不等式()1f x <的解集为(),m n ,且103m n +=.(1)求a 的值;(2)是否存在实数λ,使函数()()()2123,,93g x f x f x x λ⎡⎤⎡⎤=-+∈⎣⎦⎢⎥⎣⎦的最小值为34?若存在,求出λ的值;若不存在,说明理由.17.已知()()()1m g x f x g x -=+的定义在上的奇函数,其中()g x 为指数函数,且()g x 的图象过点()2,9.(1)求实数m 的值,并求()f x 的解析式;(2)判断()f x 的单调性,并用单调性的定义加以证明.(3)若对于任意的[]1,2t ∈,不等式()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭恒成立,求实数m 的取值范围.18.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k kx x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).2.236≈)19.若函数()f x 与区间D 同时满足:①区间D 为()f x 的定义域的子集,②对任意x D ∈,存在常数0M ≥,使得()f x M ≤成立,则称()f x 是区间D 上的有界函数,其中M 称为()f x 的一个上界.(注:涉及复合函数单调性求最值可直接使用单调性,不需要证明)(1)试判断函数()1923xxf x =-⋅,()22223xf x x x =-+是否为R 上的有界函数?并说明理由.(2)已知函数()121log 1x g x x +=-是区间[]2,3上的有界函数,设()g x 在区间[]2,3上的上界为M ,求M 的取值范围;(3)若函数()2313xxm f x m +⋅=+⋅,问:()f x 在区间[]0,1上是否存在上界M ?若存在,求出M 的取值范围;若不存在,请说明理由.福建省厦门2024-2025学年高一上学期11月期中考试数学试题(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1},{2}M xx N x x =≥=<∣∣,则R ()M N ⋂=ð()A.[1,2)B.(,1)[2,)-∞+∞ C.[0,1]D.(,0)[2,)-∞⋃+∞【答案】B 【解析】【分析】根据集合运算的定义计算.【详解】由已知{|12}M N x x =≤< 所以R (){|1M N x x ⋂=<ð或2}x ≥,故选:B .2.命题“20,310x x x ∃>-->”的否定是()A .20,310x x x ∃>--≤ B.20,310x x x ∃≤--≤C.20,310x x x ∀>--≤ D.20,310x x x ∀≤--≤【答案】C 【解析】【分析】根据存在量词命题的否定形式,即可求解.【详解】命题“20,310x x x ∃>-->”的否定是“20,310x x x ∀>--≤”.故选:C3.函数()22()log 2f x x x =--的单调递减区间是()A.1,2⎛⎫-∞ ⎪⎝⎭B.(,1)∞-- C.1,2⎛⎫+∞⎪⎝⎭D.(2,)+∞【答案】B 【解析】【分析】由对数函数性质计算出定义域后,结合复合函数单调性的判定方法计算即可得.【详解】由题意可得()()22210x x x x --=-+>,解得2x >或1x <-,由2219224y x x x ⎛⎫=--=-- ⎪⎝⎭,则其在(),1∞--上单调递减,在()2,∞+上单调递增,又2log y x =为单调递增函数,故()22()log 2f x x x =--的单调递减区间(),1∞--.故选:B.4.已知函数()()()f x x a x b =--(其中a ,b 为常数,且b a <),若()f x 的图象如图所示,则函数()x g x a b =+的图象是()A. B. C. D.【答案】A 【解析】【分析】由图可得101b a <-<<<,计算出()0g 并结合指数函数性质即可得解.【详解】由图可得101b a <-<<<,则有()0010g a b b =+=+<,且该函数为单调递减函数,故B 、C 、D 错误,A 正确.故选:A.5.已知132a -=,21log 3b =,121log 3c =,则().A.a b c >> B.a c b>> C.c a b>> D.c b a>>【答案】C 【解析】【详解】试题分析:因为13212112(0,1),log 0,log 1,33a b c -=∈==所以.b a c <<选C .考点:比较大小6.“函数()2()lg 1f x ax ax =-+的定义域为R ”是“04a <<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【详解】若函数()2()lg 1f x ax ax =-+的定义域为,则当0a =,()lg10f x ==,符合要求;当0a ≠时,有2Δ40a a a >⎧⎨=-<⎩,解得04a <<;综上所述,04a ≤<,故“函数()2()lg 1f x ax ax =-+的定义域为”是“04a <<”的必要不充分条件.故选:B .7.若函数)3()ln1f x mx n x =++(m ,n 为常数)在区间[]1,3上有最大值7,则()f x 在区间[3,1]--上()A.有最大值6B.有最大值5C.有最小值5- D.有最小值7-【答案】C【解析】【分析】构造新函数()()1g x f x =-为奇函数,利用奇函数求解.【详解】设3()()1)g x f x mx n x =-=+,则333()))()g x mx n x mx n mx n x g x -=-+-=-+=--+=-,所以()g x 是奇函数,()f x 在[1,3]上有最大值7,则()g x 在[1,3]上有最大值6,所以()g x 在[3,1]--上有最小值6-,于是()f x 在区间[3,1]--上有最小值5-,故选:C .8.已知函数()f x 对于任意x 、R y ∈,总有()()()2f x f y f x y +=++,且当0x >时,()2f x >,若已知()23f =,则不等式()()226f x f x +->的解集为()A.()2,∞+ B.()1,+∞ C.()3,+∞ D.4,+∞【答案】A 【解析】【分析】设()()2g x f x =-,分析出函数()g x 为R 上的增函数,将所求不等式变形为()()324g x g ->,可得出324x ->,即可求得原不等式的解集.【详解】令()()2g x f x =-,则()()2f x g x =+,对任意的x 、R y ∈,总有()()()2f x f y f x y +=++,则()()()g x g y g x y +=+,令0y =,可得()()()0g x g g x +=,可得()00g =,令y x =-时,则由()()()00g x g x g +-==,即()()g x g x -=-,当0x >时,()2f x >,即()0g x >,任取1x 、2x R ∈且12x x >,则()()()12120g x g x g x x +-=->,即()()120g x g x ->,即()()12g x g x >,所以,函数()g x 在R 上为增函数,且有()()2221g f =-=,由()()226f x f x +->,可得()()2246g x g x +-+>,即()()()2222g x g x g +->,所以,()()()32224g x g g ->=,所以,324x ->,解得2x >.因此,不等式()()226f x f x +->的解集为()2,∞+.故选:A.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设正数m ,n 满足1m n +=,则()A.12m n+的最小值为3+ B.+C.的最大值为14D.44m n +的最小值为4【答案】ABD 【解析】【分析】借助基本不等式中“1”的活用可得A ;由1m n +=+出后利用基本不等式计算可得B ;直接运用基本不等式可得C ;结合基本不等式与同底数幂的乘法运算可得D.【详解】由m ,n 为正数,且满足1m n +=,则有:对A :()121221233n m m n m n m n m n ⎛⎫+=++=+++≥++ ⎪⎝⎭,当且仅当2n mm n=,即2n ==-时,等号成立,故A 正确;对B :21m n +=-,则22122⎛++-= ⎝⎭,当且仅当12m n ==时,等号成立,即22≤+≤,故B 正确;对C :1m n +=≥,当且仅当12m n ==时,等号成立,12≤,故C 错误;对D :444m n ≥==+,当且仅当12m n ==时,等号成立,故D 正确.故选:ABD.10.声强级Li (单位:dB )与声强I (单位:2/m ω)之间的关系是:010lgILi I =⨯,其中0I 指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为21/m ω,对应的声强级为120dB ,称为痛阈.某歌唱家唱歌时,声强级范围为[]70,80(单位:dB ).下列选项中正确的是()A.闻阈的声强为1210-2/m ωB.声强级增加10dB ,则声强变为原来的2倍C.此歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2/m ω)D.如果声强变为原来的10倍,对应声强级增加10dB 【答案】ACD 【解析】【分析】依题意求出0I ,即可判断A ;将70Li =、80Li =代入求声强范围判断C ;设声强变为原来的k 倍,对应声强级增加10dB ,依题意得到方程,解得k ,即可判断B 、D.【详解】解:由题意0110lg120I =,即01lg 12I =,所以120110I =,所以12010I -=2ω/m ,故1210lg(10)12010lg Li I I ==+,故A 正确;若70Li =dB ,即10lg 50I =-,则510I -=2ω/m ;若80Li =dB ,即10lg 40I =-,则410I -=2ω/m ,故歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2ω/m ),C 正确;设声强变为原来的k 倍,对应声强级增加10dB ,则()()12010lg 12010lg 10kI I +-+=,解得10k =,即如果声强变为原来的10倍,对应声强级增加10dB ,故D 正确,B 错误;故选:ACD11.已知函数()21,2,5,2,xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则下列说法正确的是()A.1c ≥ B.0a c +<C.25a d < D.222ab d ++的取值范围为()18,34【答案】CD 【解析】【分析】作出函数图像判断A ,举反例判断B ,转化为一元函数,利用二次函数的性质判断C ,指数函数的性质判断D 即可.【详解】结合函数()f x 的图象可知,()0,01,4,5a b d <<<∈,由c b >,得不出1c ≥,故A 错误,令1,2a c =-=,此时()()132f a f c =<=,但是0a c +>,故B 错误.因为215a d -=-,所以125a d -=-,所以24a d =-,则()24a d d d =-,又()4,5d ∈,所以()2244()a d d d d d f d =-=-=,由二次函数性质得()f d 在()4,5上单调递增,故()(5)5f d f <=,所以C 正确.因为2121a b-=-,所以222a b +=,故22222a b d d =+++,令2()2d g d +=,由指数函数性质得()g d 在()4,5上单调递增,所以222a b d ++的取值范围为(18,34),故D 正确.故选:CD【点睛】关键点点睛:本题考查求多变元表达式的范围,解题关键是合理利用函数图像找到变量关系,构造一元函数,然后利用指数函数的性质得到所要求的取值范围即可.三、填空题:本题共3小题,每小题5分,共15分.12.已知幂函数()y f x =的图象过点(,则()16f =______.【答案】4【解析】【分析】先由幂函数的定义用待定系数法设出其解析式,代入点的坐标,求出幂函数的解析式,再求(16)f 的值【详解】解:由题意令()a y f x x ==,由于图象过点,2a =,12a =12()y f x x∴==12(16)164f ∴==故答案为:4.【点睛】本题考查幂函数的单调性、奇偶性及其应用,解题的关键是熟练掌握幂函数的性质,能根据幂函数的性质求其解析式,求函数值,属于基础题.13.411log 2324lg lg245(64)49---+-=__________.【答案】3-【解析】【分析】根据条件,利用指对数的运算法则,即可求出结果.【详解】因为4411log 1log 232214lg lg245(64)44lg 2lg 49(lg 5lg 49)44(lg 2lg 5)43492---+-=⨯-+-+-=⨯-+-=-,故答案为:3-.14.已知()f x 是定义在上的偶函数,且对x ∀∈R ,都有(2)(2)f x f x -=+,且当[]2,0x ∈-时,()112x f x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则实数a 的取值范围是______.2a ≤<【解析】【分析】先根据题意分析函数()f x 的对称性及周期性;再利用函数的对称性和周期性作出函数()f x 在[]2,6-上的图象;最后数形结合列出不等式组求解即可.【详解】由(2)(2)f x f x -=+,可得:()()4f x f x -=+,又因为()f x 是定义在R 上的偶函数,则−=,且函数()f x 图象关于y 轴对称,所以()()4f x f x +=,即()f x 的周期为4,作出函数1()12xf x ⎛⎫=- ⎪⎝⎭在[]2,0x ∈-上的图象,根据()f x 对称性及周期为4,可得出()f x 在[]2,6-上的图象:令()()()log 21a g x x a =+>,若在区间(2,6]-内关于x 的方程()log (2)0(1)a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则函数()f x 与函数()log (2)(1)a g x x a =+>在(2,6]-上至少有2个不同的交点,至多有3个不同的交点,所以()()()()2266g f g f ⎧≤⎪⎨>⎪⎩,即()()log 223log 623a a ⎧+≤⎪⎨+>⎪⎩2a ≤<.2a ≤<.【点睛】关键点点睛:本题考查函数性质的综合应用,函数与方程的综合应用及数形结合思想.解题关键在于根据题意分析出分析函数()f x 的对称性及周期性,并作出()f x 和()g x 图象;将方程根的问题转化为函数图象交点问题,数形结合解答即可.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在①A B A = ,②A B A = ,③A B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{}123A x a x a =-<<+,{}2280B x x x =--≤(1)当2a =时,求A B ;(2)若,求实数a 的取值范围.注:如果选择多个条件解答按第一个解答计分.【答案】(1){}27A B x x ⋃=-≤<(2)答案见解析【解析】【分析】(1)代入a 的值表示出A ,求解出一元二次不等式的解集表示出B ,根据并集运算求解出结果;(2)若选①:根据条件得到A B ⊆,然后分类讨论A 是否为空集,由此列出不等式组求解出结果;若选②:根据条件得到B A ⊆,然后列出不等式组求解出结果;若选③:根据交集结果分析,A B 集合的端点值的关系,列出不等式并求解出结果.【小问1详解】当2a =时,{}17A x x =<<,{}{}228024B x x x x x =--≤=-≤≤,因此,{}27A B x x ⋃=-≤<.【小问2详解】选①,因为A B A = ,可得A B ⊆.当123a a -≥+时,即当4a ≤-时,A B =∅⊆,合乎题意;当123a a -<+时,即当4a >-时,A ≠∅,由A B ⊆可得12234a a -≥-⎧⎨+≤⎩,解得112a -≤≤,此时112a -≤≤.综上所述,实数a 的取值范围是{4a a ≤-或112a ⎫-≤≤⎬⎭;选②,因为A B A = ,可得B A ⊆.可得12234123a a a a -≤-⎧⎪+≥⎨⎪-<+⎩,此时不等式组无解,所以实数a 的取值范围是∅;选③,当123a a -≥+时,即当4a ≤-时,A =∅,A B =∅ ,满足题意;当123a a -<+时,即当4a >-时,A ≠∅,因为A B =∅ ,则232a +≤-或14a -≥,解得52a ≤-或5a ≥,此时542a -<≤-或5a ≥,综上所述,实数a 的取值范围是52a a ⎧≤-⎨⎩或}5a ≥.16.已知函数()()log 1a f x x a =>,关于x 的不等式()1f x <的解集为(),m n ,且103m n +=.(1)求a 的值;(2)是否存在实数λ,使函数()()()2123,,93g x f x f x x λ⎡⎤⎡⎤=-+∈⎣⎦⎢⎥⎣⎦的最小值为34?若存在,求出λ的值;若不存在,说明理由.【答案】(1)3a =(2)138λ=-或32【解析】【分析】(1)先根据()1f x <,求出不等式的解,结合103n m +=可得a 的值;(2)利用换元法,把函数()g x 转化为二次函数,结合二次函数区间最值法求解.【小问1详解】由log 1a x <可得1log 1a x -<<,又1a >,所以1x a a <<,又因为()1f x <的解集为(),m n ,所以1,n a m a ==,因为103n m +=,所以1103a a +=,即()()231033130a a a a -+=--=,解得3a =或13a =,因为1a >,所以3a =;【小问2详解】由(1)可得()()2331log 2log 3,,93g x x x x λ⎡⎤=-+∈⎢⎥⎣⎦,令31log ,,93t x x ⎡⎤=∈⎢⎥⎣⎦,则[]1,2t ∈-,设()[]223,1,2h t t t t λ=-+∈-,①当1λ≤-时,()h t 在[]1,2-上单调递增,则()()min 31424h t h λ=-=+=,解得138λ=-,符合要求;②当12λ-<<时,()h t 在[]1,λ-上单调递减,在[],2λ上单调递增,()()22min 3234h t h λλλ==-+=,解得32λ=±,又12λ-<<,故32λ=;③当2λ≥时,()h t 在[]1,2-上单调递减,()()min 324434h t h λ==-+=,解得25216λ=<,不合题意;综上所述,存在实数138λ=-或32符合题意.17.已知()()()1m g x f x g x -=+的定义在上的奇函数,其中()g x 为指数函数,且()g x 的图象过点()2,9.(1)求实数m 的值,并求()f x 的解析式;(2)判断()f x 的单调性,并用单调性的定义加以证明.(3)若对于任意的[]1,2t ∈,不等式()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭恒成立,求实数m 的取值范围.【答案】(1)1m =,()1313xxf x -=+(2)()f x 在R 上单调递减,证明见解析(3)178m ≥【解析】【分析】(1)利用待定系数法可求出()g x 的表达式,结合奇函数性质计算即可得解;(2)设12x x <,从而计算()()12f x f x -的正负即可得证;(3)由奇函数性质结合函数单调性可得212134mt t t -≥+对[]1,2t ∈恒成立,构造二次函()()21284h t t m t =+-+,结合二次函数性质可得()()1020h h ⎧≤⎪⎨≤⎪⎩,解出即可得.【小问1详解】设()()0,1x g x a a a =>≠,由()g x 的图象过点()2,9,可得29a =,∴3a =(负值舍去),即()3x g x =,故函数()()()3113xxm g x m f x g x --==++,由()f x 为奇函数,可得()()()01001011m g m f g --===++,∴1m =,即()1313xx f x -=+,满足()()13311313x x x x f x f x -----===-++,即()f x 为奇函数,故1m =;【小问2详解】()f x 在R 上单调递减,证明如下:()()2131321131313x x x x x f x -+-===-+++,设12x x <,则12033x x <<,则()()()()()211212122332213131313x x x x x x f x f x --=-=++++,结合12033x x <<,可得()212330x x ->,∴()()120f x f x ->,即()()12f x f x >,故()f x 在R 上单调递减;【小问3详解】由()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭且()f x 为奇函数,所以()212134f mt f t t ⎛⎫-≤+ ⎪⎝⎭,又()f x 在R 上单调递减,所以212134mt t t -≥+对[]1,2t ∈恒成立,所以()212840t m t +-+≤对[]1,2t ∈恒成立,令()()21284h t t m t =+-+,所以有()()1020h h ⎧≤⎪⎨≤⎪⎩,即1128404241640m m +-+≤⎧⎨+-+≤⎩,解得178m ≥.18.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k k x x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).2.236≈)【答案】(1)车流密度x 的取值范围是(]0,90(2)隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.【解析】【分析】(1)根据题意得2400k =,再根据分段函数解不等式即可得答案;(2)由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩,再根据基本不等式求解最值即可得答案.【小问1详解】解:由题意知当120x =(辆/千米)时,0v =(千米/小时),代入80150k v x=--,解得2400k =,所以60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩.当030x <≤时,6040v =≥,符合题意;当30120x <≤时,令24008040150x-≥-,解得90x ≤,所以3090x <≤.所以,若车流速度v 不小于40千米/小时,则车流密度x 的取值范围是(]0,90.【小问2详解】解:由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩,当030x <≤时,60y x =为增函数,所以1800y ≤,当30x =时等号成立;当30120x <≤时,()()2150180150450024004500808080180150150150150x x x y x x x xx --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦4800(33667≤-≈.当且仅当4500150150x x-=-,即30(583x =-≈时等号成立.所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.19.若函数()f x 与区间D 同时满足:①区间D 为()f x 的定义域的子集,②对任意x D ∈,存在常数0M ≥,使得()f x M ≤成立,则称()f x 是区间D 上的有界函数,其中M 称为()f x 的一个上界.(注:涉及复合函数单调性求最值可直接使用单调性,不需要证明)(1)试判断函数()1923x x f x =-⋅,()22223x f x x x =-+是否为R 上的有界函数?并说明理由.(2)已知函数()121log 1x g x x +=-是区间[]2,3上的有界函数,设()g x 在区间[]2,3上的上界为M ,求M 的取值范围;(3)若函数()2313xx m f x m +⋅=+⋅,问:()f x 在区间[]0,1上是否存在上界M ?若存在,求出M 的取值范围;若不存在,请说明理由.【答案】(1)()1f x 不是R 上的有界函数,()2f x 是R 上的有界函数(2)[)2log 3,+∞(3)答案见解析【解析】【分析】(1)根据有界函数的定义,分别计算出()1f x 及()2f x 的值域即可判断;(2)先求解函数()g x 的值域,进而求解()g x 的取值范围,再根据有界函数的定义确定上界M 的取值范围;(3)先求解函数()f x 及()f x ,再根据有界函数的定义,讨论m 取不同数值时,函数是否存在上界,并求解出对应的上界范围.【小问1详解】()()21923311x x x f x =-⋅=-- ,()1f x ∴的值域为[)1,-+∞()1f x ∴不是R 上的有界函数;()22223x f x x x =-+,则()200f =,当0x ≠时,()22223232x f x x x x x ==-++-,当0x >时,3x x +≥=x =则()2102f x <≤,当0x <时,33x x x x ⎛⎫+=--+≤-- ⎪-⎝⎭,当且仅当x =则()2102f x ->≥,综上可得,()211,22f x ⎡⎤+∈⎢⎥⎣⎦,即有()212f x +≤在R 上恒成立,()2f x ∴是R 上的有界函数;【小问2详解】()112212log log 111x g x x x +⎛⎫==+ ⎪--⎝⎭,易知()g x 在区间[]2,3上单调递增,∴()[][]2log 3,1,2,3g x x ∈--∈,∴()[]1221log 1,log 31x g x x +=∈-,所以上界M 构成的集合为[)2log 3,+∞;【小问3详解】()23113311x x x m f x m m +⋅==++⋅+⋅,当0m =时,()2f x =,()2f x =,此时M 的取值范围是[)2,+∞,当0m >时,()1311x f x m =++⋅在[]0,1上是单调递减函数,其值域为()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦,故()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦,此时M 的取值范围是2,1m m +⎡⎫+∞⎪⎢+⎣⎭,当0m <时,[]1331,1xm m m +⋅∈++,若()f x 在[]0,1上是有界函数,则区间[]0,1为()f x 定义域的子集,所以[]31,1m m ++不包含0,所以310m +>或10+<m ,解得:1m <-或103m -<<,0m <时,()1311x f x m =++⋅在[]0,1上是单调递增函数,此时()f x 的值域为232,131m m m m ++⎡⎤⎢⎥++⎣⎦,①232311m m m m ++≥++,即33m --≤或103m -<<时,()32323131m m f x m m ++≤=++,此时M 的取值范围是32,31m m +⎡⎫+∞⎪⎢+⎣⎭,②232311m m m m ++<++,即313m --<<-时,()2211m m f x m m ++≤=-++,此时M 的取值范围是2,1m m +⎡⎫-+∞⎪⎢+⎣⎭,综上:当0m ≥时,存在上界M ,2,1m M m +⎡⎫∈+∞⎪⎢+⎣⎭;当13m ≤--或103m -<<时,存在上界M ,32,31m M m +⎡⎫∈+∞⎪⎢+⎣⎭;当113m --<<-时,存在上界M ,2,1m M m +⎡⎫∈-+∞⎪⎢+⎣⎭,当113m -≤≤-时,此时不存在上界M .【点睛】关键点点睛,本题关键点在于求出所给函数在对应定义域范围内的值域,从而可结合定义,得到该函数是否为有界函数.。

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。

3.考试结束后,请将答题卡交监考人员。

一、单项选择题:本大题共8小题,每小题5分,共40分。

在每题给出的四个选项中只有一项是最符合题意的。

1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。

考试用时120分钟。

注意事项:1.考查范围:必修第一册第一章至第三章第二节。

2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将答题卡交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。

2024-2025学年江苏省苏州市常熟市高一第一学期期中考试数学试题 (含答案)

2024-2025学年江苏省苏州市常熟市高一第一学期期中考试数学试题 (含答案)

2024-2025学年江苏省常熟市高一第一学期期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知命题p:“∃x∈R,x+2≤0”,则命题p的否定为( )A. ∃x∈R,x+2>0B. ∀x∈R,x+2>0C. ∃x∉R,x+2>0D. ∀x∈R,x+2≤02.已知x>0,则x−1+4x的最小值为( )A. 4B. 5C. 3D. 23.已知函数y=f(x)的定义域为[−2,1],则函数y=f(2x+1)的定义域为( )A. RB. [−2,1]C. [−3,3]D. [−32,0]4.若函数f(x)=(m2−2m−2)x2−m是幂函数,且y=f(x)在(0,+∞)上单调递减,则实数m的值为( )A. 3B. −1C. 1+3D. 1−35.常熟“叫花鸡”,又称“富贵鸡”,既是常熟的特产,也是闻名四海的佳肴,以其鲜美、香喷、酥嫩著称。

双十一购物节来临,某店铺制作了300只“叫花鸡”,若每只“叫花鸡”的定价是40元,则均可被卖出;若每只“叫花鸡”在定价40元的基础上提高x(x∈N∗)元,则被卖出的“叫花鸡”会减少5x只.要使该店铺的“叫花鸡”销售收入超过12495元,则该店铺的“叫花鸡”每只定价应为( )A. 48元B. 49元C. 51元D. 50元6.已知f(x)是奇函数,对于任意x1,x2∈(−∞,0)(x1≠x2),均有(x2−x1)(f(x2)−f(x1))>0成立,且f(2)=0,则不等式xf(x−2)<0的解集为( )A. (−2,0)∪(2,4)B. (−∞,−2)∪(2,4)C. (2,4)D. (−2,0)∪(0,2)7.通过研究发现:函数y=f(x)的图象关于点P(a,b)成中心对称图形的充要条件是函数y=f(x+a)−b为奇函数,则函数f(x)=x3−3x2图象的对称中心为( ) 参考公式:(a+b)3=a3+3a2b+3ab2+b3A. (0,0)B. (1,2)C. (1,−2)D. (2,−4)8.已知正实数a,b满足a+b=4,则代数式1b +b+1a的最小值为( )A. 5+12B. 5+14C. 54D. 25+2二、多选题:本题共3小题,共18分。

北京市2024-2025学年高一上学期期中考试数学试卷含答案

北京市2024-2025学年高一上学期期中考试数学试卷含答案

北京市2024-2025学年高一上学期期中考试数学试卷(答案在最后)注意事项1.本试卷共四页,共23道小题,满分150分.考试时间120分钟.2.在答题卡上指定位置贴好条形码,或填涂考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.答题不得使用任何涂改工具.出题人:高一备课组审核人:高一备课组一、选择题共12小题,每小题4分,共48分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,{02}A B x x ==<<,则A B = ()A.{1}B.{1,2}C.{0,1,2}D.{02}x x <≤【答案】A 【解析】【分析】根据交集的运算方法即可计算.【详解】∵集合{}1,2,{02}A B x x ==<<,∴A B = {1}.故选:A .2.设命题2:N,25p n n n ∃∈>+,则p 的否定为()A.2N,25n n n ∀∈>+B.2N,25n n n ∀∈≤+ C.2N,25n n n ∃∈≤+ D.2N,25n n n ∃∈<+【答案】B 【解析】【分析】由特称命题的否定为将存在改任意并否定原结论,即可得答案.【详解】由特称命题的否定为全称命题,则原命题的否定为2N,25n n n ∀∈≤+.故选:B 3.方程组221{9x y x y +=-=的解集是()A.(-5,4)B.(5,-4)C.{(-5,4)}D.{(5,-4)}【答案】D 【解析】【分析】消元法解方程组即可求解【详解】解方程组221{9x y x y +=-=,得()2219x x --=,解得54x y =⎧⎨=-⎩,故方程组的解集为{(5,-4)},故选:D.【点睛】本题考查解二元二次方程组及列举法表示集合,注意解集是点集的形式,是基础题4.已知全集U =R ,集合{}2M x x =>,{}13N x x =<<,那么下面的维恩图中,阴影部分所表示的集合为()A.{}2x x > B.{}2x x ≤ C.{}2x x > D.{}1x x ≤【答案】D 【解析】【分析】根据并集和补集的知识求得正确答案.【详解】{}|1M N x x => ,阴影部分表示集合为(){}|1M N x x ⋃=≤R ð.故选:D 5.不等式302xx -<+的解集为()A.{|2}x x <-B.{|23}x x -<< C.{|2x x <-或3}x > D.{|3}x x >【答案】C【分析】将不等式作等价转换,再求解集即可.【详解】30(2)(3)02xx x x -<⇒+->+,故解集为{|2x x <-或3}x >.故选:C 6.函数26()f x x x=-零点所在的一个区间是()A.(2,1)-- B.(0,1)C.(1,2)D.(2,)+∞【答案】C 【解析】【分析】根据零点存在性定理判断即可.【详解】令26()0f x x x=-=,解得:1360x =>,只有一个零点.而()611501f =-=>,()624102f =-=-<,由零点存在性定理知,函数26()f x x x=-零点所在的一个区间是(1,2).故选:C.7.下列函数中,在区间(0,1)上是增函数的是()A.||y x = B.3y x=- C.1y =-D.24y x =-+【答案】A 【解析】【分析】运用增函数定义,结合函数图像判断即可.【详解】对于A,区间()0,1,y x x ==,在()0,1单调递增,A 正确;对于B,区间()0,1,3y x =-,在()0,1单调递减,B 错误;对于C,区间()0,1,1y =-()0,1单调递减,C 错误;对于D,区间()0,1,24y x =-+,在()0,1单调递减,D 错误.故选:A.8.如果函数2()f x x bx c =++对于任意实数t 都有(2)(2)f t f t +=-,那么()A.f (2)<f (1)<f (4)B.f (1)<f (2)<f (4)C.f (4)<f (2)<f (1)D.f (2)<f (4)<f (1)【答案】A【分析】根据给定条件可得函数()f x 图象对称轴为2x =,再借助对称性、单调性即可比较判断作答.【详解】因函数2()f x x bx c =++对于任意实数t 都有(2)(2)f t f t +=-,则其图象对称轴为2x =,且()f x 在[2,)+∞上递增,于是得(2)(3)(4)f f f <<,而(1)(3)f f =,所以(2)(1)(4)f f f <<.故选:A9.已知0a >,0b >,且28a b +=,那么ab 的最大值等于A.4 B.8C.16D.32【答案】B 【解析】【分析】利用基本不等式可求得ab 的最大值.【详解】由基本不等式可得82a b =+≥8ab ≤,当且仅当2a b =时,等号成立,因此,ab 的最大值为8.故选:B.【点睛】本题考查利用基本不等式求最值,考查计算能力,属于基础题.10.已知,,,R a b c d ∈,则“a c b d +>+”是“a b >且c d >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据不等式的性质,分析条件间的推出关系判断充分、必要性.【详解】当3,2,0,2a b c d ==-==时,a c b d +>+,但c d >不成立,充分性不成立;若a b >且c d >,则必有a c b d +>+,必要性成立;所以“a c b d +>+”是“a b >且c d >”的必要不充分条件.故选:B11.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞ B.3,1][,[01]--C.[1,0][1,)-⋃+∞D.[1,0][1,3]-⋃【答案】D 【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在 腊语 上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.12.设函数266,0()34,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数123,,x x x 满足:()()()123f x f x f x ==.则123x x x ++的取值范围是()A.11,66⎛⎤⎥⎝⎦B.11,63⎛⎫⎪⎝⎭C.2026,33⎛⎫⎪⎝⎭ D.2026,33⎛⎤⎥⎝⎦【答案】B 【解析】【分析】根据解析式画出函数草图,结合零点的情况及一次、二次函数性质得236x x +=、1703x -<<,即可得答案.【详解】由解析式,可得如下()f x 图象,令()()()123f x f x f x k ===,要满足题设,则34-<<k ,若123x x x <<,则236x x +=,令343x +=-,则73x =-,故1703x -<<,综上,123x x x ++范围是11,63⎛⎫⎪⎝⎭.故选:B二、填空题共5小题,每小题5分,共25分.13.函数()2f x x =-的定义域是_______.【答案】[)2,+∞【解析】【分析】函数()2f x x =-的定义域满足20x -≥,解得答案.【详解】函数()2f x x =-的定义域满足20x -≥,解得2x ≥,故函数定义域为[)2,+∞.故答案为:[)2,+∞14.已知()f x 是定义在R 上的奇函数,且当x >0时,()f x =2x ,则1()2f -=________.【答案】14-.【解析】【分析】由于函数是奇函数,所以11(()22f f -=-,再由已知的解析式求出1()2f 的值,可得答案【详解】解:因为当x >0时,()f x =2x ,所以2111(()224f ==,因为()f x 是定义在R 上的奇函数,所以111((224f f -=-=-,故答案为:14-15.设函数22y x ax =+在区间(2,)+∞上是增函数,则实数a 的取值范围是______.【答案】2a ≥-【解析】【分析】由题意可知,(2,)+∞为函数单调递增区间的子集,根据子集关系可以求得.【详解】由函数22y x ax =+可知,对称轴为x a =-,因为在区间(2,)+∞上是增函数,则2a -≤,解得2a ≥-,故实数a 的取值范围是2a ≥-.故答案为:2a ≥-16.命题“2[1,2],10x x ax ∀∈-+<”为假命题的一个充分不必要条件是______.【答案】52a <(答案不唯一)【解析】【分析】问题化为1[1,2],x a x x∃∈≤+为真命题,利用对勾函数的单调性求最大值,即可得52a ≤,结合充分不必要条件写出一个符合要求的参数范围即可.【详解】由题设,1[1,2],x a x x ∀∈>+为假命题,故1[1,2],x a x x∃∈≤+为真命题,又1y x x =+在[1,2]x ∈上递增,则max 52y =,只需52a ≤即可,所以,原命题为假命题的一个充分不必要条件是52a <.故答案为:52a <(答案不唯一)17.设函数()()()2,1,242, 1.a x f x x x a x a x ⎧-<⎪=-⎨⎪--≥⎩①若0a =,则(1)2f =;②若1a =,则()f x 的最小值为1-;③存在实数a ,使得()f x 为R 上的增函数;④若()f x 恰有2个零点,则实数a 的取值范围是1,1[2,)2⎡⎫+∞⎪⎢⎣⎭.其中所有正确结论的序号是______.【答案】②③④【解析】【分析】①当0a =时,1x =代入()4()(2)f x x a x a =--中求值即可;②当1a =时,得到21,<1()24(1)(2),1x f x x x x x ⎧-⎪=-⎨⎪--≥⎩.分情况讨论求出各段最小值,最后得到()f x 的最小值.③保证两端都要增,端点考虑即可;④分类讨论,结合二次函数性质可解.【详解】①当0a =时,1x =代入()4()(2)f x x a x a =--中,得到(1)4(10)(10)42f =⨯-⨯-=≠,所以①错误.②当1a =时,21,<1()24(1)(2),1x f x xx x x ⎧-⎪=-⎨⎪--≥⎩.当<1x 时,则21x ->,,所以0<222<x-,1()1f x -<<.当1x ≥时,2231()4(1)(2)4(32)4()24f x x x x x x ⎡⎤=--=-+=--⎢⎥⎣⎦.对于二次函数2314()24y x ⎡⎤=--⎢⎥⎣⎦,对称轴为32x =,在32x =时取得最小值3()12f =-.综上,可得()f x 的最小值为1-,所以②正确.③当1x <时,22()22f x a a x x -=-=---是增函数.当1x ≥时,22()4()(2)432f x x a x a x ax a ⎡⎤=--=-+⎣⎦,其对称轴为32ax =.要使()f x 在R 上是增函数,则24(1)(12)21312a a a a ⎧-≤--⎪⎪-⎨⎪≤⎪⎩.解24(1)(12)21a a a -≤---,即281120a a -+≥,解得115711571616a a +-><或.解312a ≤得23a ≤.显然交集有元素.故存在a 能同时满足这两个条件使得函数在R 上单调递增,所以③正确.④当<1x 时,令2()02f x a x =-=-,则22a x =-,2(2)x a =-,22x a=-.若221x a=-<,即02a <<时,函数()f x 在<1x 时有一个零点.当1x ≥时,()4()(2)f x x a x a =--,令()0f x =,则x a =或2x a =.若1a <且21a ≥,即112a ≤<时,()f x 在1x ≥时有一个零点,结合1x <时的情况,此时()f x 恰有2个零点.若1a ≥,要使()f x 恰有2个零点,则21a >且22a a =-(无解)或者21a >且222a a=-(无解)或者1a >且21a >且221a-≥(即2a ≥).综上,实数a 的取值范围是1[,1)[2,)2+∞ ,所以④正确.故答案为:②③④.三、解答题共6小题,共77分.解答应写出文字说明,演算步骤或证明过程.18.关于x 的一元二次方程()22230x k x k +++=有两个不相等的实数根12,x x .(1)求k 的取值范围;(2)若12111x x +=-,求k 的值.【答案】(1)3(,)4-+∞(2)3【解析】【分析】(1)根据一元二次方程的性质,结合0∆>,即可求解;(2)根据题意,利用根与系数的关系,求得2121223,x x k k x x +=--=,结合12111x x +=-,列出方程,求得k 的值,即可求解.【小问1详解】由一元二次方程22(23)0x k x k +++=有两个不相等的实数根12,x x ,则满足()222340k k ∆=+->,解得34k >-,即实数k 的取值范围为3(,)4-+∞.【小问2详解】因为方程22(23)0x k x k +++=有两个不相等的实数根12,x x ,由(1)知34k >-,且2121223,x x k k x x +=--=,因为12111x x +=-,可得12121x x x x +=-,即1212x x x x +=-,可得223k k --=-,即223k k +=,解得3k =或1k =-,因为34k >-,所以3k =.19.设全集R U =,集合{}2|20A x x x =--<,集合{|||1}B x x m =->,其中R m ∈.(1)当1m =时,求()U A B A B ⋂⋃,ð;(2)若A B ⊆,求m 的取值范围.【答案】(1){|10}A B x x =-<< ,(){12}U A B x =-<≤ ð;(2)3m ≥或2m ≤-.【解析】【分析】(1)由题设得{|12}A x x =-<<,{|0B x x =<或2}x >,根据集合交并补运算求集合;(2)根据包含关系有12m -≥或11m +≤-,即可求参数范围.【小问1详解】由题设{}|(2)(1)0{|12}A x x x x x =-+<=-<<,{|1B x x m =<-或1}x m >+,当1m =时,{|0B x x =<或2}x >,故{|10}A B x x =-<< ,且{|02}U B x x =≤≤ð,故(){12}U A B x =-<≤ ð.【小问2详解】由A B ⊆,则12m -≥或11m +≤-,可得3m ≥或2m ≤-.20.已知函数2()(2)2f x x a x a =-++.(1)当0a =时,分别求出函数()f x 在[1,2]-上的最大值和最小值;(2)求关于x 的不等式()0f x <的解集.【答案】(1)最大值为(1)3f -=,最小值为(1)1f =-;(2)答案见解析.【解析】【分析】(1)根据二次函数的图象及性质确定区间上的最大值和最小值即可;(2)分类讨论求含参一元二次不等式解集.【小问1详解】由题设2()2f x x x =-,开口向上且对称轴为1x =,结合二次函数的图象,在[1,2]-上最大值为(1)3f -=,最小值为(1)1f =-.【小问2详解】由题意2(2)2()(2)0x a x a x a x -++=--<,当2a <时,解集为(,2)a ;当2a =时,解集为∅;当2a >时,解集为(2,)a .21.已知函数21()x f x x+=.(1)判断函数的奇偶性,并加以证明;(2)用定义证明()f x 在(0,1)上是减函数;(3)若函数()y f x m =-在12,3⎡⎤⎢⎥⎣⎦上有两个零点,求m 的范围.(直接写出答案)【答案】(1)()f x 是奇函数,理由见解析(2)答案见解析(3)5(2,]2【解析】【分析】(1)对于本题,需要先求出()f x -,然后与()f x 和()f x -进行比较.(2)利用函数单调性的定义,设12,(0,1)x x ∈且12x x <,然后计算12()()f x f x -,根据其正负判断函数的单调性.(3)函数()y f x m =-在1[,3]2上有两个零点,等价于()y f x =与y m =的图象在1[,3]2上有两个交点,需要先分析()f x 在1[,3]2上的单调性和值域,从而确定m 的范围.【小问1详解】函数21()x f x x+=的定义域为(,0)(0,)-∞+∞ ,关于原点对称.22()11()()x x f x f x x x-++-==-=--.根据奇函数的定义,对于定义域内任意x ,()()f x f x -=-,所以函数()f x 是奇函数.【小问2详解】设12,(0,1)x x ∈且12x x <.则222212122112121211(1)(1)()()x x x x x x f x f x x x x x +++-+-=-=,对分子进行化简:222212211222111212212112(1)(1)()()()(1)x x x x x x x x x x x x x x x x x x x x +-+=+--=-+-=--.因为12,(0,1)x x ∈,所以12(0,1)x x ∈,1210x x ->,210x x ->,120x x >.所以21121212()(1)()()0x x x x f x f x x x ---=>,即12()()f x f x >.所以()f x 在(0,1)上是减函数.【小问3详解】1,32x ⎡⎤∈⎢⎥⎣⎦时,211()2x f x x x x+==+≥,当且仅当1x =取得最小值.当121,[,1)2x x ∈时,且12x x <,121[,1)4x x ∈,1210x x ->,210x x ->.则21121212()(1)()()0x x x x f x f x x x ---=>,即12()()f x f x >,则当1)[1,2x ∈()f x 单调递减;当12,(1,3]x x ∈时,且12x x <,12(1,9]x x ∈,1210x x -<,210x x ->.则21121212()(1)()()0x x x x f x f x x x ---=<,即12()()f x f x <,则当(1,3]x ∈,()f x 单调递增;并且215()11524()112222f +===,(1)2f =,23110(3)33f +==.因为函数()y f x m =-在1[,3]2上有两个零点,所以5(2,]2m ∈.22.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:C (x )=(010),35k x x ≤≤+若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k 的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【答案】40k =,因此40()35C x x =+.,当隔热层修建5cm 厚时,总费用达到最小值为70万元.【解析】【详解】解:(Ⅰ)设隔热层厚度为cm x ,由题设,每年能源消耗费用为()35k C x x =+.再由(0)8C =,得40k =,因此40()35C x x =+.而建造费用为1()6C x x=最后得隔热层建造费用与20年的能源消耗费用之和为140800()20()()2066(010)3535f x C x C x x x x x x =+=⨯+=+≤≤++(Ⅱ)22400'()6(35)f x x =-+,令'()0f x =,即224006(35)x =+.解得5x =,253x =-(舍去).当05x 时,'()0f x ,当510x 时,'()0f x ,故5x =是()f x 的最小值点,对应的最小值为800(5)6570155f =⨯+=+.当隔热层修建5cm 厚时,总费用达到最小值为70万元.23.设函数()f x 是定义在R 上的函数,对任意的实数,x y 都有()(1)(1)f x y f x f y +=+⋅-,且当0x >时()f x 的取值范围是(0,1).(1)求证:存在实数m 使得()1f m =;(2)当0x <时,求()f x 的取值范围;(3)判断函数()f x 的单调性,并予以证明.【答案】(1)证明见解析;(2)(1,)+∞;(3)()f x 单调递减,证明见解析.【解析】【分析】(1)令1x y ==结合题设可得(0)1f =,即可证;(2)令y x =-得到1(1)(1)f x f x --=+,若10t x =+>,结合已知即可求范围;(3)令1x x y =+>21x x =+,应用函数单调性定义求证即可.【小问1详解】令1x y ==,则(11)(11)(11)(2)(2)(0)f f f f f f +=+⋅-⇒=,当0x >时()f x 的取值范围是(0,1),即(2)0f ≠,故(0)1f =,显然存在0m =,使()1f m =,得证;【小问2详解】令y x =-,则()(1)(1)f x x f x f x -=+⋅--,即(1)(1)(0)1f x f x f +⋅--==,若10t x =+>,则10x t --=-<,故1(1)(1)f x f x --=+,即1()()f t f t -=,而()(0,1)f t ∈,则()(1,)f t -∈+∞,当0x <时,()f x 取值范围是(1,)+∞;【小问3详解】()f x 单调递减,证明如下:令1x x y =+>21x x =+,则1210x x y -=->,所以1212()()()f x f x f x x =⋅-,则12212()()()[()1]f x f x f x f x x -=--,由题设及(2)知,212()0,()10f x f x x >--<,则12())0(f x f x -<,即12()()f x f x <,所以()f x 单调递减,得证.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
第一学期期中考试
高一数学试卷考试
班别:学号:
姓名:
一、选择题(本大题共10小题,每小题
5分,共50分,每小题只有一个选项是正确的)
1.设集合{M
m
Z |3
2},m {N
n
N |1
3}n ,则M
N


A .{0,1}
B .{1,0,1}
C .{012}
,,D .{1012}
,,,2.设集合
2
{|14},{|230},A x x B x x
x 则R A C B


A .(1,4)
B .(3,4)
C .(1,3)
D .(1,2)
(3,4)
3.已知点
3,3M
在幂函数()f x 的图象上,则
()f x 的表达式为(

A .1
2
()f x x
B .
1
2
()f x x
C .2
()f x x
D .
2
()f x x
4.函数
12)
(x x f 的定义域为(

A .1[
,
)
2B .1
(
,]
2
C .(,)
D .(,1]
5.若函数
1(),10()
,24,01
x
x
x f x x 则)2(log 4f ()
A .1
B .2
C .3
D .4
6.下列函数中,在定义域内既是奇函数又是增函数的为(

A .1
y
x B .
3
y x
C .1y
x
D .||
y
x x 7.已知3
1
3
2
a
,3
2
3
2b
,32
c
则()A .a
b c
B .c
a b
C .c
b a D .b
c a
8.定义在R 上的偶函数()f x 满足:对任意的12
12,[0,
)(),x x x x 有
121
2
()()0,f x f x x x 则
()
A .(3)(2)(1)f f f
B .(1)(2)(3)
f f f C .(2)(1)(3)f f f D .(3)
(1)
(2)
f f f 9.函数
2()
1log f x x 与1
()
2
x g x 在同一直角坐标系下的图象大致是(

10.函数
2
()2
x
f x x 在定义域R 上的零点个数是(

A .0
B .1
C .2
D .3
二、填空题(本大题共有
4小题,每小题
5分,共20分,请把正确的答案写在答题卷上)
11.23(log 9)(log 4)
12.若函数
2
()(1)2
f x kx
k x 是偶函数,则
()f x 的递减区间是
13.某种商品在最近
30天内的价格
()f t (元/件)与时间t (天)的函数关系是
()10f t t (0
30,t t N ),销售量()g t (件)与时间t (天)的函数关系是()
35g t t (0
30,t t
N ),
那么,这种商品的日销售金额的最大值是元,此时t =

14.下列五个判断:
①若
2
()2f x x
ax 在[1,
)上是增函数,则1;
a ②函数2
ln(1)y x
的值域是R ;
③函数
||
2x y
的最小值是1;
④在同一坐标系中函数
2x
y
与2x
y
的图像关于y 轴对称;
其中正确命题的序号是
(写出所有正确的序号)
.。

相关文档
最新文档