北京市海淀区高三上学期期末考试数学试题含答案
海淀区高三年级第一学期理科数学期末测试及答案

海淀区高三年级第一学期理科数学期末测试一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.已知=-=αα2cos ,53cos 则( )A .257 B .257-C .2524D .2524-2.已知抛物线的方程为y 2=4x ,则此抛物线的焦点坐标为( )A .(-1,0)B .(0,-1)C .(1,0)D .(0,1)3.设集合1,,},4,3,2,1{22=+∈=nym xA n m A 则方程表示焦点位于x 轴上的椭圆有( )A .6个B .8个C .12个D .16个4.已知三条不同直线m 、n 、l ,两个不同平面βα,,有下列命题: ①βαββαα////,//,,⇒⊂⊂n m n m②ααα⊥⇒⊥⊥⊂⊂l n l m l n m ,,, ③αββαβα⊥⇒⊥⊂=⋂⊥n m n n m ,,, ④αα//,//m n n m ⇒⊂ 其中正确的命题是( )A .①③B .②④C .①②④D .③5.某台机器上安装甲乙两个元件,这两个元件的使用寿命互不影响.已知甲元件的使用寿命超过1年的概率为0.6,要使两个元件中至少有一个的使用寿命超过1年的概率至少为0.9,则乙元件的使用寿命超过1年的概率至少为 ( )A .0.3B .0.6C .0.75D .0.96.已知函数),20,0)(sin(πϕωϕω≤<>+=x y且此函数的图象如图所示,则点P (),ϕω的坐标是 ( ) A .)2,2(πB .)4,2(πC .)2,4(πD .)4,4(π7.已知向量),sin 3,cos 3(),sin ,cos 2(ββαα==b a 若向量a 与b 的夹角为60°,则直线 21)s i n ()c o s (021s i n c o s 22=++-=+-ββααy x y x 与圆的位置关系是 ( )A .相交B .相切C .相离D .相交且过圆心8.动点P 为椭圆)0(12222>>=+b a by ax 上异于椭圆顶点(±a ,0)的一点,F 1、F 2为椭圆的两个焦点,动圆C 与线段F 1、P 、F 1F 2的延长线及线段PF 2相切,则圆心C 的轨迹为除去坐标轴上的点的( )A .一条直线B .双曲线的右支C .抛物线D .椭圆二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.已知双曲线1422=-xy,则其渐近线方程是 ,离心率e= .10.在复平面内,复数i z i z 32,121+=+=对应的点分别为A 、B 、O 为坐标原点,OB OA OP λ+=.若点P 在第四象限内,则实数λ的取值范围是 .11.等差数列{a n }的公差为3,若a 1,a 3,a 4成等比数列,则a 2=. 12.已知正四棱锥P —ABCD 中,PA=2,AB=2,M 是侧棱PC 的中点,则异面直线PA 与BM 所成角大小为 .13.动点P 在平面区域|)||(|2:221y x y x C +≤+内,动点Q 在曲线1)4()4(:222=-+-y x C上,则平面区域C 1的面积为 ,|PQ|的最小值为 . 14.已知每条棱长都为3的直平行六面体ABCD —A 1B 1C 1D 1中,∠BAD=60°, 长为2的线段MN 的一个端点M 在 DD 1上运动,另一个端点N 在底面ABCD上运动.则MN 中点P 的轨迹与直平行 六面体表面所围成的几何体中较小体积值 为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题共13分)在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若B c a C b c o s )2(c o s -=. (Ⅰ)求∠B 的大小; (Ⅱ)若,4,7=+=c a b 求三角形ABC 的面积.16.(本小题共13分)已知圆C 的方程为:.422=+y x(Ⅰ)直线l 过点P (1,2),且与圆C 交于A 、B 两点,若,32||=AB 求直线l 的方程;(Ⅱ)过圆C 上一动点M 作平行与x 轴的直线m ,设m 与y 轴的交点为N ,若向量 ON OM OQ +=,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.17.(本小题共13分)如图,在直三棱柱ABC —A 1B 1C 1中,,6,3,1,901===︒=∠AA CA CB ACB M 为侧棱CC 1上一点,AM ⊥BA 1 (Ⅰ)求证:AM ⊥平面A 1BC ; (Ⅱ)求二面角B —AM —C 的大小; (Ⅲ)求点C 到平面ABM 的距离.18.(本小题共14分)设函数)1ln(2)1()(2x x x f +-+=. (Ⅰ)求函数f (x )的单调区间;(Ⅱ)当0<a <2时,求函数]30[1)()(2,在区间---=ax x x f x g 的最小值.19.(本小题共14分)设椭圆)0(12222>>=+b a by ax 的焦点分别为F 1(-1,0)、F 2(1,0),右准线l 交x 轴于点A ,且.221AF AF =(Ⅰ)试求椭圆的方程; (Ⅱ)过F 1、F 2分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积的最大值和最小值.20.(本小题共13分)已知函数f (x )的定义域为[0,1],且满足下列条件: ①对于任意;4)1(,3)(],1,0[=≥∈f x f x ,且总有②若.3)()()(,1,0,021212121-+≥+≤+≥≥x f x f x x f x x x x 则有 (Ⅰ)求f (0)的值; (Ⅱ)求证:4)(≤x f ; (Ⅲ)当33)(,...)3,2,1](31,31(1+<=∈-x x f n x n n时,试证明:.参考答案一、选择题(本大题共8小题,每小题5分,共40分)题号1 2 3 4 5 6 7 8答案B C A D C B C A二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分,共30分)9.x y 2±=,(缺一扣1分)25 10.3121-<<-λ 11.-912.4π13.π48+,122- 14.92π三、解答题(本大题共6小题,共80分) 15.(共13分)解:(Ⅰ)由已知及正弦定理可得sin B cos C = 2sin A cos B -cos B sin C …………………………………………………2分 ∴2sin A cos B = sin B cos C +cos B sin C = sin(B +C )又在三角形ABC 中,sin (B +C ) = sin A ≠0 ………………………………………3分 ∴2sinAcosB = sinA ,即在△ABC 中,cosB=21,………………………………5分3π=B ………………………………………………………………………………6分(Ⅱ)B ac c a b cos 27222-+==ac c a -+=∴227………………………………………………………………8分又ac c a c a 216)(222++==+3=∴ac …………………………………………………………………………10分 B ac S ABC sin 21=∴∆43323321=⨯⨯=∴∆ABC S …………………………………………………13分16.(共13分)解:(Ⅰ)①直线l 垂直于x 轴时,直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),其距离为32 满足题意………………………………………1分 ②若直线l 不垂直于x 轴,设其方和为)1(2-=-x k y ,即02=+--k y kx …………………………………………………………2分 设圆心到此直线的距离为d ,则24232d -=,得d =1…………………3分 1|2|12++-=∴kk ,43=k ,………………………………………………………4分故所求直线方程为0543=+-y x ………………………………………………5分 综上所述,所求直线方程为0543=+-y x 或x =1……………………………6分(Ⅱ)设点M 的坐标为)0)(,(000≠y y x ,Q 点坐标为(x ,y )则N 点坐标是),0(0y …7分,ON OM OQ +=2,)2,(),(0000y y x x y x y x ===∴即………………………………………………9分又)0(44,4222020≠=+∴=+y yx y x ……………………………………………11分∴Q 点的轨迹方程是)0(,116422≠=+y yx…………………………………………12分轨迹是一个焦点在y 轴上的椭圆,除去短轴端点. …………………………………13分注:多端点时,合计扣1分.17.(共13分)证明:(Ⅰ)在直三棱柱111C B A ABC -中,易知面⊥11A ACC 面ABC , ︒=∠90ACB ,11A A C C BC 面⊥∴,……………………………………………………………2分 11A A C C AM 面⊆ AM BC ⊥∴B BA BC BA AM =⊥11 ,且BC A AM 1平面⊥∴……………………………………………………………4分解:(Ⅱ)设AM 与A 1C 的交点为O ,连结BO ,由(Ⅰ)可 知AM ⊥OB ,且AM ⊥OC ,所以∠BOC 为二面角 B -AM -C 的平面角,…………………………5分在Rt △ACM 和Rt △A 1AC 中,∠OAC+∠ACO=90°, ∴∠AA 1C=∠MAC ∴Rt △ACM~ Rt △A 1AC ∴AC 2= MC ²AA 1 ∴26=MC ……………………………………7分∴在Rt △ACM 中,223=AMCO AM MC AC ⋅=⋅21211=∴CO∴在Rt △BCO 中,1tan ==COBC BOC .︒=∠∴45BOC ,故所求二面角的大小 为45°………………………………9分 (Ⅲ)设点C 到平面ABM 的距离为h ,易知2=BO ,可知2322232121=⨯⨯=⋅⋅=∆BO AM S ABM ……………………………10分A B C M A B M C V V --= ………………………………………………………………11分 A B C A B MS MC hS∆∆⋅=∴313122232326=⨯=⋅=∴∆∆A B MA B CS S MC h∴点C 到平面ABM 的距离为22………………………………………………13分解法二:(Ⅰ)同解法一…………………………4分 (Ⅱ)如图以C 为原点,CA ,CB ,CC 1所在直线 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则)0,1,0(),6,0,3(),0,0,3(1B A A ,设 M (0,0,z 1) 1BA AM ⊥ .01=⋅∴BA AM 即06031=++-z ,故261=z ,所以)26,0,0(M …………………6分设向量m =(x ,y ,z )为平面AMB 的法向量,则m ⊥AM ,m ⊥AB ,则 ⎪⎩⎪⎨⎧=⋅=⋅00AB m AM m 即,030263⎪⎩⎪⎨⎧=+-=+-y x z x 令x =1,平面AMB 的一个法向量为m =)2,3,1(,……………………………………………………………………8分 显然向量CB 是平面AMC 的一个法向量22||||,cos =⋅⋅>=<CB m CB m CB m易知,m 与CB 所夹的角等于二面角B -AM -C 的大小,故所求二面角的大小为 45°. ………………………………………………………………………………9分 (Ⅲ)所求距离为:2263||==⋅m CB m即点C 到平面ABM 的距离为22………………………………………………13分18.(共14分)解:(Ⅰ).1)2(212)1(2)('++=+-+=x x x x x x f …………………………2分由0)('>x f 得012>-<<-x x 或;由0)('<x f ,得.012<<--<x x 或 又)(x f 定义域为(-1,+∞)∴所以函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0)…5分 (Ⅱ))1(212)(x n ax x x g +--=,定义域为(-1,+∞) 1)2(122)('+--=+--=x ax a x a x g ……………………………………………7分0202,20>->-∴<<aa a a 且由0)('>x g 得aa x ->2,即)(x g 在⎪⎭⎫⎝⎛+∞-,2a a上单调递增;由0)('<x g 得aa x -<<-21,即)(x g 在⎪⎭⎫⎝⎛--a a2,1上单调递减…………8分 ①时 )(,320x g a a<-<在⎪⎭⎫ ⎝⎛-a a 2,0上单调递减,在⎪⎭⎫⎝⎛-3,2a a 上单调递增; ∴在区间[0,3]上,ana aa g x g --=-=2221)2()(min ; (2)30<<a …10分②当)(,32,223x g aa a ≥-<≤时在(0,3)上单调递减,∴在区间[0,3]上,42136)3()(min n a g x g --==…………………………13分 综上可知,当230<<a 时,在区间[0,3]上,ana aa g x g --=-=2221)2()(min ;当223<≤a 时,在区间[0,3]上42136)3()(min n a g x g --==.…14分19.(共14分)解:(Ⅰ)由题意,),0,(,22||221a A C F F ∴==…………………………………2分212AF AF = 2F ∴为AF 1的中点……………………………………………3分2,322==∴b a即:椭圆方程为.12322=+yx……………………………………………………5分(Ⅱ)当直线DE 与x 轴垂直时,342||2==abDE ,此时322||==a MN ,四边形DMEN 的面积为42||||=⋅MN DE .同理当MN 与x 轴垂直时,也有四边形DMEN 的面积为42||||=⋅MN DE .…7 分当直线DE ,MN 均与x 轴不垂直时,设DE ∶)1(+=x k y ,代入椭圆方程,消去 y 得:.0)63(6)32(2222=-+++k x k x k设⎪⎪⎩⎪⎪⎨⎧+-=+-=+,3263,326),,(),,(222122212211k k x x kkx x y x E y x D 则…………………………………8分所以,231344)(||222122121++⋅=-+=-kkx x x x x x ,所以,2221232)1(34||1||kk x x kDE ++=-+=,同理,.32)11(34)1(32)1)1((34||2222kkkkMN ++=-++-=………………………………10分所以,四边形的面积222232)11(3432)1(34212||||kkkk MN DE S ++⋅++⋅=⋅=13)1(6)21(242222++++=kkkk ,…………………………………12分 令uuu S kk u 61344613)2(24,122+-=++=+=得因为,2122≥+=kk u当2596,2,1==±=S u k 时,且S 是以u 为自变量的增函数,所以42596<≤S .综上可知,四边形DMEN 面积的最大值为4,最小值为2596.…………………14分20.(共13分)解:(Ⅰ)令021==x x ,由①对于任意]1,0[∈x ,总有3)0(,3)(≥∴≥f x f ……………………………1分 又由②得 3)0(,3)0(2)0(≤-≥f f f 即;……………………………………2分 .3)0(=∴f …………………………………………………………………………3分证明:(Ⅱ)任取2121]1,0[,x x x x <∈且设,则3)()()]([)(1211212--+≥-+=x x f x f x x x f x f , 因为1012≤-<x x ,所以03)(,3)(1212≥--≥-x x f x x f 即,).()(21x f x f ≤∴………………………………………………………………5分 .4)1()(,]1,0[=≤∈∴f x f x 时当……………………………………………7分(Ⅲ)先用数学归纳法证明:)(331)31(*11N n f n n ∈+≤-- (1)当n =1时,331314)1()31(+=+===f f ,不等式成立;(2)假设当n=k 时,)(331)31(*11N k f k k ∈+≤--由6)31()31()31(3)3131()31()]3131(31[)31(1-++≥-++≥++=-kkkkkkkkkk f f f f f f f得≤)31(3kf 9316)31(11+≤+--k k f331)31(+≤∴kkf即当n=k+1时,不等式成立. 由(1)(2)可知,不等式331)31(+≤∴kkf 对一切正整数都成立.于是,当)31(331331333,...)3,2,1](31,31(111---≥+=+⨯>+=∈n n nn nf x n x 时,,而x ∈[0,1],f (x )单调递增)31()31(1-<∴n nf f 所以33)31()31(1+<<∴-x f f n n……………………………………13分。
北京市海淀区2024届高三上学期期末练习数学试题含答案

海淀区2023-2024学年第一学期期末练习高三数学2024.01(答案在最后)本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,3,4,5,6U =,{}13,5A =,,{}1,2,3B =,则()U A B =ð()A.{}2,4,5,6 B.{}4,6 C.{}2,4,6 D.{}2,5,6【答案】A 【解析】【分析】由集合的交集运算、补集运算即可求解.【详解】由题意集合{}1,2,3,4,5,6U =,{}13,5A =,,{}1,2,3B =,则{}1,3A B = ,(){}2,4,5,6U A B = ð.故选:A.2.如图,在复平面内,复数1z ,2z 对应的点分别为1Z ,2Z ,则复数12z z ⋅的虚部为()A .i- B.1- C.3i - D.3-【答案】D 【解析】【分析】由复数对应的点求出复数1z ,2z ,计算12z z ⋅,得复数12z z ⋅的虚部.【详解】在复平面内,复数1z ,2z 对应的点分别为1Z ,2Z ,则112z i =+,22z i =-+,得()()1212i 2i 43i z z ⋅=+-+=--,所以复数12z z ⋅的虚部为3-.故选:D3.已知直线1:12yl x +=,直线2:220l x ay -+=,且12l l ∥,则=a ()A.1 B.1- C.4D.4-【答案】B 【解析】【分析】由直线平行的充要条件列方程求解即可.【详解】由题意直线1:12yl x +=,直线2:220l x ay -+=,且12l l ∥,所以()11202a ⨯--⨯=,解得1a =-.故选:B.4.已知抛物线2:8C y x =的焦点为F ,点M 在C 上,4MF =,O 为坐标原点,则MO =()A. B.4C.5D.【答案】D 【解析】【分析】先由抛物线的焦半径公式求出点M 的坐标,再利用两点间的距离公式求出MO .【详解】设()00,Mxy ,2008y x =,又因为024MF x =+=,所以2002,16x y ==,故MO ===故选:D.5.在正四棱锥P ABCD -中,2AB =,二面角P CD A --的大小为π4,则该四棱锥的体积为()A.4B.2C.43D.23【答案】C 【解析】【分析】作出辅助线,得到PQH ∠为二面角P CD A --的平面角,所以π4PQH ∠=,从而求出四棱锥的高,由棱锥体积公式求出答案.【详解】连接,AC BD ,相交于点H ,则H 为正方形ABCD 的中心,故PH ⊥底面ABCD ,取CD 的中点Q ,连接,HQ PQ ,则,HQ CD PQ CD ⊥⊥,112HQ AD ==,故PQH ∠为二面角P CD A --的平面角,所以π4PQH ∠=,故1PH HQ ==,所以该四棱锥的体积为21433AB PH ⨯⋅=.故选:C6.已知圆22:210C x x y ++-=,直线()10mx n y +-=与圆C 交于A ,B 两点.若ABC 为直角三角形,则()A.0mn =B.0-=m nC.0m n +=D.2230m n -=【答案】A 【解析】【分析】由直线与圆相交的弦长公式AB =.【详解】因为圆22:210C x x y ++-=,圆心为()1,0C -,半径为r =CA CB ==因为ABC为直角三角形,所以2AB ==,设圆心()1,0C -到直线()10mx n y +-=的距离为d,d ==由弦长公式AB =1d =1=,化简得0mn =.故选:A.7.若关于x 的方程log 0xa x a -=(0a >且1a ≠)有实数解,则a 的值可以为()A.10B.eC.2D.54【答案】D 【解析】【分析】根据反函数的性质以及导数的几何意义,只需函数()xf x a =与直线y x =相交即可.【详解】对比选项可知我们只需要讨论1a >时,关于x 的方程log 0xa x a -=的解的情况,若关于x 的方程log 0xa x a -=(0a >且1a ≠)有实数解,即()xf x a =与()log a g x x =的图像有交点,因为()xf x a =与()log a g x x =互为反函数,所以()xf x a =与()log a g x x =的图像关于直线对称,如图所示:设函数()xf x a =与直线y x =相切,切点为()00,P x y ,()ln xf x a a '=,则有000ln 1xx a a a x ⎧=⎪⎨=⎪⎩,解得:0ex a =⎧⎪⎨=⎪⎩,由图像可知,当(a ∈时,曲线()x f x a =与直线y x =有交点,即()xf x a =与()log a g x x =的图像有交点,即方程log 0xa x a -=有解.故选:D.8.已知直线1l ,2l 的斜率分别为1k ,2k ,倾斜角分别为1α,2α,则“()12cos 0αα->”是“120k k >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由题意首项得12ππ,0,,π22αα⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭,再结合必要不充分条件的定义、斜率与倾斜角的关系,两角差的余弦公式即可得解.【详解】由题意两直线均有斜率,所以12ππ,0,,π22αα⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭,若取122ππ,33αα==,则有()1202ππ1332cos cos αα⎛=⎫-= ⎪⎭->⎝,但122ππtan tan 3033k k ==-<;若12121212sin sin tan tan 0cos cos k k αααααα==>,又12sin sin 0αα>,所以12cos cos 0αα>,而()121212cos cos cos sin sin 0αααααα-=+>,综上所述,“()12cos 0αα->”是“120k k >”的必要而不充分条件.故选:B.9.已知{}n a 是公比为()1q q ≠的等比数列,n S 为其前n 项和.若对任意的*N n ∈,11n a S q<-恒成立,则()A.{}n a 是递增数列B.{}n a 是递减数列C.{}n S 是递增数列D.{}n S 是递减数列【答案】B 【解析】【分析】先根据等比数列前n 项和()111nn a q S q-=-,结合11na Sq<-恒成立,得出,a q 的取值范围,得到{}n a 是递减数列.【详解】{}n a 是公比为()1q q ≠的等比数列,n S 为其前n 项和()111nn a q S q-=-,()1111111n n n a q a a S S q q q-<∴=<--- ,恒成立,101n a q q ⨯>-恒成立,若0q <,则n q 可能为正也可能为负,不成立所以10,01na q q>>-,当{}10,01,n a q a ><<是递减数列,当10,1,a q {}n a 是递减数列,故选:B .10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.如图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱AG ,BH ,CI ,DJ ,EK ,FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形PGHI ,PIJK ,PKLG 构成.设1BC =,10928GPI IPK KPG θ'∠=∠=∠=≈ ,则上顶的面积为()(参考数据:1cos 3θ=-,tan 2θ=A. B.332C.922D.924【答案】D 【解析】【分析】根据蜂房的结构特征,即可根据锐角三角函数以及三角形面积公式求解.【详解】由于10928GPI IPK KPG θ'∠=∠=∠=≈ ,所以10928GHI θ'∠=≈ ,连接G I ,取其中点为O ,连接OH ,所以2224tan2GO OH θ===,由1BC =,且多边形ABCDEF为正六边形,所以2sin 60AC AB == ,由于GI AC =,所以=44OH =,故一个菱形的面积为163222244GHI S GI OH =⨯⨯⋅= =,因此上顶的面积为344⨯=,故选:D第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.在51x x ⎫-⎪⎭的展开式中,x 的系数为__________.【答案】5-【解析】【分析】由二项式的展开式的通项进行求解即可.【详解】51x x ⎫-⎪⎭的展开式的通项为()53521551C 1C rrrr rrr T x x x --+⎛⎫=-=-⋅ ⎪⎝⎭令5312r-=得1r =,所以125C 5T x x =-⋅=-,x 的系数为5-.故答案为:5-.12.已知双曲线221x my -=30y -=,则该双曲线的离心率为__________.【答案】2【解析】【分析】由双曲线方程可得其渐近线方程,从而得关于m 的方程,再结合离心率公式求解即可.【详解】由题意得0m >,易知双曲线221x my -=,即2211y x m-=的渐近线方程为1,y m =13,m=得13,m =所以该双曲线的离心率11 2.c e a m==+=故答案为:2.13.已知点A ,B ,C 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则AB BC ⋅=__________;点C 到直线AB 的距离为__________.【答案】①.1-②.55755【解析】【分析】建立适当的平面直角坐标系,由向量数量积的坐标运算公式以及点到直线的距离公式即可求解.【详解】以B 为原点建立如图所示的平面直角坐标系,由题意()()()2,1,0,0,1,3A B C -,所以()()2,11,3231AB BC ⋅=-⋅=-=-,而直线AB 的表达式为12y x =-,即20x y +=所以点C 到直线AB 的距离为21235512d +⨯==+.故答案为:1-,55.14.已知无穷等差数列{}n a 的各项均为正数,公差为d ,则能使得1n n a a +为某一个等差数列{}n b 的前n 项和()1,2,n = 的一组1a ,d 的值为1a =__________,d =__________.【答案】①.1②.1(答案不唯一)【解析】【分析】设等差数列{}n b 的前n 项和为n S ,根据题意可得123,,b b b .根据2132,b b b =+结合等差数列的通项公式,可得关于1,a d 的方程,解方程即可.【详解】设等差数列{}n b 的前n 项和为n S ,则1,n n n S a a +=112223334,,.S a a S a a S a a ∴===又{}n a 是公差为d 的等差数列,11122212312233234233,2,2,b S a a b S S a a a a da b S S a a a a da ∴===-=-==-=-=2132,b b b =+ 即()()()21231111222,422,da a a da d a d a a d d a d ⨯=+∴+=+++整理得()110,a a d -=由题知110,.a a d >∴=故满足题意的一组1a ,d 的值为11a =,1d =.(答案不唯一)故答案为:1;1(答案不唯一)15.已知函数()cos f x x a =+.给出下列四个结论:①任意a ∈R ,函数()f x 的最大值与最小值的差为2;②存在a ∈R ,使得对任意x ∈R ,()()π2+-=f x f x a ;③当0a ≠时,对任意非零实数x ,ππ22f x f x ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭;④当0a =时,存在()0,πT ∈,0x ∈R ,使得对任意Z n ∈,都有()()00f x f x nT =+.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】取0a =可判断①,取1a =化简后可判断②,先化简,取πx =可判断③,取π2T =可判断④.【详解】对于①,当0a =时()cos f x x =,其最大值为1,最小值为0,()f x 的最大值与最小值的差为1,故①错误;对于②,当1a =时,()cos 11cos =+=+f x x x ,()()π-cos π-11cos 1cos =+=-=-f x x x x ,因此对任意x ∈R ,()()π22+-==f x f x a ,故②正确;对于③,ππcos sin 22⎛⎫⎛⎫+=++=- ⎪ ⎪⎝⎭⎝⎭f x x a a x ,ππcos sin 22⎛⎫⎛⎫-=-+=+ ⎪ ⎪⎝⎭⎝⎭f x x a a x ,当πx =时ππ22⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭f x f x a ,故③错误;对于④,当0a =时()cos f x x =,取π2T =,0π=4x ,使得对任意Z n ∈,都有()()00f x f x nT =+,故正确.故答案为:②④三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱柱1111ABCD A B C D -中,侧面11ABB A 是正方形,平面11ABB A ⊥平面ABCD ,AB CD ∥,12AD DC AB ==,M 为线段AB 的中点,1AD B M ⊥.(1)求证:1//C M 平面11ADD A ;(2)求直线1AC 与平面11MB C 所成角的正弦值.【答案】(1)证明见解析(2)69【解析】【分析】(1)连接1AD ,由四棱柱性质可得11MAD C 为平行四边形,利用线面平行的判定定理即可证得1//C M 平面11ADD A ;(2)由面面垂直的性质以及线面垂直判定定理可求得1,,AD AB AA 三条棱两两垂直,建立空间直角坐标系利用空间向量即可求得结果.【小问1详解】连接1AD ,如下图所示:在四棱柱1111ABCD A B C D -中,侧面11CDD C 为平行四边形,所以11C D CD ∥,11C D CD =,因为AB CD ∥,12CD AB =,M 为AB 中点,所以CD AM ∥,CD AM =,所以11C D AM ∥,11C D AM =,所以四边形11MAD C 为平行四边形,所以11MC AD ∥,因为1C M ⊄平面11ADD A ,所以1//C M 平面11ADD A ,【小问2详解】在正方形11ABB A 中,1AA AB ⊥,因为平面11ABB A ⊥平面ABCD ,平面11ABB A ⊥⋂平面ABCD AB =;所以1AA ⊥平面ABCD ,而AD ⊂平面ABCD ,即可得1AA AD ⊥,因为1AD B M ⊥,11,AA B M ⊂平面11ABB A ,1B M 与1AA 相交,所以AD ⊥平面11ABB A ,而AB ⊂平面11ABB A ,即AD AB ⊥;如图建立空间直角坐标系A xyz -.不妨设1AD =,则()0,0,0A ,()11,2,1C ,()10,2,2B ,()0,0,1M .所以()11,2,1AC = ,()111,0,1C B =- ,()11,2,0MC =.设平面11MB C 的法向量为(),,n x y z =,则111020n C B x z n MC x y ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ ,令2x =,则1y =-,2z =,于是()2,1,2n =-;因为111cos ,9AC n AC n AC n⋅==⋅,所以直线1AC 与平面11MB C所成角的正弦值为9.17.在ABC 中,2cos 2c A b a =-.(1)求C ∠的大小;(2)若c =ABC 存在,求AC 边上中线的长.条件①:ABC的面积为;条件②:1sin sin 2B A -=;条件③:2222b a -=.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】17.π318.不能选①,选②或③,答案均为1【解析】【分析】(1)由正弦定理及sin sin cos cos sin B A C A C =+得到1cos 2C =,结合()0,πC ∈,得到π3C =;(2)选①,由三角形面积和余弦定理得到2211a b +=,由222a b ab +≥推出矛盾;选②,根据三角恒等变换得到π6A =,ABC 是以AC 为斜边的直角三角形,由正弦定理得到AC ,求出中线;选③,由余弦定理得到223a b ab +-=,设AC 边上的中线长为d ,再由余弦定理得到AC 边上的中线的长为1.【小问1详解】由正弦定理sin sin sin a b c A B C==及2cos 2c A b a =-,得2sin cos 2sin sin C A B A =-.①因为πA B C ++=,所以()sin sin sin cos cos sin B A C A C A C =+=+.②由①②得2sin cos sin 0A C A -=.因为()0,πA ∈,所以sin 0A ≠.所以1cos 2C =.因为()0,πC ∈,所以π3C =.【小问2详解】选①,ABC 的面积为即1sin 2ab C =,即4ab =8ab =,因为c =222cos 2a b c C ab +-=,即2231162a b +-=,解得2211a b +=,由基本不等式得222a b ab +≥,但1128<⨯,故此时三角形不存在,不能选①,选条件②:1sin sin 2B A -=.由(1)知,π33ππ2B A A ∠=--∠=-∠.所以2π1sin sin sin sin sin sin 322B A A A A A A⎛⎫-=--=+-⎪⎝⎭31cos sin 22A A =-πsin 3A ⎛⎫=- ⎪⎝⎭.所以π1sin 32A ⎛⎫-=⎪⎝⎭.因为2π0,3A ⎛⎫∈ ⎪⎝⎭,所以πππ,333A ⎛⎫-∈- ⎪⎝⎭.所以π3π6A -=,即π6A =.所以ABC 是以AC 为斜边的直角三角形.因为c =所以32πsin sin 3AB AC C ===.所以AC 边上的中线的长为112AC =.选条件③:2222b a -=.由余弦定理得223122a b ab +-=,即223a b ab +-=.设AC 边上的中线长为d ,由余弦定理得2222cos 42b ab d a C =+-⋅2242b ab a =+-2222342b a b a +-=+-1=.所以AC 边上的中线的长为1.18.甲、乙、丙三人进行投篮比赛,共比赛10场,规定每场比赛分数最高者获胜,三人得分(单位:分)情况统计如下:场次12345678910甲8101071288101013乙9138121411791210丙121191111998911(1)从上述10场比赛中随机选择一场,求甲获胜的概率;(2)在上述10场比赛中,从甲得分不低于10分的场次中随机选择两场,设X 表示乙得分大于丙得分的场数,求X 的分布列和数学期望()E X ;(3)假设每场比赛获胜者唯一,且各场相互独立,用上述10场比赛中每人获胜的频率估计其获胜的概率.甲、乙、丙三人接下来又将进行6场投篮比赛,设1Y 为甲获胜的场数,2Y 为乙获胜的场数,3Y 为丙获胜的场数,写出方差()1D Y ,()2D Y ,()3D Y 的大小关系.【答案】(1)310(2)分布列见解析,43(3)()()()213D Y D Y D Y >>【解析】【分析】(1)从表格中可以发现甲获胜的场数为3场,从而得到甲获胜的概率;(2)从表格中可以发现在10场比赛中,甲得分不低于10分的场次有6场,分别是第2场,第3场,第5场,第8场,第9场,第10场。
2020~2021北京市海淀区高三上学期期末数学试卷及答案

2021北京海淀高三(上)期末数 学2020.01本试卷共8页,150分。
考试时常120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,本试卷和答题纸一并交回。
第一部分(选择题 共40分)一、选择题共10 小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)抛物线x =2y 的准线方程是(A )21-=x (B )41-=x (C )21y -= (D ) 41y -= (2)在复平面内,复数ii+1对应的点位于 (A )第一象限(B )第二象限 (C )第三象限 (D )第四象限(3)在()52-x 的展开式中,4x 的系数为(A )5(B )5-(C )10(D )10(4)已知直线02:=++ay x l ,点),(11A --和点)(2,2B ,若AB l //,则实数a 的值为 (A )1(B )1-(C )2(D )2-(5)某三棱锥的三视图如图所示,该三棱锥的体积为(A )2(B )4(C )6(D )12(6)已知向量a ,b 满足1=a ,),(12-=b ,且2=-b a ,则=⋅b a (A )1-(B )0(C )1(D )2(7)已知α,β是两个不同的平面,“αβ∥”的一个充分条件是(A )α内有无数直线平行于β (B )存在平面γ,αγ⊥,βγ⊥ (C )存在平面γ,m αγ=,n βγ=且m n ∥(D )存在直线l ,l α⊥,l β⊥ (8)已知函数2()12sin ()4f x x π=-+ 则(A )()f x 是偶函数(B )函数()f x 的最小正周期为2π (C )曲线()y f x =关于π4x =-对称 (D )(1)(2)f f >(9)数列{}n a 的通项公式为23n a n n =-,n ∈N ,前n 项和为n S ,给出下列三个结论:①存在正整数,()m n m n ≠,使得m n S S =;②存在正整数,()m n m n ≠,使得m n a a += ③记,12(1,2,3,)n n T a a a =则数列{}n T 有最小项,其中所有正确结论的序号是(A )① (B )③ (C )①③ (D )①②③(10)如图所示,在圆锥内放入连个球1O ,2O ,它们都与圆锥相切(即与圆锥的每条母线相切),切点圆(图中粗线所示)分别为⊙C 1,⊙C 2. 这两个球都与平面a 相切,切点分别为1F ,2F ,丹德林(G·Dandelin )利用这个模型证明了平面a 与圆锥侧面的交线为椭圆,1F ,2F 为此椭圆的两个焦点,这两个球也称为Dandelin 双球。
2024北京海淀区高三(上)期末数学试题及答案

高三年级(数学)参考答案 第 1 页(共 9 页)海淀区2023—2024学年第一学期期末练习高三数学参考答案一、选择题(共10小题,每小题4分,共40分)(1)A(2)D (3)B (4)D (5)C (6)A (7)D (8)B (9)B (10)D二、填空题(共5小题,每小题5分,共25分)( 11 )5-(12)2 (13)1-(14)1 1(答案不唯一) (15)②④三、解答题(共6小题,共85分)(16)(共13分)解:(Ⅰ)连接1AD .在四棱柱1111ABCD A B C D -中,侧面11CDD C 为平行四边形,所以11//C D CD ,11C D CD =.因为//AB CD ,12CD AB =,M 为AB 中点, 所以//CD AM ,CD AM =.所以11//C D AM ,11C D AM =.所以四边形11MAD C 为平行四边形.所以11//MC AD .因为1C M ⊄平面11ADD A ,所以1//C M 平面11ADD A . (Ⅱ)在正方形11ABB A 中,1AA AB ⊥.因为平面11ABB A ⊥平面ABCD ,所以1AA ⊥平面ABCD .所以1AA ⊥AD .因为1AD B M ⊥, 1B M ⊂平面11ABB A ,1B M 与1AA 相交,M D 1C 1B 1A 1D C B A高三年级(数学)参考答案 第 2 页(共 9 页)所以AD ⊥平面11ABB A .所以AD ⊥AB .如图建立空间直角坐标系A xyz -.不妨设1AD =,则(0,0,0)A ,1(1,2,1)C ,1(0,2,2)B ,(0,0,1)M . 所以1(1,2,1)AC =,11(1,0,1)C B =-,1(1,2,0)MC =. 设平面11MB C 的法向量为 (,,)x y z =n ,则 1110,0,C B MC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20.x z x y -+=⎧⎨+=⎩ 令2x =,则1y =-,2z =.于是(2,1,2)=-n .因为111cos ,|||AC AC AC ⋅<>==⋅n n n |, 所以直线1AC 与平面11MB C高三年级(数学)参考答案 第 3 页(共 9 页)(17)(共14分)解:(Ⅰ)由正弦定理sin sin sin a b c A B C==及2cos 2c A b a =-,得 2sin cos 2sin sin C A B A =-. ①因为πA B C ++=,所以sin sin()sin cos cos sin B A C A C A C =+=+. ② 由①②得2sin cos sin 0A C A -=.因为(0,π)A ∈,所以sin 0A ≠. 所以1cos 2C =. 因为(0,π)C ∈, 所以π3C =. (Ⅱ)选条件②:1sin sin 2B A -=. 由(Ⅰ)知,π2ππ33B A A ∠=--∠=-∠. 所以2πsin sin sin()sin 3B A A A -=--11sin sin sin 22A A A A A =+-- πsin()3A =-. 所以π1sin()32A -=. 因为2π(0,)3A ∈,所以πππ(,)333A -∈-. 所以ππ36A -=,即π6A =. 所以ABC △是以AC 为斜边的直角三角形.因为c =所以2sin sin 3AB AC C ==.高三年级(数学)参考答案 第 4 页(共 9 页) 所以AC 边上的中线的长为1.选条件③:2222b a -=.由余弦定理得223a b ab +-=.AC 设边上的中线长为d ,由余弦定理得 2222cos 42b ab d a C =+-⋅ 2242b ab a =+- 2222234a b b a =-+-+1=. 所以AC 边上的中线的长为1.(18)(共13分)解:(Ⅰ)根据三人投篮得分统计数据,在10场比赛中,甲共获胜3场,分别是第3场,第8场,第10场.设A 表示“从10场比赛中随机选择一场,甲获胜”,则 3()10P A =.(Ⅱ)根据三人投篮得分统计数据,在10场比赛中,甲得分不低于10分的场次有6场,分别是第2场,第3场,第5场,第8场,第9场,第10场,其中乙得分大于丙得分的场次有4场,分别是第2场、第5场、第8场、第9场. 所以X 的所有可能取值为0,1,2.2024261(0)15C C P X C ===,1124268(1)15C C P X C ⋅===,0224262(2)5C C P X C ===. 所以X 的分布列为所以()012151553E X =⨯+⨯+⨯=. (Ⅲ)213()()()D Y D Y D Y >>.高三年级(数学)参考答案 第 5 页(共 9 页)(19)(共15分)解:(Ⅰ)由题意知3=a,2=c所以c 2224=-=b a c . 所以椭圆E 的方程为22194+=x y ,其短轴长为4. (Ⅱ)设直线CD 的方程为1=+x my , 11(,)C x y ,22(,)D x y ,则11(,)--M x y .由221,941⎧+=⎪⎨⎪=+⎩x y x my 得22(49)8320m y my ++-=. 所以122849-+=+my y m .由(3,0)A 得直线AM 的方程为11(3)3=-+y y x x . 由11(3),31⎧=-⎪+⎨⎪=+⎩y y x x x my 得11123y y x my -=+-.因为111=+x my , 所以12y y =-,112()122y my x m -=-+=.所以112(,)22my yN --. 因为Q 为OD 的中点,且221=+x my , 所以221(,)22my y Q +. 所以直线NQ 的斜率21221222121288492212()1812912249m y y y y m m k my my m y y m m m -+++====+-+--+--+. 当0m ≤时,0k ≤.高三年级(数学)参考答案 第 6 页(共 9 页)当0m >时,因为912m m +≥m .所以28129m k m =+.所以当m k(20)(共15分)解:(Ⅰ)①当1=a 时,2()sin (sin )f x x x x b x x x b =-+=-+.记()sin =-g x x x (0x ≥),则'()1cos 0=-≥g x x . 所以()g x 在[0,)+∞上是增函数. 所以当0>x 时,()(0)0>=g x g .所以当0>x 时,()(sin )f x x x x b b =-+>.②由2()sin =-+f x x x x b 得'()2sin cos f x x x x x =--,且'(0)0=f . 当0>x 时,'()(1cos )sin =-+-f x x x x x . 因为1cos 0-≥x ,sin 0->x x , 所以'()0>f x .因为'()'()-=-f x f x 对任意∈R x 恒成立, 所以当0<x 时,'()0<f x . 所以0是()f x 的唯一极值点.(Ⅱ)设曲线()=y f x 与曲线cos =-y x 的两条互相垂直的“优切线”的切点的横坐标分别为1x ,2x ,其斜率分别为1k ,2k ,则121=-k k . 因为(cos )'sin x x -=, 所以1212sin sin 1⋅==-x x k k . 所以12{sin ,sin }{1,1}=-x x . 不妨设1sin 1=x ,则122π=π+x k ,∈Z k . 因为111111'()2sin cos ==--k f x ax x x x ,由“优切线”的定义可知111112sin cos sin --=ax x x x x .高三年级(数学)参考答案 第 7 页(共 9 页)所以1124==π+πa x k ,∈Z k . 由“优切线”的定义可知2111111sin cos x x x b x x ⋅-+=-, 所以0=b . 当24=π+πa k ,∈Z k ,0=b 时,取122π=π+x k ,222π=-π-x k ,则11()cos 0=-=f x x ,22()cos 0=-=f x x ,11'()sin 1==f x x ,22'()sin 1==-f x x ,符合题意. 所以24=π+πa k ,∈Z k ,0=b .(21)(共15分)解:(Ⅰ)1()10f A =,1()12H A =; 2()12f A =,2()15H A =.由定义可知:将数表A 中的每个数变为其相反数,或交换两行(列),()H A ,()f A 的值不变. 因为m 为奇数,{1,1}ij a ∈-,所以(1),(2),,()r r r m ,(1),(2),,()c c c m 均不为0.(Ⅱ)当{0,}s m ∈或{0,}t m ∈时,不妨设0s =,即()0r i <,1,2,,i m =.若0t =,结论显然成立; 若0t ≠,不妨设()0c j >,1,2,,j t =,则(,)i j H ∈,1,2,,i m =,1,2,,j t =.所以()H A mt ≥,结论成立.当{0,}s m ∉且{0,}t m ∉时,不妨设()0r i >,1,2,,i s =,()0c j >,1,2,,j t =,则当1s i m +≤≤时,()0r i <;当1t j m +≤≤时,()0c j <. 因为当1,2,,i s =,1,2,,j t t m =++时,()0r i >,()0c j <,所以2(())(())()()0ij ij ij a r i a c j a r i c j ⋅⋅⋅=⋅⋅<.高三年级(数学)参考答案 第 8 页(共 9 页)所以(,)i j H ∈.同理可得:(,)i j H ∈,1,2,,i s s m =++,1,2,,j t =.所以()()()2H A s m t m s t mt ms st ≥-+-=+-. (Ⅲ)当5m =时,()()H A f A 的最小值为89. 对于如下的数表A ,()8()9H A f A =. 下面证明:()8()9H A f A ≥. 设(1)r ,(2)r ,…,()r m 中恰有s 个正数,(1)c ,(2)c ,…,()c m 中恰有t 个正数,,{0,1,2,3,4,5}s t ∈.①若{0,5}s ∈或{0,5}t ∈,不妨设0s =,即()0r i <,1,2,,5i =.所以当1ij a =时,(,)i j H ∈.由A 中所有数不全相同,记数表A 中1的个数为a ,则1a ≥,且25(1)(2)(5)25(25)()22r r r a a f A a +++++--===,()H A a ≥.所以()81()9H A f A ≥>. ②由①设{0,5}s ∉且{0,5}t ∉.若{2,3}s ∈或{2,3}t ∈,不妨设2s =,则由(Ⅱ)中结论知:()51041011H A t t t ≥+-=+≥.因为25|(1)(2)(5)|0()122r r r f A -+++<=≤,所以()118()129H A f A ≥>. ③由①②设{0,2,3,5}s ∉且{0,2,3,5}t ∉.若{,}{1,4}s t =,则由(Ⅱ)中结论知:()25817H A ≥-=. 因为0()12f A <≤, 所以()178()129H A f A ≥>.高三年级(数学)参考答案 第 9 页(共 9 页)若s t =,{1,4}s ∈,不妨设1s t ==,(1)0r >,(1)0c >,且()1()H A f A <,由(Ⅱ)中结论知:()8H A ≥.所以()()8f A H A >≥.若数表A 中存在ij a (,{2,3,4,5}i j ∈)为1,将其替换为1-后得到数表'A . 因为(')()1H A H A =-,(')()1f A f A ≥-, 所以(')()1()(')()1()H A H A H A f A f A f A -≤<-. 所以将数表A 中第i 行第j 列(,2,3,4,5i j =)为1的数替换为1-后()()H A f A 值变小. 所以不妨设1ij a =-(,2,3,4,5i j =). 因为()5528H A ≥+-=,()9f A ≤, 所以()8()9H A f A ≥.。
北京市海淀区高三上学期期末考试数学文试题 含答案

海淀区高三年级第一学期期末练习数学(文)参考答案及评分标准2014.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分)15.(本小题共13分)解:(Ⅰ)πcosππ2()2sinππ44sin cos44f=+=+=+------------------------3分(Ⅱ)由sin cos0x x+≠得ππ,4x k k≠-∈Z.因为cos2()2sinsin cosxf x xx x=++22cos sin2sinsin cosx xxx x-=++------------------------------------5分cos sinx x=+π)4x+,-------------------------------------7分所以()f x的最小正周期2πT=. -------------------------------------9分因为函数siny x=的对称轴为ππ+,2x k k=∈Z, ------------------------------11分又由πππ+,42x k k+=∈Z,得ππ+,4x k k=∈Z,9. 2 10.16 11. 712.{1,2,4}13.50,1015 14.1-;①②③所以()f x 的对称轴的方程为ππ+,4x k k =∈Z .-----------------------------------13分16.(本小题共13分)解:(Ⅰ)由上图可得0.010.190.290.451a ++++=,所以0.06a =. ----------------------------------4分(Ⅱ)设事件A 为“甲队员射击,命中环数大于7环”,它包含三个两两互斥的事件:甲队员射击,命中环数为8环,9环,10环.所以()0.290.450.010.75P A =++=. ----------------------------------9分 (Ⅲ)甲队员的射击成绩更稳定. ---------------------------------13分 17.(本小题共14分)解:(Ⅰ)因为底面ABCD 是菱形,所以//CD AB . ----------------------------1分 又因为CD ⊄平面PAB , -------------------3分 所以//CD 平面PAB . --------------------------4分 (Ⅱ)因为PA PB =,点E 是棱AB 的中点,所以PE AB ⊥. ----------------------------------5分 因为平面PAB ⊥平面ABCD ,平面PAB平面ABCD AB =,PE ⊂平面PAB ,----------------------------------7分所以PE ⊥平面ABCD , ------------------------------------8分 因为AD ⊂平面ABCD ,所以PE AD ⊥. ------------------------------------9分 (Ⅲ)因为CA CB =,点E 是棱AB 的中点,所以CE AB ⊥. --------------------------------10分 由(Ⅱ)可得PE AB ⊥, ---------------------------------11分 所以AB ⊥平面PEC , --------------------------------13分 又因为AB ⊂平面PAB ,所以平面PAB ⊥平面PEC . --------------------------------14分18.(本小题共13分)解:(Ⅰ)'()(1)e x f x x a =++,x ∈R . -------------------------------2分因为函数()f x 是区间[3,)-+∞上的增函数,所以'()0f x ≥,即10x a ++≥在[3,)-+∞上恒成立.------------------------------3分 因为1y x a =++是增函数,所以满足题意只需310a -++≥,即2a ≥. -------------------------------5分 (Ⅱ)令'()0f x =,解得1x a =-- -------------------------------6分 (),'()f x f x 的情况如下:--------------------------------------10分①当10a --≤,即1a ≥-时,()f x 在[0,2]上的最小值为(0)f , 若满足题意只需2(0)e f ≥,解得2e a ≥,所以此时,2e a ≥; --------------------------------------11分②当012a <--<,即31a -<<-时,()f x 在[0,2]上的最小值为(1)f a --, 若满足题意只需2(1)e f a --≥,求解可得此不等式无解,所以a 不存在; ------------------------12分③当12a --≥,即3a ≤-时,()f x 在[0,2]上的最小值为(2)f , 若满足题意只需2(2)e f ≥,解得1a ≥-,所以此时,a 不存在. ------------------------------13分综上讨论,所求实数a 的取值范围为2[e ,)+∞. 19. (本小题共14分)解:(Ⅰ)由题意可得1c =, ----------------------------------1分 又由题意可得12c a =, 所以2a =, ----------------------------------2分所以2223b a c =-=, ----------------------------------3分所以椭圆C 的方程为22143x y +=. ---------------------------------4分所以椭圆C 的右顶点(2,0)A , --------------------------------5分 代入圆F 的方程,可得21r =,所以圆F 的方程为22(1)1x y -+=. ------------------------------6分 (Ⅱ)法1:假设存在直线l :(2)y k x =-(0)k ≠满足条件, -----------------------------7分由22(2),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)1616120k x k x k +-+-=----------------------------8分设11(,)B x y ,则21216243k x k +=+, ---------------------------------9分可得中点22286(,)4343k kP k k -++, --------------------------------11分由点P 在圆F 上可得2222286(1)()14343k k k k --+=++化简整理得20k = --------------------------------13分 又因为0k ≠,所以不存在满足条件的直线l . --------------------------------14分 (Ⅱ)法2:假设存在直线l 满足题意.由(Ⅰ)可得OA 是圆F 的直径, -----------------------------7分 所以OP AB ⊥. ------------------------------8分 由点P 是AB 中点,可得||||2OB OA ==. --------------------------------9分设点11(,)B x y ,则由题意可得2211143x y +=. --------------------------------10分又因为直线l 的斜率不为0,所以214x <, -------------------------------11分所以22222211111||3(1)3444x x OB x y x =+=+-=+<,-------------------------------13分这与||||OA OB =矛盾,所以不存在满足条件的直线l . --------------------------14分 20. (本小题共13分)解:(Ⅰ)只有y =是N 函数. ----------------------------3分 (Ⅱ)函数()[ln ]1g x x =+是N 函数.证明如下:显然,*x ∀∈N ,*()[ln ]1g x x =+∈N . ---------------------------------------4分不妨设*[ln ]1,x k k +=∈N ,由[ln ]1x k +=可得1ln k x k -≤<, 即11e e k k x -≤≤<.因为*k ∀∈N ,恒有11e e e (e 1)1k k k ---=->成立, 所以一定存在*x ∈N ,满足1e e k k x -≤<, 所以设*k ∀∈N ,总存在*x ∈N 满足[ln ]1x k +=,所以函数()[ln ]1g x x =+是N 函数. ---------------------------------------8分 (Ⅲ)(1)当0b ≤时,有2(2)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ---------------------------9分(2)当0b >时,① 若0a ≤,有(1)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ------------------10分② 若01a <≤,由指数函数性质易得 x b a b a ⋅≤⋅,所以*x ∀∈N ,都有()[][]x f x b a b a =⋅≤⋅所以函数()[]x f x b a =⋅都不是N 函数. -----------------11分③ 若1a >,令12m m b a b a +⋅-⋅>,则2log (1)am b a >⋅-,所以一定存在正整数k 使得 12k k b a b a +⋅-⋅>, 所以*12,n n ∃∈N ,使得112k k b a n n b a +⋅<<<⋅, 所以12()(1)f k n n f k <<≤+.又因为当x k <时,x k b a b a ⋅<⋅,所以()()f x f k ≤; 当1x k >+时,1x k b a b a +⋅>⋅,所以()(1)f x f k ≥+, 所以*x ∀∈N ,都有*{()|}n f x x ∉∈N ,所以函数()[]x f x b a =⋅都不是N 函数.------------------13分综上所述,对于任意实数,a b ,函数()[]x f x b a =⋅都不是N 函数.。
北京市海淀区北京师大附中2024年数学高三第一学期期末复习检测试题含解析

北京市海淀区北京师大附中2024年数学高三第一学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设向量a ,b 满足2=a ,1b =,,60a b =,则a tb +的取值范围是 A .)2,⎡+∞⎣B .)3,⎡+∞⎣C .2,6⎡⎤⎣⎦D .3,6⎡⎤⎣⎦2.已知集合{}|1A x x =>-,集合(){}|20B x x x =+<,那么A B 等于( )A .{}|2x x >-B .{}1|0x x -<<C .{}|1x x >-D .{}|12x x -<<3.如图所示,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A .212 B .212C .612D .3124.若复数z 满足2312z z i -=+,其中i 为虚数单位,z 是z 的共轭复数,则复数z =( ) A .35B .25C .4D .55.已知集合A ={﹣2,﹣1,0,1,2},B ={x |x 2﹣4x ﹣5<0},则A ∩B =( ) A .{﹣2,﹣1,0}B .{﹣1,0,1,2}C .{﹣1,0,1}D .{0,1,2}6.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )A .13B .310C .25D .347.如图,正四面体P ABC -的体积为V ,底面积为S ,O 是高PH 的中点,过O 的平面α与棱PA 、PB 、PC 分别交于D 、E 、F ,设三棱锥P DEF -的体积为0V ,截面三角形DEF 的面积为0S ,则( )A .08V V ≤,04S S ≤B .08V V ≤,04S S ≥C .08V V ≥,04S S ≤D .08V V ≥,04S S ≥8.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nn r i r n i n θθθθ+=+⎡⎤⎣⎦,已知)43z i =,则z =( )A .23B .4C .83D .169.已知函数()3cos f x x m x =+,其图象关于直线3x π=对称,为了得到函数2()3g x m x =+的图象,只需将函数()f x 的图象上的所有点( ) A .先向左平移6π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 B .先向右平移6π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 C .先向右平移3π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 D .先向左平移3π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 10.已知{}n a 为正项等比数列,n S 是它的前n 项和,若116a =,且4a 与7a 的等差中项为98,则5S 的值是( )A .29B .30C .31D .3211.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元12.已知定义在R 上函数()f x 的图象关于原点对称,且()()120f x f x ++-=,若()11f =,则()1(2)(3)(2020)f f f f ++++=( )A .0B .1C .673D .674二、填空题:本题共4小题,每小题5分,共20分。
【数学】北京市海淀区高三上学期期末考试试卷(文)(解析版)

北京市海淀区高三上学期期末考试数学试卷(文)一、选择题。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.双曲线的左焦点的坐标为( )A. (-2,0)B.C.D.【答案】A【解析】先根据方程求出,再求出焦点坐标.由题意可知焦点在x轴上,,即,所以选A.2.已知等比数列满足,且成等差数列,则( )A. B. C. D.【答案】C【解析】设公比为q,由等比数列的通项公式和等差数列中项性质列方程,解方程可得q,即可得到所求值.成等差数列,得,即:,所以,=16故选:C.3.若,则( )A. B. C. D.【答案】D【解析】利用对数的运算得出,从而得出,解出a即可.化为,即,所以,,40,故选:D4.已知向量,且,则( )A. B. C. D.【答案】B【解析】利用已知条件求出t,然后可得结果.因为,所以,2t=2,t=1,(2,0)-(1,1)=(1,-1),故选B5.直线被圆截得的弦长为,则的值为( )A. B. C. D.【答案】A【解析】利用圆的弦的性质,通过勾股定理求出.圆心为,半径为;圆心到直线的距离为,因为弦长为2,所以,解得,故选A.6.已知函数,则“”是“函数在区间上存在零点”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】先将函数的零点问题转化成两个函数图象交点的问题,再判断充分必要性.=0,得:,设函数,当时,如下图,函数有交点,所以,在区间上存在零点,充分性成立。
(2)当在区间上存在零点时,如果=0,函数在上无交点如果>0,函数在上图象在第一象限,的图象在第四象限,无交点所以,还是<0,必要性成立,所以是充分必要条件,选C。
7.已知函数为的导函数,则下列结论中正确的是( )A. 函数的值域与的值域不同B. 存在,使得函数和都在处取得最值C. 把函数的图象向左平移个单位,就可以得到函数的图象D. 函数和在区间上都是增函数【答案】C【解析】根据辅助角公式化简可得f(x)sin(x),求导化简可得g(x)sin(x),结合三角形的函数的图象和性质即可判断,值域为:[-,],,值域为:[-,],两函数的值域相同,所以,A错误;B选项,不存在x0,使得函数f(x)和g(x)都在x0处取得极值点,B错误;C选项,的图像向右平移个单位:与相同,C正确;求出单调递增区间可知,在区间上不是增函数,D错误。
2023-2024学年北京市海淀区高三(上)期末数学试卷【答案版】

2023-2024学年北京市海淀区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合U={1,2,3,4,5,6},A={1,3,5},B={1,2,3},则∁U(A∩B)=()A.{2,4,5,6}B.{4,6}C.{2,4,6}D.{2,5,6}2.如图,在复平面内,复数z1,z2对应的点分别为Z1,Z2,则复数z1•z2的虚部为()A.﹣i B.﹣1C.﹣3i D.﹣33.已知直线l1:x+y2=1,直线l2:2x﹣ay+2=0,且l1∥l2,则a=()A.1B.﹣1C.4D.﹣44.已知抛物线C:y2=8x的焦点为F,点M在抛物线C上,且|MF|=4,O为坐标原点,则|OM|=()A.4√2B.4C.5D.2√55.在正四棱锥P﹣ABCD中,AB=2,二面角P﹣CD﹣A的大小为π4,则该四棱锥的体积为()A.4B.2C.43D.236.已知⊙C:x2+2x+y2﹣1=0,直线mx+n(y﹣1)=0与⊙C交于A,B两点.若△ABC为直角三角形,则()A.mn=0B.m﹣n=0C.m+n=0D.m2﹣3n2=07.若关于x的方程log a x−a x=0(a>0且a≠1)有实数解,则a的值可以为()A.10B.e C.2D.5 48.已知直线l1,l2的斜率分别为k1,k2,倾斜角分别为α1,α2,则“cos(α1﹣α2)>0”是“k1k2>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.已知{a n}是公比为q(q≠1)的等比数列,S n为其前n项和.若对任意的n∈N*,S n<a11−q恒成立,则()A .{a n }是递增数列B .{a n }是递减数列C .{S n }是递增数列D .{S n }是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.右图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱AG ,BH ,CI ,DJ ,EK ,FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形PGHI ,PIJK ,PKLG 构成.设BC =1,∠GPI =∠IPK =∠KPG =θ≈109°28',则上顶的面积为( )(参考数据:cosθ=−13,tan θ2=√2)A .2√2B .3√32C .9√22D .9√24二、填空题共5小题,每小题5分,共25分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区高三年级第一学期期末练习数学 2020. 01本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}1,2,3,4,5,6U =,{}1,3,5A =,{}2,3,4B =,则集合U A B I ð是 (A ){1,3,5,6}(B ){1,3,5} (C ){1,3} (D ){1,5}(2)抛物线24y x =的焦点坐标为 (A )(0,1)(B )(10,) (C )(0,1-) (D )(1,0)-(3)下列直线与圆22(1)(1)2x y -+-=相切的是(A )y x =- (B )y x =(C )2y x =- (D )2y x =(4)已知,a b R Î,且a b >,则 (A )11ab <(B )sin sin a b >(C )11()()33ab<(D )22a b >(5)在51()x x-的展开式中,3x 的系数为 (A )5-(B )5(C )10-(D )10(6)已知平面向量,,a b c 满足++=0a b c ,且||||||1===a b c ,则⋅a b 的值为(A )12-(B )12(C)2-(D)2(7)已知α, β, γ是三个不同的平面,且=m αγI ,=n βγI ,则“m n ∥”是“αβ∥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)已知等边△ABC 边长为3. 点D 在BC 边上,且BD CD >,AD =下列结论中错误的是(A )2BDCD= (B )2ABDACDS S ∆∆= (C )cos 2cos BADCAD∠=∠ (D )sin 2sin BAD CAD ∠=∠(9)声音的等级()f x (单位:dB )与声音强度x (单位:2W/m )满足12()10lg110x f x -=⨯⨯.喷气式飞机起飞时,声音的等级约为140dB ;一般说话时,声音的等级约为60dB ,那么喷气式飞机起飞时声音强度约为一般说话时声音强度的 (A )610倍(B )810倍(C )1010倍(D )1210倍(10)若点N 为点M 在平面a 上的正投影,则记()N f M a =. 如图,在棱长为1的正方体1111ABCD A B C D -中,记平面11AB C D 为b ,平面ABCD 为g ,点P 是棱1CC 上一动点(与C ,1C 不重合),1[()]Q f f P g b =,2[()]Q f f P b g =. 给出下列三个结论:①线段2PQ长度的取值范围是1[2;②存在点P 使得1PQ ∥平面b ; ③存在点P 使得12PQ PQ ^. 其中,所有正确结论的序号是 (A )①②③(B )②③(C )①③(D )①②第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
(11)在等差数列{}n a 中, 25a =,52a =,则7a =_________. (12)若复数1i iz +=,则||z =_________.(13)已知点A ,点B ,C 分别为双曲线22213x y a -= (0)a >的左、右顶点. 若△ABC为正三角形,则该双曲线的离心率为_________. (14)已知函数()a f x x x=+在区间(1,4)上存在最小值,则实数a 的取值范围是_________.(15)用“五点法”作函数()sin()f x A x ωϕ=+的图象时,列表如下:A 1则(1)f -=_________,1(0)()2f f +-=_________.(16)已知曲线C :44221x y mx y ++=(m 为常数).(i )给出下列结论:①曲线C 为中心对称图形; ②曲线C 为轴对称图形;③当1m =-时,若点(,)P x y 在曲线C 上,则||1x ≥或||1y ≥.其中,所有正确结论的序号是 .(ii )当2m >-时,若曲线C 所围成的区域的面积小于π,则m 的值可以是 .(写出一个即可)三、解答题共6小题,共80分。
解答应写出文字说明、演算步骤或证明过程。
(17)(本小题共13分)已知函数21()cos cos 2f x x x x =+-.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)若()f x 在区间[0,]m 上的最大值为1,求m 的最小值.(18)(本小题共13分)如图,在三棱锥V ABC -中,平面VAC ⊥平面ABC ,△ABC 和△VAC 均是等腰直角三角形,AB BC =,2AC CV ==,M ,N 分别为VA , VB 的中点. (Ⅰ)求证:AB //平面CMN ; (Ⅱ)求证:AB VC ⊥;(Ⅲ)求直线VB 与平面CMN 所成角的正弦值.(19)(本小题共13分)某市《城市总体规划(2016—2035年)》提出到2035年实现“15分钟社区生活圈”全覆盖的目标,从教育与文化、医疗与养老、交通与购物、休闲与健身4个方面构建 “15分钟社区生活圈”指标体系,并依据“15分钟社区生活圈”指数高低将小区划分为:优质小区(指数为0.6~1)、良好小区(指数为0.4~0.6)、中等小区(指数为0.2~0.4)注:每个小区“15分钟社区生活圈”指数11223344T wT w T w T w T =+++,其中1234,,,w w w w 为该小区四个方面的权重,1234,,,T T T T 为该小区四个方面的指标值(小区每一个方面的指标值为0~1之间的一个数值).现有100个小区的“15分钟社区生活圈”指数数据,整理得到如下频数分布表: (Ⅰ)分别判断A ,B ,C 三个小区是否是优质小区,并说明理由;(Ⅱ)对这100个小区按照优质小区、良好小区、中等小区和待改进小区进行分层抽样,抽取10个小区进行调查,若在抽取的10个小区中再随机地选取2个小区做深入调查,记这2个小区中为优质小区的个数为ξ,求ξ的分布列及数学期望.(20)(本小题共14分)已知椭圆2222:1x y C a b+=(0)a b >>的右顶点()2,0A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,过点O 的直线l 与椭圆C 交于两点P ,Q ,直线AP 和AQ 分别与直线4x =交于点M ,N .求△APQ 与△AMN 面积之和的最小值.(21)(本小题共13分)已知函数2()e (1)(0)xf x ax a =+>.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 有极小值,求证:()f x 的极小值小于1.(22)(本小题共14分)给定整数(2)n n ≥,数列211221,,,n n A x x x ++L :每项均为整数,在21n A +中去掉一项k x , 并将剩下的数分成个数相同的两组,其中一组数的和与另外一组数的和之差的最大值记为k m (1,2,,21)k n =+L . 将1221,,,n m m m +L 中的最小值称为数列21n A +的特征值. (Ⅰ)已知数列5:1,2,3,3,3A ,写出123,,m m m 的值及5A 的特征值;(Ⅱ)若1221n x x x +≤≤≤L ,当[(1)][(1)]0i n j n -+-+≥,其中,{1,2,,21}i j n ∈+L 且i j ≠ 时,判断||i j m m -与||i j x x -的大小关系,并说明理由;(Ⅲ)已知数列21n A +的特征值为1n -,求121||i j i j n x x ≤<≤+-∑的最小值.海淀区高三年级第一学期期末练习参考答案数学 2020.01阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题:本大题共10小题,每小题4分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.三、解答题共6小题,共80分。
解答应写出文字说明、演算步骤或证明过程。
(17)解:(Ⅰ)1cos 21()2222x f x x +=+-1sin 2cos 222x x =+ πsin(2)6x =+.因为sin y x =的单调递增区间为ππ2π,2π()22k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 令πππ22π,2π()622x k k k ⎡⎤+∈-+∈⎢⎥⎣⎦Z , 得πππ,π()36x k k k ⎡⎤∈-+∈⎢⎥⎣⎦Z . 所以()f x 的单调递增区间为πππ,π()36k k k ⎡⎤-+∈⎢⎥⎣⎦Z . (Ⅱ)方法1:因为[0,]x m ∈,所以πππ2[,2]666x m +∈+.又因为[0,]x m ∈,()f x πsin(2)6x =+的最大值为1,所以ππ262m +≥. 解得π6m ≥.所以m 的最小值为π6.方法2:由(Ⅰ)知: 当且仅当π=π()6x k k +∈Z 时,()f x 取得最大值1. 因为()f x 在区间[0,]m 上的最大值为1,所以π6m ≥. 所以m 的最小值为π6.(18)解:(Ⅰ)在△VAB 中,M ,N 分别为VA ,VB 的中点,所以MN 为中位线. 所以//MN AB .又因为AB ⊄平面CMN ,MN ⊂平面CMN , 所以AB //平面CMN .(Ⅱ)在等腰直角三角形△VAC 中,AC CV =,所以VC AC ⊥.因为平面VAC ⊥平面ABC ,平面VAC I 平面ABC AC =, VC ⊂平面VAC ,所以VC ⊥平面ABC . 又因为AB ⊂平面ABC , 所以AB VC ⊥.(Ⅲ)在平面ABC 内过点C 做CH 垂直于AC ,由(Ⅱ)知,VC ⊥平面ABC , 因为CH⊂平面ABC ,所以VC CH ⊥. 如图,以C 为原点建立空间直角坐标系C xyz -.则(0,0,0)C ,(0,0,2)V ,(1,1,0)B ,(1,0,1)M ,11(,,1)22N . (1,1,2)VB =-u u r ,(1,0,1)CM =u u u u r ,11(,,1)22CN =u u u r .设平面CMN 的法向量为(,,)x y z =n ,则0,0.CM CN ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u ur n n 即0,110.22x z x y z +=⎧⎪⎨++=⎪⎩ 令1x =则1y =,1z =-,所以(1,1,1)=-n . 直线VB 与平面CMN 所成角大小为θ,sin |cos ,|||||VB VB VB θ⋅=<>==u u ru u r u u r n n n所以直线VB 与平面CMN所成角的正弦值为3. (19)解:(Ⅰ)方法1:A 小区的指数0.70.20.70.20.50.320.50.280.58T =⨯+⨯+⨯+⨯=, 0.580.60<,所以A 小区不是优质小区;B 小区的指数0.90.20.60.20.70.320.60.280.692T =⨯+⨯+⨯+⨯=, 0.6920.60>,所以B 小区是优质小区;C 小区的指数0.10.20.30.20.20.320.10.280.172T =⨯+⨯+⨯+⨯=, 0.1720.60<,所以C 小区不是优质小区. 方法2:A 小区的指数0.70.20.70.20.50.320.50.280.58T =⨯+⨯+⨯+⨯= 0.580.60<,所以A 小区不是优质小区;B 小区的指数0.90.20.60.20.70.320.60.28T =⨯+⨯+⨯+⨯0.60.20.60.20.60.320.60.280.6>⨯+⨯+⨯+⨯=.B 小区是优质小区;C 小区的指数0.10.20.30.20.20.320.10.28T =⨯+⨯+⨯+⨯0.60.20.60.20.60.320.60.280.6<⨯+⨯+⨯+⨯=.C 小区不是优质小区.(在对A 、B 、C 小区做说明时必须出现与0.6比较的说明.每一项中结论1分,计算和说明理由1分)(Ⅱ)依题意,抽取10个小区中,共有优质小区3010104100+⨯=个,其它小区1046-=个.依题意ξ的所有可能取值为0,1,2.26210C 151(0)C 453P ξ====;1146210C C 248(1)C 4515P ξ====;24210C 62(2)C 4515P ξ====.则ξ的分布列为:1824012315155E ξ=⨯+⨯+⨯=.(20)解:(Ⅰ)解:依题意,得222(0)2,2.a b a cac a b >>=⎧⎪⎪=⎨⎪⎪=-⎩解得,2,1.a b =⎧⎨=⎩所以椭圆C 的方程为2214x y +=.(Ⅱ)设点00(,)Q x y ,依题意,点P 坐标为00(,)x y --,满足220014x y +=(022x -<<且00y ≠),直线QA 的方程为00(2)2y y x x =-- 令4x =,得0022y y x =-,即002(4,)2y N x -. 直线PA 的方程为00(2)2y y x x =-+ ,同理可得002(4,)2y M x +. 设B 为4x =与x 轴的交点.11||||||||22APQ AMN P Q M N S S OA y y AB y y ∆∆+=⋅⋅-+⋅⋅-0000022112|2|2||2222y y y x x =⨯⨯+⨯⨯--+0000112||2||||22y y x x =+⋅--+ 002042||2||||4y y x =+⋅-.又因为220044x y +=,00y ≠,所以002012||2||APQ AMN S S y y y ∆∆+=+⋅002=2||4||y y +≥. 当且仅当01y =±取等号,所以APQ AMN S S ∆∆+的最小值为4.(21)解:(Ⅰ)由已知得2()e (21)x f x ax ax '=++,因为(0)1f = ,(0)1f ¢=, 所以直线l 的方程为1y x =+.(Ⅱ)(i )当01a <?时,2221(1)10ax ax a x a ++=++-≥,所以2()e (21)0x f x ax ax '=++≥(当且仅当1a =且1x =-时,等号成立). 所以()f x 在R 上是单调递增函数. 所以()f x 在R 上无极小值.(ii )当1a >时,一元二次方程2210ax ax ++=的判别式4(1)0a a ∆=->, 记12,x x 是方程的两个根,不妨设12x x <. 则121220,10.x x x x a +=-<⎧⎪⎨=>⎪⎩所以120x x <<.此时()f x ',()f x 随x 的变化如下:所以()f x 的极小值为2()f x .又因为()f x 在2[,0]x 单调递增,所以2()(0)1f x f <=.所以()f x 的极小值为小于1.22. 解:(Ⅰ)由题知:1(33)(23)1m =+-+=;2(33)(31)2m =+-+=;33m =.5A 的特征值为1.(Ⅱ)||=i j m m -||i j x x -.理由如下:由于[(1)][(1)]0i n j n -+-+≥,可分下列两种情况讨论:○1当,{1,2,,1}i j n ∈+L 时, 根据定义可知:212211()()i n n n n n i m x x x x x x x +++=+++-+++-L L212211 =()()n n n n n i x x x x x x x ++++++-++++L L同理可得:212211=()()j n n n n n j m x x x x x x x ++++++-++++L L所以i j i j m m x x -=-.所以||=||i j i j m m x x --.○2当,{1,2,,21}i j n n n ∈+++L 时,同○1理可得: 212111()()i n n n i n n m x x x x x x x ++-=+++--+++L L212111 =()()n n n n n i x x x x x x x ++-+++-+++-L L212111=()()j n n n n n j m x x x x x x x ++-+++-+++-L L所以i j j i m m x x -=-.所以||=||i j i j m m x x --.综上有:||=i j m m -||i j x x -.(Ⅲ)不妨设1221n x x x +≤≤≤L ,121||i j i j n x x ≤<≤+-∑=2122112(22)2022n n n n n nx n x x x x nx ++++-+++⋅---L L 2112222()(22)()2()n n n n n x x n x x x x ++=-+--++-L ,显然,211222n n n n x x x x x x ++-≥-≥≥-L ,212211()n n n n n x x x x x x ++-+++-+++L L121221()()n n n n x x x x x m ++≥++-+++=L L .当且仅当121n n x x ++=时取等号;212211()n n n n n x x x x x x ++-+++-+++L L2212311()()n n n x x x x x m +++≥++-+++=L L当且仅当11n x x +=时取等号;由(Ⅱ)可知121,n m m +的较小值为1n -,所以212211()1n n n n n x x x x x x n ++-+++-+++≥-L L .当且仅当1121n n x x x ++==时取等号,此时数列21n A +为常数列,其特征值为0,不符合题意,则必有212211()n n n n n x x x x x x n ++-+++-+++≥L L .下证:若0p q ≥≥,2k n ≤≤,总有(22)(1)()n k p kq n p q +-+≥++. 证明:(22)(1)()n k p kq n p q +-+-++=(1)(1)n k p n k q +--+-(1)()n k p q =+--0≥.所以(22)(1)()n k p kq n p q +-+≥++.因此121||i j i j n x x ≤<≤+-∑2112222()(22)()2()n n n n n x x n x x x x ++=-+--++-L212211(1)()n n n n n n x x x x x x ++-≥++++----L L(1)n n ≥+.当0,1,1,121,k k n x n k n ≤≤⎧=⎨+≤≤+⎩时,121||i j i j n x x ≤<≤+-∑可取到最小值(1)n n +,符合题意.所以121||i j i j n x x ≤<≤+-∑的最小值为(1)n n +.。