真核基因表达调控特点
真核生物基因表达的调控

4、DNA甲基化与基因组印迹 (1)基因组印迹:来源于父母本的一对等位基因
表达不同(如X染色体失活) (2)基因组印迹的机制--DNA高度甲基化
5、DNA甲基化与X染色体的失活 X染色体DNA序列高度甲基化,基因被关闭
(1)与X染色体的失活有关的序列:
AP2
??
结合蛋白 (protein binding)
AP2 AP1
? SP1
? TF IID +
RNApol
BLE basal level element MRE metal response element AP activator protein
应答元件的特点:
1. 具有与启动子、增强子同样的一般特性. 2. 与起始点的位置不固定(多在-200以内;单个功能充分,
非洲爪蟾的卵母细胞 rDNA的拷贝数目: 500份 2×106份,可装配1012个核糖体 当胚胎期开始,增加的rDNA便失去功能并逐渐消失
二、基因丢失
有的生物在个体发育的早期在体细胞中要丢 失部分染色体,而在生殖细胞中保持全部的 基因组。
小麦瘿蚊(染色丢失了32条,只保留8条)
马蛔虫
三、基因重排(gene rearrangement)
的下游起作用。 4、与它结合的转录因子是GCN4和GAL4,识别位
点为 ATGACTCAT。
(四)绝缘子(Insulator)
阻止激活或失活效应的元件
举例:
1、当绝缘子位于增强子和启动子间时,能阻止 增强子激活启动子作用。
2、当绝缘子位于一个活化基因和异染色质之间 时,它保护基因免受由异染色质扩展造成的失 活效应影响。
Constant
真核生物的基因表达调控

31
• 锌指结构域The zinc finger domain
锌指结构有2种形式: C2H2 zinc finger和C4 zinc finger •C2H2 zinc finger:由12个氨基酸组成的环,通过2个半胱氨 酸(C,Cys)和2个组氨酸(H,His)残基固定,这4个残基 与Zn2+在空间上形成一个四面体结构。 一般情况下需要3个 或更多的C2H2型锌指才能与DNA结合,如在TFIIA有9个重复, 转录因子SP1有3个重复。 •C4 zinc finger: Zn2+与4个半胱氨酸(C,Cys)结合,存 在于类固醇激素受体转录因子中。
限定于结构域之内。
26
反式作用因子的结构与功能
(1)概念:为DNA结合蛋白,核内蛋白,可使邻近基因开 放(正调控)或关闭(负调控)。
(2)通用或基本转录因子—RNA聚合酶结合启动子所必需 的一组蛋白因子。如:TFⅡA、 TFⅡB、 TFⅡD、 TFⅡE 等。 (3)特异转录因子( special transcription factors)—个别 基因转录所必需的转录因子.如:OCT-2:在淋巴细胞中特 异性表达,识别Ig基因的启动子和增强子。
(2) 动态模型(dynamic model):认为转录因子与组 蛋白处于动态竞争之中,基因转录前染色质必须经 历结构上的改变,即染色质重塑。在染色质重塑过 程中,某些转录因子可以在结合DNA的同时使核小 体解体。
6
组蛋白的乙酰化-去乙酰化 蛋白的乙酰化和去乙酰化是蛋白活性调节的一种 重要的形式,通过乙酰化或去乙酰化,改变了染色质 结构或是转录因子的活性,可以调节基因转录的活性。 组蛋白的乙酰化和去乙酰化能打开或关闭某些基因, 增强或抑制某些基因的表达。 组蛋白的8个亚基上有32个潜在的乙酰化位点。组 蛋白的乙酰化过程由组蛋白乙酰转移酶催化完成。
真核基因表达调控特点

– 碱性-螺旋-环-螺旋(basic – helix /loop /helix,bHLH)
1、螺旋-转折-螺旋
2、锌指结构
定义:是一种常 出现在DNA结合 蛋白中的结构基 元。是由一个含 有大约30个氨基 酸的环和一个与 环上的4个Cys或 2个Cys和2个His 配位的Zn构成, 形成的结构像手 指状。
2、外显子与内含子的可变调控 • 组成型剪接:一个基因的转录产物通过剪接只 能产生一种成熟的mRNA。
• 选择性剪接:同一基因的转录产物由于不同的
剪接方式形成不同mRNA。
PS DNA
外显子 S
PL
外显子 L
外显子 2
外显子 3
50b
2800bp
161bp
4500bp
205bp 327bp
初始转录本: 在唾腺中转录 成熟 mRNA: 1663nt 初始转录本: 在肝中转录 成熟 mRNA: 1773nt 图 18-57 小鼠淀粉酶(amy) 基因利用不同启动子产生两个不同的 mRNA
内含子(Intron) :真核细胞基因DNA中的间插序列, 这些序列被转录成RNA,但随即被剪除而不翻译。
1、外显子与内含子的连接区 指外显子和内含子的交界或称边界序列,它有两个 重要特征: • 内含子的两端序列之间没有广泛的同源性
• 连接区序列很短,高度保守,是RNA剪接的信号序列
5'GT——AG 3'
• 通过基因重排调节基因活性的典型例子是免疫球蛋
白结构基因的表达。
四、DNA的甲基化与基因调控: 1、DNA的甲基化
在真核生物中,5-甲基胞嘧啶主要出现在CpG序列、 CpXpG、CCA/TGG和GATC中 CpG二核苷酸通常成串出现在DNA上,CpG岛
第十三章 真核生物基因表达调控

在染色质中的DNA潜在活性区域核小体组装较为
松弛且某些位点用DNaseⅠ处理时DNA极易断裂,
为高敏感位点(HS)
染色质上对DNaseⅠ的敏感区域有一定的界限 即使在一个基因内,各个区段对DNaseⅠ敏感
程度也不同,基因编码转录大范围表现一般 的敏感性,而在基因调控区的少数区域则显 示高度敏感性
真 核 生 物 基 因 表 达 调 控 七 个 层 次
染色质 DNA 染色质水平调控
DNA
转录调控
细胞核 细胞质
转录初产物 (RNA) 转录后加工调控
转运调控
mRNA
翻译调控
蛋白质前体
翻译后加工调控
mRNA降 解物
mRNA降解调 控
活性蛋白质
三、染色体水平上的调控
主要有:
染色质结构
DNA在染色体上的位臵
人的β-珠蛋白基因簇上、下游两个远侧区域就是 超敏感位点 LCR是一种远距离顺式调控元件(基因座调控区), 具有增强子和稳定活化染色质的功能,也是特异 性反式调控因子的结合位点
组蛋白的乙酰化能使染色质对DNaseⅠ和微球
菌核酸酶的敏感性显著增强
非组蛋白
与染色质松散结合,或者在某些条件下才能
被阻遏状态
有活性状态
被激活状态
异染色质化
— DNA结构高度致密,处于阻
遏状态,无转录活性
组成型异染色质:染色质在整个细胞周期一直
保持压缩状态,不具转录活性
兼性异染色质:只在一定的发育阶段或者生理
条件下由常染色质凝聚而成,无持久活性
组蛋白对基因活性的影响
是基因活性的重要调控因子,当与裸露DNA混
第八章真核生物基因的表达调控

真核生物的基因结构与转录活性 基因家族( 基因家族(简单多基因家族和复杂多基因 家族) 家族) 真核基因的断裂结构( 真核基因的断裂结构(组成型剪接和选择 型剪接) 型剪接)
基因簇与基因家族 (Gene cluster、Gene family) 、 )
基因家族( 真核生物的基因组中许多来源相同, 基因家族(Gene family):真核生物的基因组中许多来源相同, ) 真核生物的基因组中许多来源相同 结构相似、 结构相似、功能相关的一组基因 目前可分为 目前可分为三类: 简单多基因家族:5SrRNA基因家族 ① 简单多基因家族:5SrRNA基因家族 复杂多基因家族: ② 复杂多基因家族:各个成员并不都是相同的 往往以串联重复基因簇的形式出现
SP1
TF IIIA
344aa,N端与 , 端与 端与DNA结合 结合 9个锌指,每个~30aa 个锌指, 个锌指 每个~ 与5s rRNA基因内启动 基因内启动 子(50bp)结合 结合
Cys2/Cys2 zinc finger Cys- X2- Cys-X13 - Cys- X2- Cys Zn++与4个Cys结合 个 结合 DNA结合序列较短,对称 结合序列较短, 结合序列较短 无大量重复性锌指 例如GAL4,酵母的转录因子 例如 , 哺乳类的固醇类激素受体
1、反式作用因子DNA结合域的模式(motif ) 、反式作用因子 结合域的模式( 结合域的模式
1)螺旋-转折 螺旋(helix-turn-helix,HTH) )螺旋 转折 螺旋( 转折-螺旋 , ) 2)锌指结构(zinc finger) )锌指结构( ) 3)碱性-亮氨酸拉链 (basic-leucine zipper,bZIP) )碱性 亮氨酸拉链 , ) 4)碱性-螺旋 环-螺旋(basic-helix/loop/helix,HLH) )碱性 螺旋 螺旋-环 螺旋 螺旋( , ) 5)同源域蛋白(homeo domain,HD) )同源域蛋白( , )
真核基因表达调控

8.1.5 染色质(chromatin)或染色体 (chromosome)结构对基因表达的调控
•常染色质:结构松散, 基因表达
•异染色质:结构紧密, 基因不表达
•有基因表达活性的染 色质DNA对 DNaseⅠ 更敏感,即DnaseⅠ的 敏感性可作为该基因 的转录活性的标志。
Chromatin remodeling and Histone modification
不同层次真核生物基因表达的调控
DNA水平的调控 转录水平的调控(transcriptional regulation) 转录后水平的调控(post transcriptional
regulation) RNA加工成熟过程的调控 (RNA processing) 翻译水平的调控 (translational regulation) 蛋白质加工和成熟过程的调控(protein maturation and processing)
真核基因组结构特点 ① 在真核细胞中,一条成熟的mRNA链只能翻 译出一条多肽链,不存在原核生物中常见的多 基因操纵子形式。 ② 真核细胞DNA都与组蛋白和大量非组蛋白相 结合,只有一小部分DNA是裸露的。 ③ 高等真核细胞DNA中很大部分是不转录的, 大部分真核细胞的基因中间还存在不被翻译的 内含子。 ④ 真核生物能够有序地根据生长发育阶段的 需要进行DNA片段重排,还能在需要时增加细 胞内某些基因的拷贝数。
真核生物基因调控,根据其性质可分为两大类: 第一类是瞬时调控或称可逆性调控,它相当于原
核细胞对环境条件变化所做出的反应,包括某种 底物或激素水平升降及细胞周期不同阶段中酶活 性和浓度的调节。
第二类是发育调控或称不可逆调控,是真核基 因调控的精髓部分,它决定了真核细胞生长、分 化、发育的全部进程。 研究基因调控主要应回答3个问题: ① 什么是诱发基因转录的信号? ② 基因调控主要是在哪一步(模板DNA的转录、 mRNA的成熟或蛋白质合成)实现的? ③ 不同水平基因调控的分子机制是什么?
真核生物基因表达调控的特点

真核生物基因表达调控的特点一、真核生物基因表达调控的特征•基因组和染色体结构复杂:更多的调控信息,更复杂的转录起始机制;•细胞结构复杂:转录和翻译在时空上分开;•多细胞,多组织生物:细胞内外环境,细胞发育的不同阶段、细胞分化•真核基因表达的多层次调控:染色质水平、转录水平、转录后水平、翻译水平和翻译后水平。
二、真核生物染色质结构与基因活性1.真核生物染色质结构•组蛋白:富含Arg、Lys的碱性蛋白质;在中性pH条件下带正电荷、高度保守的蛋白质;重复基因、连续基因、不加polyA;可以被修饰(乙酰化,甲基化)•核小体:有组蛋白和DNA组成,直径11nm。
•真核生物染色质经过不同层次的折叠形成高度压缩的规则结构;真核生物RNApol与启动子的结合收染色质结构的限制;真核生物基因转录的活化依赖于染色质重塑(remodeling)2.组蛋白对基因转录活性的影响•组蛋白和转录因子竞争基因的转录调控区。
•非乙酰化组蛋白可以抑制转录,乙酰化组蛋白可以抑制转录。
形成新的组蛋白共价键修饰(去甲基化)可以抑制基因转录活性。
3.DNA甲基化对基因转录活性的影响4.常染色质和异染色质•异染色质比常染色质压缩得更紧,因此异染色质区域的基因转录受到抑制。
二、转录激活因子对转录的影响1.转录激活因子的结构•真核生物的基因转录不仅需要激活染色质,还需要激活基因。
•顺式作用元件:启动子和增强子。
反式作用因子:基础转录因子(basal transcription factors),通用转录因子(general transcription factors)转录激活因子(transactivators)辅激活因子(coactivators)•转录激活因子的结构:DNA结合构域;转录激活结构域;二聚化结构域;效应分子结合位点。
每一个DNA结合结构域都含有一个DNA结合模体(motif)•增强器没有位置限制(从近到远都能看到);无方向性(反转后依然有效)。
真核基因表达调控特点

05
真核基因表达调控的案例研究
肿瘤细胞中的基因表达调控
要点一
肿瘤细胞中基因表达调控的特点
要点二
肿瘤细胞中基因表达调控的案例
肿瘤细胞通过基因表达调控机制,使某些基因高表达或低 表达,以适应其生长和增殖的需要。这些调控机制包括染 色质重塑、转录因子和miRNA的调控等。
真核基因表达调控特点
• 真核基因表达调控概述 • 真核基因表达的转录水平调控 • 真核基因表达的转录后水平调控 • 真核基因表达的表观遗传调控 • 真核基因表达调控的案例研究
01
真核基因表达调控概述
真核基因表达调控的定义
真核基因表达调控是指在真核生物中,对基因表达的起始、维持和终止过程进行 的精细调节,以确保细胞在生长发育和应对环境变化时能够做出适应性反应。
例如,某些肿瘤细胞中,抑癌基因的表达受到抑制,而致 癌基因的表达则被激活,从而促进肿瘤的发生和发展。
干细胞分化过程中的基因表达调控
干细胞分化过程中基因表 达调控的特点
干细胞分化过程中,基因表达调控机制使干 细胞按照一定的程序分化为不同类型的细胞 。这些调控机制包括表观遗传学修饰、转录 因子和miRNA的调控等。
真核基因表达的转录后调控还包括mRNA的翻译。翻译是指将mRNA上的信息转变成蛋白质的过程。
后翻译修饰
蛋白质的翻译后修饰是指对已合成的蛋白质进行化学修饰,以改变其功能的过程。常见的蛋白质修饰 包括磷酸化、乙酰化、糖基化和泛素化等。这些修饰可以影响蛋白质的活性、定位和稳定性。
04
真核基因表达的表观遗传调控
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)假基因 是基因组中因突变而失活的基因,无蛋白质产 物。一般是启动子出现问题。
Contents
• 真核生物的基因组 • 真核生物基因表达调控的特点和种类 • 真核生物DNA水平上的基因表达调控
• 真核生物转录水平上的基因表达调控
• 真核基因转录后水平上的调控
第二节 真核生物基因表达调控的特点和种类 一、真核生物基因表达调控的特点
DNA的空间结构方面存在以下几个方面的差异
试说明真核细胞与原核细胞在基因转录,翻
译及DNA的空间结构方面存在的主要差异,表
现在哪些方面?
武汉大学2003年分子生物学硕士入学试题
① 在真核细胞中,一条成熟的mRNA链只能翻译 出一条多肽链,很少存在原核生物中常见的多 基因操纵子形式。
② 真核细胞DNA与组蛋白和大量非组蛋白相结
Contents
• 真核生物的基因组 • 真核生物基因表达调控的特点和种类 • 真核生物DNA水平上的基因表达调控
• 真核生物转录水平上的基因表达调控
• 真核基因转录后水平上的调控
第三节 真核生物DNA水平上的基因表达调控
● 基因丢失
● 基因扩增
● 基因重排
抗体分子的形成 Ti质粒
转座子
● DNA甲基化状态与调控 ● 染色体结构与调控
一、基因丢失:
在细胞分化过程中,可以通过丢失掉某些基因而去除这些 基因的活性。某些原生动物、线虫、昆虫和甲壳类动物在 个体发育中,许多体细胞常常丢失掉整条或部分的染色体, 只有将来分化产生生殖细胞的那些细胞一直保留着整套的 染色体。
调节区一般通过改变整个所控制基因5’上游区DNA 构型来影响它与RNA聚合酶的结合能力。 在原核生物中,转录的调节区都很小,大都位于启 动子上游不远处,调控蛋白结合到调节位点上可直接
促进或抑制RNA聚合酶与它的结合。
⑥ 真核生物的RNA在细胞核中合成,只有经转运穿过核
膜,到达细胞质后,才能被翻译成蛋来自质,原核生物中不存在这样严格的空间间隔。
⑦ 许多真核生物的基因只有经过复杂的成熟和剪接过 程,才能顺利地翻译成蛋白质。
三、基本概念 (一)基因家族(gene family)
真核生物的基因组中有很多来源相同、结构相似、 功能相关的基因,将这些基因称为基因家族。 如:编码组蛋白、免疫球蛋白和血红蛋白的基因都 属于基因家族 同一家族中的成员有时紧密地排列在一起,成为 一个基因簇(gene cluster) 。
• 单顺反子
• 基因不连续性 断裂基因(interrupted gene)、
内含子(intron)、 外显子(exon)
• 非编码区较多 多于编码序列(9:1)
• 含有大量重复序列
原核生物基因组结构特点
● 基因组很小,大多只有一条染色体
● 结构简炼 ● 存在转录单元多顺反子 ● 有重叠基因
二、真核细胞与原核细胞在基因转录、翻译及
Organization of histone genes in the animal genome
(二)断裂基因
基因的编码序列在DNA分子上是不连续的,为
非编码序列所隔开,其中编码的序列称为外显
子,非编码序列称内含子。
外显子(Exon) :真核细胞基因DNA中的编码序 列,
这些序列被转录成RNA并进而翻译为蛋白质。
1、简单多基因家族 简单多基因家族中的基因一般以串联方式前后相连。
The eukaryotic ribosomal DNA repeating unit
2、复杂多基因家族 复杂多基因家族一般由几个相关基因家族构成,基 因家族之间由间隔序列隔开,并作为独立的转录单 位。现已发现存在不同形式的复杂多基因家族。
内含子(Intron) :真核细胞基因DNA中的间插序列, 这些序列被转录成RNA,但随即被剪除而不翻译。
1、外显子与内含子的连接区 指外显子和内含子的交界或称边界序列,它有两个 重要特征: • 内含子的两端序列之间没有广泛的同源性
• 连接区序列很短,高度保守,是RNA剪接的信号序列
5'GT——AG 3'
2、外显子与内含子的可变调控 • 组成型剪接:一个基因的转录产物通过剪接只 能产生一种成熟的mRNA。
• 选择性剪接:同一基因的转录产物由于不同的
剪接方式形成不同mRNA。
PS DNA
外显子 S
PL
外显子 L
外显子 2
外显子 3
50b
2800bp
161bp
4500bp
205bp 327bp
初始转录本: 在唾腺中转录 成熟 mRNA: 1663nt 初始转录本: 在肝中转录 成熟 mRNA: 1773nt 图 18-57 小鼠淀粉酶(amy) 基因利用不同启动子产生两个不同的 mRNA
第七章 基因的表达与调控(下)
—真核基因表达调控的一般规律
Contents
• 真核生物的基因组 • 真核生物基因表达调控的特点和种类 • 真核生物DNA水平上的基因表达调控
• 真核生物转录水平上的基因表达调控
• 真核基因转录后水平上的调控
第一节 真核生物的基因组
一、真核基因组结构特点 • 真核基因组结构庞大 3×109bp、染色质、核膜
合,只有一小部分DNA是裸露的。
③ 高等真核细胞DNA中很大部分是不转录的,大部
分真核细胞的基因中间还存在不被翻译的内含子。
④ 真核生物能够有序地根据生长发育阶段的需要进
行DNA片段重排,还能在需要时增加细胞内某些基因
的拷贝数。
⑤ 在真核生物中,基因转录的调节区相对较大,它
们可能远离启动子达几百个甚至上千个碱基对,这些
1、RNA聚合酶 2、多层次 3、个体发育复杂 4、活性染色体结构变化:对核酸酶敏感 、DNA拓扑 结构变化 、DNA碱基修饰变化 、组蛋白变化
5、正性调节占主导
6、转录与翻译间隔进行
7、转录后修饰、加工
二、真核生物基因表达调控的种类:
根据其性质可分为两大类: 一是瞬时调控或称为可逆性调控,它相当于原核细胞 对环境条件变化所做出的反应。瞬时调控包括某种底 物或激素水平升降时,及细胞周期不同阶段中酶活性 和浓度的调节。 二是发育调控或称不可逆调控,是真核基因调控的精 髓部分,它决定了真核细胞生长、分化、发育的全部 进程。 根据基因调控在同一事件中发生的先后次序又可分为: DNA水平调控--转录水平调控--转录后水平调 控--翻译水平调控--蛋白质加工水平的调控