PSPICE仿真流程

合集下载

PSpice基本仿真分析例程

PSpice基本仿真分析例程

PSpice基本仿真分析例程⼀、瞬态分析⼆、直流分析2.1、直流分析电路2.2、直流分析配置2.3、直流分析输出波形受供电电源的限制,输出最⼤值为±15V。

三、交流分析3.1.1、交流分析电路13.1.1、交流分析设置13.1.1、交流分析输出波形图1由于使⽤的运放为理想运放,没有频率特性,因此输出电压固定为输⼊2V。

3.2.1、交流分析电路2添加电容C1使放⼤电路有了频率特性,低频C1断路,⾼频C1短路。

3.2.1、交流分析配置23.2.1、交流分析波形图2四、参数分析4.1.1、直流参数分析电路4.1.2、直流参数分析配置增益对数递增100-1M4.1.3、直流参数分析波形图由图中所⽰环路增益越⼩误差越⼤。

五、温度分析5.1基本温度分析电路5.2、器件温度系数参数设定(TC)5.3、温度分析参数配置5.3.1、初始TNOM设定为0℃5.3.2、直流分析温度配置5.4、温度分析波形图六、交流&参数分析(低通滤波器)6.1.1、交流扫⾯低通滤波器电路图6.1.1、交流扫⾯低通滤波器仿真配置6.1.1、交流扫⾯低通滤波器输出波形每10倍频40db。

七、BUCK降压电路7.1.1、BUCK降压电路仿真原理图7.1.2、BUCK降压电路仿真配置(瞬态分析)7.1.3、BUCK降压电路输出波形Ⅰ、V(OUT)输出端波形Ⅱ、电感电流与V(OUT)稳态波形。

7.2.1、BUCK降压电路仿真2 通过调整电源输⼊与负载电阻,测试电路中重要参数变化。

Sbreak模拟负载,Sbreak的值在10Ω与20Ω之间变化。

Sbreak参数:7.2.2、仿真参数配置7.2.3、BUCK降压电路相关参数波形。

仿真⽂件:链接:https:///s/1iyoNV5LS5iU3obppImrNJA提取码:suc7。

03-PSPICE仿真 (1)

03-PSPICE仿真 (1)

23
模型参数
24
加元器件库(Place/Part命令)
在画电路图之前,首先要为将要画的电路选择元器件库。执行 Place/Part命令,,在Place/Part对话框中点击“Add”按钮,出现 Browse File对话框,将所需库点中,点击“打开”按钮,则选中的 库文件增至“Labrarise”框 中。反之,从“Labrarise”框,选中一 个库文件,点击Remove按钮,即将该库文件框剔除。
1/TSTOP
VAMPL
FREP TD DF PHASE
振幅
频率 延迟时间 阻尼系数 相位延迟
V
Hz s 1/s 度
FREQ=1kHz,TD=0,DF=0,
PHASE=0。可得如图所示的 正弦波形。
33
PSpice A/D中的有关规定
比例因子

PSpice A/D中不区分大小写 要特别注意M与MEG的差别 M——10-3 MEG —— 106
6
(2)OrCAD/PSpice9软件覆盖了 电子设计的4项核心任务
OrCAD/Capture CIS (电路原理图设计软件)
电路仿真
OrCAD/PSpice A/D (数/模混合模拟软件) Optimizer (电路优化设计)
OrCAD/Express Plus (CPLD/FGPA设计软件)
OrCAD/Layout Plus (PCB设计软件)

例如要表示100兆赫兹的频率时,必须写成100MEG,而不能 是100M。否则PSpice A/D将其理解为100毫赫兹。
34
PSpice A/D中的有关规定
单位

PSpice A/D仿真运行的结果都是以A、V、、Hz、W(瓦) 等标准单位的形式确定,且省略了单位。

PSpiceAD基本仿真讲解

PSpiceAD基本仿真讲解

PSpice A/D数模混合仿真孙海峰Cadence的PSpice A/D可以对电路进行各种数模混合仿真,以验证电路的各个性能指标是否符合设计要求。

PSpice A/D主要功能是将Capture CIS产生的电路或文本文件(*.cir)进行处理和仿真,同时附属波形观察程序Probe对仿真结果进行观察和分析。

PSpice A/D数模仿真技术主要包括以下几类仿真:1、直流扫描分析(DC Sweep):电路的某一个参数在一定范围内变化时,电路直流输出特性的分析和计算。

2、交流扫描分析(AC Sweep):计算电路的交流小信号线性频率响应特性,包括幅频特性和相频特性,以及输入输出阻抗。

3、噪声分析(Noise):在设定频率上,计算电路指定输出端的等效输出噪声和指定输入端的等效输入噪声电平。

4、直流偏置点分析(Bias Point):当电路中电感短路,电容断路时,电路静态工作点的计算。

进行交流小信号和瞬态分析之前,系统会自动计算直流偏置点,以确定瞬态分析的初始条件和交流小信号条件下的非线性器件的线性化模型参数。

5、时域/瞬态分析(Transient):在给定激励下,电路输出的瞬态时域响应的计算,其初始状态可由用户自定义,也可是直流偏置点。

6、蒙特卡洛分析(Monte-Carlo):根据实际情况确定元件参数分布规律,然后多次重复进行指定电路特性的分析,每次分析时的元件参数都采用随机抽样方式,完成多次分析后进行统计分析,就可以得到电路特性的分散变化规律。

7、最坏情况分析(Worst):电路中元件处于极限情况时,电路输入输出特性分析,是蒙特卡洛的极限情况。

8、参数扫描分析(Parametric Sweep )电路中指定元件参数暗规律变化时,电路特性的分析计算。

9、温度分析(Temperature ):在指定温度条件下,分析电路特性。

10灵敏度分析(Sensitivity ):计算电路中元件参数变化对电路性能的影响。

OrCAD PSpice仿真实验

OrCAD  PSpice仿真实验

OrCAD PSpice仿真实验实验5.1 直流扫描分析实验实验目的:1)学会使用电路绘制程序在Capture CIS环境内绘制所需要的电路图.2)学习偏压点分析和直流扫描分析.3)练习使用电路仿真程序执行仿真并显示出波形,将仿真结果与理论计算值比较加以验证.实验设备:1)个人电脑2)OrCAD 9.2Release软件实验内容与步骤:1.听指导教师讲解OrCAD基本知识及基本操作方法.2.按下列操作步骤依次完成仿真和结果预测.1)偏压点分析并观察输出文件的内容.1.绘出电路图.2.设置参数.3.保存.4.启动Pspice仿真及观察输出文件的内容.2)直流扫描分析并观察输出波形1.调出原电路图文件并设置DC Sweep直流扫描分析参数.2.存档并执行仿真.3.观察仿真输出结果.4.打印输出波形.5.将输出波形存成图形文件.实验电路图:输出结果:**** INCLUDING wz___3-SCHEMA ***** source WZ___3V_V1 N00113 0 15VdcR_R1 N00113 N00143 12R_R2 0 N00207 10R_R3 0 N00157 40I_I1 N00157 0 DC 4AdcV_PRINT1 N00143 N00221 0V.PRINT DC I(V_PRINT1)V_PRINT2 N00221 N00157 0V.PRINT DC I(V_PRINT2)V_PRINT3 N00207 N00221 0V.PRINT DC I(V_PRINT3)NODE VOL TAGE NODE VOL TAGE NODE VOL TAGE NODE VO L TAGE(N00113) 15.0000 (N00143) -13.2000 (N00157) -13.2000 (N00207) -13.2000(N00221) -13.2000VOL TAGE SOURCE CURRENTSNAME CURRENTV_V1 -2.350E+00V_PRINT1 2.350E+00V_PRINT2 3.670E+00V_PRINT3 1.320E+00实验结果分析:I1=2.350A I2=3.670A I3=1.320AI2=I1+I3 所以结果符合叠加原理实验5.3 交流扫描分析实验实验目的:练习使用Pspice的交流扫描分析(AC sweep)功能,进行交流电路的分析计算,以及电路频率的特性分析.实验设备:1)个人电脑2)OrCAD 9.2Release软件实验内容与步骤:1)绘制电路图.设置参数:分析类型设置为交流扫描(AC sweep),并选择原始频率为1Hz,终止频率为100kHz,每十倍频程的扫描点数Points/decade设置为100.2)执行Pspice仿真完成后,自动进入图形处理界面.3)添加曲线命令.观察波形,打印输出波形.4)查看输出文件.实验电路图:输出图形:输出结果:V_V1 N01192 0 DC 0 AC 220V acR_R2 0 N01110 280L_L2 N01192 N01169 1.65V_PRINT1 N01169 N011430V.PRINT AC IM(V_PRINT1)R_R1 N01143 N01110 20NODE VOL TAGE NODE VOL TAGE NODE VO L TAGE NODE VOL TAGE (N01110) 0.0000 (N01143) 0.0000 (N01169) 0.0000 (N01192) 0.0000VOL TAGE SOURCE CURRENTSNAME CURRENTV_V1 0.000E+00V_PRINT1 0.000E+00TOTAL POWER DISSIPA TION 0.00E+00 W A TTS。

电子线路模拟仿真:SPICE软件的基本使用方法

电子线路模拟仿真:SPICE软件的基本使用方法

电子线路模拟仿真:SPICE软件的基本使用方法电子线路模拟仿真是现代电子工程中重要的工具之一,它通过计算机软件模拟电子线路的工作原理和性能,能够快速、准确地评估电路设计的有效性。

其中,SPICE软件是目前应用较广泛的一种电子线路仿真软件。

本文将介绍SPICE软件的基本使用方法,包括安装、建立电路模型、设定仿真参数和分析仿真结果等步骤。

一、安装SPICE软件1. 在SPICE软件的官方网站上下载最新版本的软件安装包;2. 双击安装包,按照软件安装向导的提示,选择安装路径并完成安装;3. 打开SPICE软件,确认软件已成功安装。

二、建立电路模型1. 新建电路文件:在SPICE软件的界面上选择“文件-新建”,创建一个新的电路文件;2. 添加元件:通过选择“元件”或“库”菜单,从库中选取所需的元件,并将其拖放到电路模型的工作区中;3. 连接元件:通过选择“连接”工具,在元件之间建立正确的连接关系;4. 设置元件参数:双击元件,弹出元件参数设置对话框,根据需要填写或修改参数值;5. 建立电源:选择适当的电源元件,连接到电路中的合适位置,并设定电源的电压或电流值。

三、设定仿真参数1. 选择仿真类型:在SPICE软件的界面上选择“仿真-仿真设置”,弹出仿真设置对话框;2. 设定仿真时间:根据仿真需求,设置仿真的起始时间和结束时间;3. 设定仿真步长:设置仿真的时间步长,即每个仿真数据点之间的时间间隔;4. 设定仿真类型:选择所需的仿真类型,如直流仿真、交流仿真或脉冲仿真;5. 设定其他仿真参数:根据仿真需求,可以设置其他相关的仿真参数,如温度、频率等。

四、分析仿真结果1. 运行仿真:选择“仿真-运行仿真”或点击运行仿真的工具按钮,开始进行电路仿真;2. 查看仿真结果:仿真结束后,选择“仿真-波形查看器”或点击波形查看器的工具按钮;3. 设置波形显示:在波形查看器中,选择所需显示的电压或电流波形,并设定波形的颜色和线型;4. 分析波形:对波形进行分析,如测量电压峰值、波形周期、频率等。

PSpice仿真软件使用指南说明书

PSpice仿真软件使用指南说明书

April 2016© 2013Cadence Design Systems, Inc. All rights reserved.Portions © Apache Software Foundation, Sun Microsystems, Free Software Foundation, Inc., Regents of the University of California, Massachusetts Institute of T echnology, University of Florida. Used by permission. Printed in the United States of America.Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.Product PSpice contains technology licensed from, and copyrighted by: Apache Software Foundation, 1901 Munsey Drive Forest Hill, MD 21050, USA © 2000-2005,Apache Software Foundation. Sun Microsystems, 4150 Network Circle, Santa Clara, CA 95054 USA © 1994-2007, Sun Microsystems, Inc. Free Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA © 1989, 1991, Free Software Foundation, Inc. Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation, © 2001, Regents of the University of California. Daniel Stenberg, © 1996 - 2006, Daniel Stenberg. UMFPACK ©2005,TimothyA.Davis,UniversityofFlorida,(**************.edu).KenMartin,WillSchroeder,Bill Lorensen © 1993-2002, Ken Martin, Will Schroeder, Bill Lorensen. Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, USA © 2003, the Board of Trustees of Massachusetts Institute of Technology. All rights reserved.Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks, contact the corporate legal department at the address shown above or call 800.862.4522.Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with permission.All other trademarks are the property of their respective holders.Restricted Permission: This publication is protected by copyright law and international treaties and contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as specified in this permission statement, this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence. Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to print one (1) hard copy of this publication subject to the following conditions:1.The publication may be used only in accordance with a written agreement between Cadence and itscustomer.2.The publication may not be modified in any way.3.Any authorized copy of the publication or portion thereof must include all original copyright,trademark, and other proprietary notices and this permission statement.4.The information contained in this document cannot be used in the development of like products orsoftware, whether for internal or external use, and shall not be used for the benefit of any other party, whether or not for consideration.Disclaimer: Information in this publication is subject to change without notice and does not represent a commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of such information.Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.ContentsBefore you begin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Welcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 How to use this guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Symbols and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 What this user’s guide covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 PSpice overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Add-on options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 PSpice Smoke Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 PSpice Advanced Optimizer Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 PSpice Advanced Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SLPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 If you don’t have the standard PSpice A/D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Comparison of the different versions of PSpice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 If you have PSpice Lite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Minimum hardware requirements for running PSpice: . . . . . . . . . . . . . . . . . . . . . . . . 32 PSpice Samples and T utorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Part one: Simulation primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1Things you need to know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 What is PSpice? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Analyses you can run with PSpice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Basic analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Advanced multi-run analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Analyzing waveforms with PSpice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 What is waveform analysis? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Using PSpice with other programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Using design entry tools to prepare for simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 47What is the PSpice Stimulus Editor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 What is the PSpice Model Editor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Files needed for simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Files that design entry tool generates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Other files that you can configure for simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Files that PSpice generates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Directory structure for analog projects in Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 How are files configured at the design level maintained in the directory structure for analog projects? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 How are files configured at the profile level maintained in the new directory structure for analog projects? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 What happens when I convert an analog project that uses a design from another project or from another location? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 What should I do if the schematic for a converted analog project uses FILESTIM n parts from the SOURCE library? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Design Entry HDL libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Reference Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Local libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 PSpice model libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 The cds.lib file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Encrypting PSpice Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Using PSpiceEnc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Using Model Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722Simulation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Example circuit creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Using Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Using Design Entry HDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Using Design T emplates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Finding out more about setting up your design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Running PSpice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Performing a bias point analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Using the simulation output file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Finding out more about bias point calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99DC sweep analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Setting up and running a DC sweep analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Displaying DC analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Finding out more about DC sweep analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 T ransient analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Finding out more about transient analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 AC sweep analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Setting up and running an AC sweep analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 AC sweep analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Finding out more about AC sweep and noise analysis . . . . . . . . . . . . . . . . . . . . . . . 122 Parametric analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Setting up and running the parametric analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Analyzing waveform families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Finding out more about parametric analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Finding out more about performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Part two: Design entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1383Preparing a design for simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Checklist for simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 T ypical simulation setup steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Advanced design entry and simulation setup steps . . . . . . . . . . . . . . . . . . . . . . . . . 141 When netlisting fails or the simulation does not start . . . . . . . . . . . . . . . . . . . . . . . . 142 Using parts that you can simulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Vendor-supplied parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Passive parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Breakout parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Behavioral parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Simulating asymmetric parts in PSpice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Simulating homogenous parts in PSpice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Specifying values for part properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Using global parameters and expressions for values . . . . . . . . . . . . . . . . . . . . . . . . . . 158Global parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Defining power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 For the analog portion of your circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 For A/D interfaces in mixed-signal circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Defining stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Analog stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Digital stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Things to watch for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Unmodeled parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Unconfigured model, stimulus, or include files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Unmodeled pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Missing ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Missing DC path to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1854Creating and editing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 What are models? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 How are models organized? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Model libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Model library configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Global vs. design vs. profile models and libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Nested model libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 PSpice-provided models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Model library data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Device characteristic curves-based models vs. Template-based models . . . . . . . . 195 T ools to create and edit models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Ways to create and edit models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Using the Model Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Ways to use the Model Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Running the Model Editor alone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Starting the Model Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Creating models using the Model Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Creating models based on device characteristic curves . . . . . . . . . . . . . . . . . . . . . 203Creating models based on PSpice templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Importing an existing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Enabling and disabling automatic part creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Running the Model Editor from the schematic editor . . . . . . . . . . . . . . . . . . . . . . . . 215 Model creation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Example: Creating a PSpice model based on device characteristic curves . . . . . . . 219 Example: Creating template-based PSpice model . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Editing model text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Example: editing a Q2N2222 instance model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Using the Create Subcircuit Format Netlist command (Capture only) . . . . . . . . . . . . . . 237 Changing the model reference to an existing model definition . . . . . . . . . . . . . . . . . . . 239 Reusing instance models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 Reusing instance models in the same schematic . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Making instance models available to all designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Configuring model libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 The Configuration Files tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 How PSpice uses model libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Adding model libraries to the configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 Changing the model library scope from profile to design, profile to global, design to global and vice versa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Changing model library search order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Changing the library search path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Handling smoke information using the Model Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Adding smoke information to PSpice models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Creating template-based PSpice models with smoke information . . . . . . . . . . . . . . 256 Using the Model Editor to edit smoke information . . . . . . . . . . . . . . . . . . . . . . . . . . 256 Examples: Smoke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Adding smoke information to the D1 diode model . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Adding smoke information to the OPA_LOCAL operational amplifier model . . . . . . 259 Smoke parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Bipolar Junction Transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 Magnetic Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Ins Gate Bipolar T ransistor (IGBT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Junction FET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Darlington T ransistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2735Creating parts for models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 What’s different about parts used for simulation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 Ways to create parts for models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 Preparing your models for part creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Starting the Model Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 Using the Model Editor to create parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Batch mode of part creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Interactive mode of part creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Creating Design Entry T ool parts for all models in a library . . . . . . . . . . . . . . . . . . . . . . 282 Using batch mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 Using interactive mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Setting up automatic part creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 Creating parts in the batch mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 Creating parts using interactive mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 Basing new parts on a custom set of parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 Editing part graphics (Capture only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 How Capture places parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 Defining grid spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Attaching models to parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 Defining part properties needed for simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 PSPICETEMPLATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 IO_LEVEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 MNTYMXDL Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 PSPICEDEFAULTNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3216Analog behavioral modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 Overview of analog behavioral modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 The ABM part library file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Placing and specifying ABM parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 Net names and device names in ABM expressions . . . . . . . . . . . . . . . . . . . . . . . . . 326 Forcing the use of a global definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 ABM part templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 Control system parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Basic components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 Limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Chebyshev filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 Integrator and differentiator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 T able look-up parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 Laplace transform part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 Math functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 ABM expression parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 An instantaneous device example: modeling a triode . . . . . . . . . . . . . . . . . . . . . . . 353 PSpice-equivalent parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 Implementation of PSpice-equivalent parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 Modeling mathematical or instantaneous relationships . . . . . . . . . . . . . . . . . . . . . . 358 Lookup tables (ET ABLE and GT ABLE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 Frequency-domain device models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 Laplace transforms (LAPLACE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 Frequency response tables (EFREQ and GFREQ) . . . . . . . . . . . . . . . . . . . . . . . . . 366 Cautions and recommendations for simulation and analysis . . . . . . . . . . . . . . . . . . . . . 369 Instantaneous device modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 Frequency-domain parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Laplace transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 T rading off computer resources for accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 Basic controlled sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 Creating custom ABM parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375。

OrCAD-PSPICE-仿真入门

OrCAD-PSPICE-仿真入门
采用PSPICE电路仿真引擎, ORCAD-PSPICE能够提供高 精度的电路性能分析和仿真 结果。
强大的分析工具
ORCAD-PSPICE提供了丰富 的分析工具,如波形分析、 频谱分析、噪声分析等,帮 助用户深入了解电路性能。
灵活的参数化分析
用户可以通过参数化分析功 能,对电路元件参数进行扫 描和优化,找到最佳的电路 性能。
THANKS FOR WATCHING
感谢您的观看
orcad-pspice仿真入门
目 录
• 引言 • ORCAD-PSPICE概述 • ORCAD-PSPICE仿真流程 • 常见电路仿真分析 • 高级仿真技术 • ORCAD-PSPICE仿真实例
01 引言
目的和背景
学习和掌握ORCAD-PSPICE仿真软件, 能够为电子工程师提供强大的电路设 计和分析工具,帮助他们快速验证电 路原理、优化电路参数和提高设计效 率。
ORCAD-PSPICE支持模拟、数字和混合信号电路的仿真,能够进行电路性能分析和优化,帮助工程师快速、准确地完成电路 设计和验证。
ORCAD-PSPICE的功能和特点
丰富的元件库
ORCAD-PSPICE提供了广泛 的元件库,包括各种模拟、 数字和混合信号元件,方便 用户进行电路设计和仿真。
高精度仿真
蒙特卡洛分析
蒙特卡洛分析是一种基于概率统计的 仿真技术,用于分析电路性能的统计 分布情况。在Orcad-Pspice中,可 以通过在仿真设置中设置蒙特卡洛分 析参数,对电路性能进行概率统计。
VS
蒙特卡洛分析可以帮助设计者了解电 路性能的统计分布情况,从而评估电 路性能的可靠性。
最坏情况分析
最坏情况分析是一种仿真技术,用于分析电 路性能在元件参数最坏情况下的表现。在 Orcad-Pspice中,可以通过在仿真设置中 设置最坏情况分析参数,对电路性能进行最 坏情况分析。

PSPICE电路仿真程序设

PSPICE电路仿真程序设

1.2.2 OrCAD/PSpice软件
• 1998年1月MicroSim公司与OrCAD公司合并, 称为OrCAD公司。两公司强强联合后,相继推出 一系列基于PC机的EDA软件系统。 • 1998年11月推出的OrCAD/PSpice 9,是有相关 中文参考书的版本。目前较新版本是 OrCAD/PSpice 10.5。 • OrCAD软件覆盖了电子设计中的4项核心任务: 电路原理图输入及器件信息管理系统 OrCAD/Capture CIS,模拟、数字及模拟/数字 混合电路分析与优化设计OrCAD/Pspice A/D, 可编程逻辑设计OrCAD/Express Plus,印刷电 路板(PCB)设计OrCAD/Layout Plus。
的改进
• 与SPICE相比,OrCAD/PSpice并不只是单纯将 SPICE移植到PC机,而是在以下方面有重大变革。 • (1)不仅可以对模拟电路进行直流、交流、瞬态 等基本电路特性分析,而且可进行蒙特卡洛(MC (MONTE CARLO))统计分析、最坏情况分析 (Wcase(Worst-Case Analysis))、优化设 计等复杂的电路特性分析。
• 尤其是集成电路的设计,器件在插接板上 就无法组合成像集成电路内部那样紧密复 杂的电子电路,装配板上的寄生参数与集 成环境中的完全不同。因此,在装配板测 试的特性将无法准确地描述集成电路的真 实特性。所以,电子电路的传统设计方法 已经不适应当前电子技术发展的要求,这 就要借助计算机完成电子电路的辅助设计, 即电子电路EDA技术。EDA包括电子工程 设计的全过程,如系统结构模拟、电路特
电子设计自动化(EDA) 的特点
提高效率,缩短设计周期。
降低设计成本,提高产品质量。 共享设计资源。
• 1.1.1 EDA与电子工程设计 • 电子产品的设计生产,从选题、方案论证、性能 指标确定、装调电路、修改、定型参数直到批量 生产,是一个复杂而又费时的过程。该过程的任 一环节,都对产品性能和经济效益产生直接影响。 • 传统的电路装配、调试过程,一般均采用面包板 或专门的焊接板,通过手工连线装配,检查无误 后,进行电路测量,最后评估电路性能。若性能 与设计值不符时,需调换参数并重新调试测量, 直至符合设计要求为止。但是,当电路非常复杂 时,采用插接板或焊接板组装电路时所产生的连 线错误、器件损坏等人为错误,常会造成人力、 财力、时间的浪费及错误的性能评估。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PSPICE仿真流程(2013-03-18 23:32:19)采用HSPICE 软件可以在直流到高于100MHz 的微波频率范围内对电路作精确的仿真、分析和优化。

在实际应用中,HSPICE能提供关键性的电路模拟和设计方案,并且应用HSPICE进行电路模拟时,其电路规模仅取决于用户计算机的实际存储器容量。

二、新建设计工程在对应的界面下打开新建工程:2)在出现的页面中要注意对应的选择3)在进行对应的选择后进入仿真电路的设计:将生成的对应的库放置在CADENCE常用的目录中,在仿真电路的工程中放置对应的库文件。

这个地方要注意放置的.olb库应该是PSPICE文件夹下面对应的文件,在该文件的上层中library 中的.olb中的文件是不能进行仿真的,因为这些元件只有.olb,而无网表.lib。

4)放置对应的元件:对于项目设计中用到的有源器件,需要按照上面的操作方式放置对应的器件,对于电容,电阻电感等分离器件,可以在libraries中选中所有的库,然后在滤波器中键入对应的元件就可以选中对应的器件,点击后进行放置。

对分离元件的修改直接在对应的元件上面进行修改:电阻的单位分别为:k m;电容的单位分别为:P n u ;电感的单位分别为:n 及上面的单位只写量级不写单位。

5)放置对应的激励源:在LIBRARIES中选中所有的库,然后键入S就可以选中以S开头的库。

然后在对应的库中选中需要的激励源。

激励源有两种一种是自己进行编辑、手工绘制的这个对应在库中选择:另外一种是不需要自己进行编辑:该参数的修改可以直接的在需要修改的数值上面就行修改,也可以选定电源然后点击右键后进行对应的修改。

6)放置地符号:地符号就是在对应的source里面选择0的对应的标号。

7)直流电源的放置:电源的选择里面应该注意到选择source 然后再选定VDC或者是其它的对应的参考。

8)放置探头:点击对应的探头放置在感兴趣的位置处。

6 对仿真进行配置:1)对放置的项目的名称进行设置,也就是设置仿真的名称。

2)对仿真进行配置:对仿真的配置主要是对两个对应的选项进行操作,Analysis中的对应操作:这个里面主要对应analysis type 以及的操作,对应扫描频率,需要注意MEG的频率单位。

在configuration Files里面要注意category 中应该选择library,在filename 中选择对应的IC的库文件,选定后再选择add as global 按键,然后点击确认就可以了。

7 对电路进行仿真:点击3 就可以对电路进行仿真,仿真完成后会自动的出现仿真结果的图示。

8 在波形图中的分析:对于该目录中的内容可以进行不同的测量和分析。

常见问题:1、网表错误(1)检查元器件命名是否重名(2)参数是否不合法(3)通过PSPICE->CREAT NETLIST生成网表,根据错误提示,定位错误(4)信号线连接问题(5)信号源2、仿真不收敛(1)检查电路是否连接错误(2)激励是否合适(3)修改仿真步长、及simulation setting->options中各精度参数_ ABSTOL = 0.01μ (Default=1p)_ VNTOL = 10μ (Default=1μ)_ GMIN = 0.1n (Default=1p)_ RELTOL = 0.05 (Default=0.001)_ ITL4 = 500 (Default=10)3、没有元件模板下载的模型文件,要在simulation setting中添加。

4、floating pin(1)缺少命名"0"的GND(2)元件管脚浮空,根据情况接到固定电平Hspice 简明手册Hspice是一个模拟电路仿真软件,在给定电路结构和元器件参数的条件下,它可以模拟和计算电路的各种性能。

用Hspice分析一个电路,首先要做到以下三点:(1)给定电路的结构(也就是电路连接关系)和元器件参数(指定元器件的参数库);(2)确定分析电路特性所需的分析内容和分析类型(也就是加入激励源和设置分析类型);(3)定义电路的输出信息和变量。

Hspice规定了一系列输入,输出语句,用这些语句对电路仿真的标题,电路连接方式,组成电路元器件的名称,参数,模型,以及分析类型,以及输出变量等进行描述。

一、 Hspice输入文件的语句和格式Hspice输入文件包括电路标题语句,电路描述语句,分析类型描述语句,输出描述语句,注释语句,结束语句等六部分构成,以下逐一介绍:1 电路的标题语句:电路的标题语句是输入文件的第一行,也成为标题行,必须设置。

它是由任意字母和字符串组成的说明语句,它在Hspice的title框中显示。

2 电路描述语句电路描述语句由定义电路拓扑结构和元器件参数的元器件描述语句,模型描述语句和电源语句等组成,其位置可以在标题语句和结束语句之间的任何地方。

(1)电路元器件Hspice 要求电路元器件名称必须以规定的字母开头,其后可以是任意数字或字母。

除了名称之外,还应指定该元器件所接节点编号和元件值。

电阻,电容,电感等无源元件描述方式如下:R1 1 2 10k (表示节点1 与2 间有电阻R1,阻值为10k 欧)C1 1 2 1pf (表示节点1 与2 间有电容C1,电容值为1pf)L1 1 2 1mh (表示节点1 与2 间有电感L1,电感值为1mh)半导体器件包括二极管,双极性晶体管,结形场效应晶体管,MOS 场效应晶体管等,这些半导体器件的特性方程通常是非线性的,故也成为非线性有源元件。

在电路CAD工具进行电路仿真时,需要用等效的数学模型来描述这些器件。

(a)二极管描述语句如下:DXXXX N+ N- MNAME <AREA><OFF><IC=VD>D 为元件名称,N+和N-分别为二极管的正负节点,MNAME 是模型名,后面为可选项:AREA 是面积因子,OFF时直流分析所加的初始条件,IC=VD 时瞬态分析的初始条件。

(b)双极型晶体管QXXXX NC NB NE <NS> MNAME <AREA><OFF><IC=VBE,VCE>Q 为元件名称,NC NB NE <NS>分别是集电极,基极,发射极和衬底的节点。

缺省时,NS 结地。

后面可选项与二极管的意义相同。

(c)结型场效应晶体管JXXXX ND NG NS MNAME <AREA><OFF><IC=VDS,VGS>J为元件名称,ND NG NS为漏,栅,源的节点,MNAME 是模型名,后面为可选项与二极管的意义相同。

(d)MOS 场效应晶体管MXXXX ND NG NS NB MNAME <L=VAL><W=VAL>M为元件名称,ND,NG,NS,NB 分别是漏,栅,源和衬底节点。

MNAME 是模型名,L 沟道长,M为沟道宽。

(2)元器件模型许多元器件都需用模型语句来定义其参数值。

模型语句不同于元器件描述语句,它是以"."开头的点语句,由关键字.MODEL,模型名称,模型类型和一组参数组成。

电阻,电容,二极管,MOS 管,双极管都可设置模型语句。

这里我们仅介绍MOS 管的模型语句,其他的可参考Hspice帮助手册。

MOS 场效应晶体管模型MOS 场效应晶体管是集成电路中常用的器件,在Hspice 有20 余种模型,模型参数有40――60 个,大多是工艺参数。

例如一种MOS 模型如下:.MODEL NSS NMOS LEVEL=3 RSH=0 TOX=275E-10 LD=.1E-6 XJ=.14E-6+ CJ=1.6E-4 CJSW=1.8E-10 UO=550 VTO=1.022 CGSO=1.3E-10+ CGDO=1.3E-10 NSUB=4E15 NFS=1E10+ VMAX=12E4 PB=.7 MJ=.5 MJSW=.3 THETA=.06 KAPPA=.4 ETA=.14.MODEL PSS PMOS LEVEL=3 RSH=0 TOX=275E-10 LD=.3E-6 XJ=.42E-6+ CJ=7.7E-4 CJSW=5.4E-10 UO=180 VTO=-1.046 CGSO=4E-10+ CGDO=4E-10 TPG=-1 NSUB=7E15 NFS=1E10+ VMAX=12E4 PB=.7 MJ=.5 MJSW=.3 ETA=.06 THETA=.03 KAPPA=.4上面:.MODEL为模型定义关键字.NSS 为模型名,NMOS为模型类型,LEVEL=3 表示半经验短沟道模型,后面RSH=0 等等为工艺参数。

(3)电路的输入激励和源Hspice中的激励源分为独立源和受控源两种,这里我们仅简单介绍独立源。

独立源有独立电压源和独立电流源两种,分别用V 和I 表示。

他们又分为直流源,交流小信号源和瞬态源,可以组合在一起使用。

(a)直流源VXXXX N+ N- DC VALUEIXXXX N+ N- DC VALUE例如:VCC 1 0 DC 5v (表示节点1,0 间加电压5v)(b)交流小信号源VXXXX N+ N- AC <ACMAG <ACPHASE>>IXXXX N+ N- AC <ACMAG <ACPHASE>>其中,ACMAG 和ACPHASE 分别表示交流小信号源的幅度和相位。

例如:V1 1 0 AC 1v (表示节点1,0 间加交流电压幅值1v,相位0)(c)瞬态源瞬态源有几种,以下我们均只以电压源为例,电流源类似:* 脉冲源(又叫周期源)VXXXX N+ N- PULSE(V1 V2 TD TR TF PW PER)V1 初始值,V2 脉动值,TD 延时,TR 上升时间,TF下降时间,PW脉冲宽度,PER 周期例如:V1 5 0 PULSE(0 1 2NS 4Ns 4Ns 20NS 50NS)* 正弦源VXXXX N+ N- SIN(V0 VA FREQ TD THETA PHASE)V0:偏置,VA:幅度,FREQ: 频率,TD :延迟,THETA: 阻尼因子,PHASE:相位* 指数源VXXXX N+ N- EXP(V1 V2 TD1 TAU1 TD2 TAU2)V1初始值,V2中止值,TD1上升延时,TAU1上升时间常数,TD2下降延时,TAU2下降时间常数例如:V1 3 0 EXP(0 2 2ns 30ns 60ns 40ns)* 分段线性源VXXXX N+ N- PWL(T1 V1 <T2 V2 T3 V3 。

相关文档
最新文档