统计学名词解释新
统计学名词解释

1、统计学统计学是一门阐明如何去采集、整理、显示、描述、分析数据和由数据得出结论的一系列概念、原理、原则、方法和技术的科学,是一门独立的、实用性很强的通用方法论科学。
2、指标和标志标志是说明总体单位属性或特征的名称。
指标是说明总体综合数量特征和数量关系的数字资料。
3、总体、样本和单位统计总体是统计所要研究的对象的全体,它是由客观存在的、具有某种共同性质的许多个体所构成的整体。
简称总体。
构成总体的个体则称为总体单位,简称单位。
样本是从总体中抽取的一部分单位。
4、统计调查统计调查是根据统计研究的目的和要求、采用科学的方法,有组织有计划的搜集统计资料的工作过程。
它是取得统计数据的重要手段。
5、统计绝对数和统计相对数反映总体规模的绝对数量值,在社会经济统计中称为总量指标。
统计相对数是两个有联系的指标数值之比,用以反映现象间的联系和对比关系。
6、时期指标和时点指标时期指标是反映总体在一段时期内累计总量的数字资料,是流量。
时点指标是反映总体在某一时刻上具有的总量的数字资料,是存量。
7、抽样估计和假设检验抽样估计是指根据所抽取的样本特征来估计总体特征的统计方法。
假设检验是先对总体的某一数据提出假设,然后抽取样本,运用样本数据来检验假设成立与否。
8、变量和变异标志的具体表现和指标的具体数值会有差别,这种差别就称为变异。
数量标志和指标在统计中称为变量。
9、参数和统计量参数是反映总体特征的一些变量,包括总体平均数、总体方差、总体标准差等。
统计量是反映样本特征的一些变量,包括样本平均数、样本方差、样本标准差等。
10、抽样平均误差样本平均数与总体平均数之间的平均离散程度称之为抽样平均误差,简称为抽样误差。
重复抽样的抽样平均误差为总体标准差的1/n。
11、抽样极限误差抽样极限误差是指样本统计量和总体参数之间抽样误差的可能范围。
我们用样本统计量变动的上限或下限与总体参数的绝对值表示抽样误差的可能范围,称为极限误差或允许误差。
统计学名词解释(超全)

统计学名词解释(超全)统计学:是一门搜集、整理、显示和分析统计数据的方法论科学。
总体:就是统计所要研究的事物或现象的全体,即由客观存在的,具有某种共同特征的许多个别事物构成的整体。
参数:是描述总体数量特征的指标,又称总体指标。
样本:是指从统计总体中抽取出来作为代表这一总体的、由部分个体组成的集合体。
变量:指给所要研究的事物起的名字,包括可变的标志和所有的统计指标。
总体参数:描述总体数量特征的指标,又称总体指标。
样本统计量:是根据样本数据计算出来的样本指标,用来描述样本的数量特征。
普查:为某一特定目的而专门组织的一次性全面调查。
抽样调查:是按随机原则,从总体中抽选部分单位进行观察,并根据部分单位(样本)的调查数据,从数量方面推断总体参数的一种非全面调查。
统计分组:根据被研究现象总体的内在特点以及统计研究的目的,将总体按照一定的标志分为若干个性质不同的组成部分的一种统计方法。
统计表:指显示统计整理结果的表格,就是把通过整理的调查数据,使其成为得以说明现象总体数量特征的分组数据,并按一定顺序排列而形成的表格。
时期数据:反映现象总体在一段时期内发展变化总结果的总量指标。
时点指标:反应现象整体在某一的点(瞬间)上所处状况的总量指标。
众数:是一组数据中出现次数最多的变量值。
时间序列:将反映某种现象的统计指标在不同时间上的数值,按时间顺序排列而成的序列。
发展水平:时间序列中的每一项指标数值,都称为发展水平,它反映了某种现象在一定时期或时点所达到的规模和水平。
均匀发展水平:将不同时间的发展水平加以均匀而得到的均匀数。
发展速度:是反映现象发展变化快慢程度的动态相对指标,是根据两个不同时期的发展水平对比求得的。
环比发展速度:是时间序列中敷陈期发展水平与前期发展水平之比,表明现象逐期发展变化的方向和程度。
定基发展速度:是报告期发展水平与某一固定时期发展水平(最初发展水平)之比,说明现象在较长时期内总的发展变动方向与程度。
(完整)统计学名词解释

名词解释:医学统计学:用统计学的原理和方法研究生物医学问题的一门学科.变量(variable ):观察单位的某项特征变量值(value of variable ):变量的观察结果(测量值)总体(population ):是根据研究目的确定的同质的观察单位的全体,确切的说是同质的所有的观察单位某种变量值的集合。
样本(sample)从总体中随机抽取部分由代表性的观察单位,其测量值的集合称为样本。
随机抽样(random sample ):按随机化原则从总体中抽取部分观察单位的过程。
同质(homogeneity ):是针对被研究指标来讲,其影响因素相同.简单地理解就是指对研究指标影响大约可以控制的主要因素应尽可能相同。
变异(variation):指在自然地状态下,个体测量结果在同质基础上的差异。
等级资料(ordinal data ):将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位称为等级资料,如患者的治疗结果可分为治愈,好转,有效,无效,死亡.有序变量(定性变量的一种)。
概率(probability):是度量某一随机事件A 发生可能性大小的一个数值,记为P (A ),P (A )越大,说明A 事件发生的可能性越大,0〈P(A)<1,小概率事件.频率(frequency ):在相同的条件下,独立重复做n 次实验,事件A 出现了m 次,比值m/n 称为随机事件A 在n 次实验中出现的频率。
随机误差(random error):排除了系统误差后的尚存的误差,受多种因素影响,使观察值不按照方向性和系统性而随机的变化,误差变量一般服从正态分布,可以通过统计处理来估计.系统误差(system error ):由于受试对象,研究者,仪器设备,研究方法等非实验因素影响等确定性原因造成,有一定倾向性或规律性的误差,可以避免.随机变量(random variable ):是指取值不能事先确定的观察结果,不能用一个正常数来表示,每个变量的取值服从特定的概率分布。
统计学(名词解释及简答)

统计学名词解释统计量:用来描述样本特征的概括性数字度量简单随机抽样:指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。
整群抽样:是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。
系统抽样:根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式众数:是一组数据中出现次数最多的变量值中位数:是一组数据排序后处于中间位置上的变量值平均数:也称均值,是一组数据相加后除以数据的个数得到的结果标准差:离均差平方和平均后的方根区间估计:在点估计的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减抽样误差得到。
假设检验:利用样本信息,对提出的命题进行检验的一套程序和方法。
双侧假设检验:当统计量U的观测值的绝对值大于临界值Uα/2即|u0|>Uα/2时,则拒绝原假设H0,此时假设检验的拒绝域在统计量分布的两侧尾部,则称这种假设检验为双侧假设检验。
相关系数:是根据样本数据计算的度量两个变量之间线性关系强度的统计量。
回归模型:描述因变量y如何依赖于自变量x和误差项的方程。
回归方程:描述因变量y的期望值如何依赖于自变量x的方程。
估计的回归方程:根据估计数据求出的回归方程的估计。
多重共线性:是指线性回归模型中的两个或两个以上的自变量彼此相关。
时间序列:是同一现象在不同时间上的相继观察值排列而成的序列。
趋势:是时间序列在长时期内呈现出来的某种持续上升或持续下降的变动,也称长期趋势。
季节变动(季节性):时间序列在一年内重复出现的周期性波动。
指数:广义的讲,任何两个数值对比形成的相对数都可以称作指数,狭义的讲,指数是用于测定多个项目在不同场合下综合变动的一种相对数。
消费者价格指数(CPI):反映一定时期内消费者所购买的生活消费品价格和服务项目价格的变动趋势和程度的一种相对数。
简答一、概率抽样与非概率抽样比较答:非概率抽样不是依据随机原则抽选样本,样本统计量的分布是不确切的,因而无法使用样本的结果对总体相应的参数进行推断。
统计学名词解释

统筹学统计学:是一门搜集、整理、显示和分析统计数据的方法论科学。
总体:就是统计所要研究的事物或现象的全体,即由客观存在的,具有某种共同特征的许多个别事物构成的整体。
参数:是描述总体数量特征的指标,又称总体指标。
样本:是指从统计总体中抽取出来作为代表这一总体的、由部分个体组成的集合体。
变量:指给所要研究的事物起的名字,包括可变的标志和所有的统计指标。
总体参数:描述总体数量特征的指标,又称总体指标。
样本统计量:是根据样本数据计算出来的样本指标,用来描述样本的数量特征。
普查:为某一特定目的而专门组织的一次性全面调查。
抽样调查:是按随机原则,从总体中抽选部分单位进行观察,并根据部分单位(样本)的调查数据,从数量方面推断总体参数的一种非全面调查。
统计分组:根据被研究现象总体的内在特点以及统计研究的目的,将总体按照一定的标志分为若干个性质不同的组成部分的一种统计方法。
统计表:指显示统计整理结果的表格,就是把通过整理的调查数据,使其成为得以说明现象总体数量特征的分组数据,并按一定顺序排列而形成的表格。
时期数据:反映现象总体在一段时期内发展变化总结果的总量指标。
时点指标:反映现象总体在某一的点(瞬间)上所处状况的总量指标。
众数:是一组数据中出现次数最多的变量值。
时间序列:将反映某种现象的统计指标在不同时间上的数值,按时间顺序排列而成的序列。
发展水平:时间序列中的每一项指标数值,都称为发展水平,它反映了某种现象在一定时期或时点所达到的规模和水平。
平均发展水平:将不同时间的发展水平加以平均而得到的平均数。
发展速度:是反映现象发展变化快慢程度的动态相对指标,是根据两个不同时期的发展水平对比求得的。
环比发展速度:是时间序列中报告期发展水平与前期发展水平之比,表明现象逐期发展变化的方向和程度。
定基发展速度:是报告期发展水平与某一固定时期发展水平(最初发展水平)之比,说明现象在较长时期内总的发展变动方向与程度。
年距发展速度:反映报告期发展水平对于上年同期发展水平的变化方向与程度。
统计学名词解释

名词解释●统计工作:是从数量方面对社会经济现象做调查研究的一种工作,是人们为认识客观事物而进行的搜集、整理、分析和提供统计资料的工作过程;●统计资料:是统计工作的成果,是指在统计实践活动中所取得的,反映统计研究对象有关特征的各种综合性的数字资料和分析报告;●统计学:是阐述统计理论与方法的系统性科学,是统计工作实践的理论概括和科学总结,是研究、整理、分析统计资料的理论和方法的科学;●总体:是指客观存在的,在某一相同性质基础上结合起来的许多个别事物的整体●总体单位:构成总体的个别事物●样本:从总体当中抽取出来,用从代表这一总体的部分个体组成的集合●标志:是说明总体单位属性或特征的名称●统计指标:说明总体数量特征的,简称指标;有俩种理解,一是指反映现象总体数量特征的概念;二是指反映现象总体数量特征的概念及其数量表现;●普查:是专门组织的一次性的全面调查;这种调查,主要用来搜集一些比较全面而又不能或不宜从经常调查中得出的统计资料;●重点调查:是一种非全面调查,它是从所要调查的单位中选择一部分重点单位进行调查●抽样调查:也是一种非全面调查,它是按照随机原则从被研究总体中抽取出一定数量的单位样本进行调查,根据样本指标数值来推算总体指标数值的一种调查●典型调查:是一种十分重要的、行之有效的非全面调查方法;它是从研究总体中有意识地选取若干具有代表性单位典型单位进行调查,用来了解总体的详细情况●统计调查:根据统计工作任务和统计设计的要求,用科学的方法,有计划有组织地向调查单位搜集调查资料的过程●统计分组:根据统计研究的需要,将统计总体按照一定的标志区分为若干组成部分的一种统计方法●分配数列:又称分布数列、次数数列,是在统计分组的基础上形成的,用来反映总体单位在各组中分布状况的统计数列●总量指标:是反映社会经济现象的总体规模和水平的统计指标;总量指标通常是将总体单位数相加或总体单位某一数量标志值相加得到的,大多数是统计整理的直接成果,是用绝对数的形式表示的,因此也称统计绝对数●相对指标:是将两个有联系的反映社会经济现象的统计指标相互对比得到的一种抽象的比值,是反映社会经济现象间数量对比关系的综合指标●平均指标:是反映总体各单位某一数量标志值一般水平的综合指标,又称统计平均数●标志变异指标:是反映总体各单位标志值的差异程度的,即反映分配数列中各标志值的变动范围或离差程度的综合指标,也叫标志变动度,简称变异指标●成数:具有某种表现或不具有某种表现的单位数占全部总体单位数的比重●时间数列:是将说明社会经济象在各个不同时期或时点上某种数量特征的指标数值,按时间的先后顺序排列起来而形成的统计数列; 时间数列中每项数值是与时间相对应的,所以又称动态数列●时期数列:在绝对数动态数列中,各项指标都是反映某种现象在一段时间内发展过程的总量●时点数列:在绝对数动态数列中,每个指标所反映的事现象在某一时点上瞬间所处状态的数量水平●发展水平:社会经济现象在某时期或某时点达到的指标数值●统计指数:广义指同类社会经济现象数量对比的相对数,包括动态相对数、比较相对数、计划完成程度相对数等;狭义指用来反映由不能直接加总的多要素所构成的复杂社会经济现象综合变动程度的特殊相对数●抽样误差:指在遵守随机原则的条件下,用抽样指标代表总体所产生的不可避免的误差;●简单随机抽样:又称纯随机抽样;它是对全及总体的所有单位不进行任何分类或排队处理,而是完全按照随机原则从总体中抽出样本单位加以观察,以保证总体中每个单位有相等被抽中的机会●类型抽样:也称分层抽样或分类抽样;它首先把全及总体按某一标志分成若干组,然后分别在各组内按随机原则抽取一定数目的样本单位构成样本的抽样方式●等距抽样:又称机械抽样或系统抽样,它是先将总体各单位按某一标志排队,然后按固定的顺序和间隔来抽选样本单位的一种抽样组织形式●整群抽样:将总体各单位划分成若干群或组,然后以群或组为单位从中随机抽取一些群,对中选群的所有单位进行全面调查的抽样组织形式●相关关系:是现象之间确实存在有数量上的依存关系,但这种数量上的关系式不确定的●相关表:指按照相关现象的数量对应关系以及一定的逻辑顺序编制成的一种统计表。
统计学名词解释

1、统计学:是运用数理统计的基本原理和方法研究预防医学和卫生事业管理中资料的收集,整理和分析的一门应用科学。
具体地讲,是按照设计方案去收集、整理、分析数据,并对数据结果进行解释,从而做出比较正确的结论。
2、总体:是根据研究目的确定同质的所有观察单位某种变量的集合。
3、变异:同一性质的事物,其观察值(变量值)之间的差异。
4、抽样研究:从所研究的总体中随机抽取一部分有代表性的样本进行研究,用样本指标推论总体,最终达到了解总体的目的。
这种用样本指标推论总体参数的方法称为抽样研究。
5、统计描述:用统计图表或计算统计指标的方法表达一个特定群体的某种现象或特征。
6、统计推断:根据样本资料的特性对总体的特性作估计或推论的方法称统计推断,常用方法是参数估计和假设检验。
7、概率:是指某事件出现可能性大小的度量,以符号P表示。
8、医学参考值范围:参考值范围又称正常值范围。
医学上常把包括绝大多数人某项指标的数值范围称为该指标的参考值范围。
9、正态分布规律:实际工作中,经常需要了解正态曲线下横轴上的一定区域的面积占总面积的百分数,用以估计该区间的观察例数占总例数的百分数,或变量值落在该区间的频数或概率。
10、可比性:是指对研究结果有影响的非处理因素在各处理组之间尽可能相同或相近。
11、动态数列:是一系列按时间顺序排列起来的统计指标,包括绝对数、相对数或平均数,用以说明事物在时间上的变化和发展趋势。
12、抽样误差:在同一总体中随机抽取样本含量相同的若干样本时,样本指标之间的差异以及样本指标与总体指标的差异。
13、标准误:表示样本均数间变异程度。
14、率的抽样误差:抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差,率之间的差异称为率的抽样误差。
15、参数估计:是指用样本指标(称为统计量)估计总体指标(称为参数)。
16、可信区间:总体参数的所在范围通常称为参数的可信区间或置信区间,即该区间以一定的概率(如95%或99%)包含总体参数。
统计学的名词解释

统计学的名词解释统计学是一门研究数据收集、分析和解释的学科,旨在通过收集和解析数据来支持决策过程和了解现象。
统计学涉及一系列概念和方法,包括数据收集、数据描述性统计、概率理论、假设检验、统计推断和回归分析等。
1. 数据收集:统计学中的第一步是收集数据。
数据可以通过各种方法获得,包括实地观察、实验、调查问卷和从现有的数据集中获取等。
2. 数据描述性统计:在收集到数据后,统计学家使用描述性统计来总结和描述数据的特征。
描述性统计包括计算数据的平均数、中位数、众数、标准差和百分位数等。
3. 概率理论:概率理论是统计学的基石之一。
它研究随机现象发生的可能性,并给出事件发生的数学表达。
概率理论为统计推断和建立模型提供了理论基础。
4. 假设检验:假设检验用于确定一个观察结果是否与一个给定的假设相符。
它提供了一种确定性地评估研究或实验结果的方法,并决定是否拒绝或接受一个假设。
5. 统计推断:统计推断是通过对样本数据进行分析和推断来对总体进行推断的过程。
它使用样本数据估计总体参数,并根据这些估计进行一些统计判断。
6. 回归分析:回归分析是一种统计方法,用于建立和探索变量之间的关系。
它可以用来预测一个变量(因变量)如何随着其他变量(自变量)的变化而变化。
7. 统计模型:统计模型是由统计学方法和理论构建的数学表达式,用于描述和解释观察数据之间的关系。
统计模型可以是简单的线性模型,也可以是更复杂的非线性模型。
8. 抽样方法:在统计学中,由于往往难以调查每一个个体或观察每一个事件,人们通常采用抽样方法来从总体中选择一部分样本进行研究。
常见的抽样方法包括随机抽样和分层抽样等。
9. 统计图表:统计图表是一种可视化数据的方式,用来展示和比较数据。
常见的统计图表包括柱状图、饼图、散点图和箱线图等。
10. 多元统计分析:多元统计分析是一项通过同时考虑多个变量来分析数据的方法。
它包括主成分分析、因子分析和聚类分析等。
总之,统计学是一门研究数据收集、分析和解释的学科,它运用一系列概念和方法来帮助人们理解数据,并从中获取有关现象和决策的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中央广播电视大学2013-2014学年度第一学期"开放本科"期未考试(半开卷)
社会统计学试题
二、名词解释(每题4分,共20分)
11.抽样单位与抽样框
抽样单位就是一次直接的抽样所使用的基本单位。
(2分)
抽样框是指一次直接抽样时所有抽样单位的名单。
(2分)
12.普查与抽样调查
普查是一种专门的调查,它是为了某种特定的目的而对总体中所有的个体进行的一次全
面调查。
(2分)
称为误差减少比例,简称PREa(2分)PRE的取值范围为0→1,PRE值越大,说明用变量X
去预测变量Y是能够减少的误差所占的比例越大,即变量X与变量Y之间的相关性越大;反之,PRE越小、说明变量X与变量Y之间的关系越小。
(2分)
13.散点图
散点图是在坐标系中,用X轴表示自变量x,用Y轴表示因变量y,而变量组(x,y)则用坐标系中的点表示,不同的变量组在坐标系中形成不同的散点,用坐标系及其坐标系中的散点形成的二维图就是散点图。
(2分)
散点图是描述变量关系的→种直观方法,我们可以从散点图中直观的看出两个变量之间
是否存在相关关系、是正线性相关还是负线性相关,也可以大致看出变量之间关系强度如何乙14.正态分布
连续性随机变量中重要的分布是钟型概率分布,就是正态分布,也称为常态分布,是种
连续型随机变量的概率分布。
(2分)正态分布是对称的,且正态分布的中央点最高。
(2分)
15.最小二乘法
对于存在线性关系的变量x和y的观察值,我们可以用很多直线去描述,但我们需要选用距离各观测值最近的一条直线,用它来描述x与y之间的关系使实际的误差最小,根据这一思想来确定回归方程中参数的方法就是最小二乘法。
(2分)最小二乘法是使因变量的观察值与估计值之间的离差平方和达到最小来求参数的方法。
(2分)
二、名词解释(每题4分,共20分)
11.概率抽样
概率抽样就是按照随机原则进行的抽样,(2分)总体中每个个体都有一定的、非零的概率
入选样本,并且入选样本的概率都是已知的或可以计算的。
(2分)
分)
(2
散点图是描述变量关系的一种直观方法,我们可以从散点图中直观的看出两个变量之间
是否存在相关关系、是正线性相关还是负线性相关,也可以大致看出变量之间关系强度如何。
14.抽样分布
抽样分布是指样本统计量的概率分布,(2分)它是在重复选取容量为n的样本时,由每个样本计算出来的统计量值的相对频数分布。
(2分)
15.虚无假设与替换假设
我们将需要通过样本信息来推断其正确与否的命题称为虚无假设,也称为原假设或零假设。
(2分)
如果虚无假设不成立,我们就拒绝虚无假设,需要在另一个假设中进行选择,这就是替换假设。
(2分〉
、名词解释{每题4分,共20分}
11.总体与样本
总体是构成它的所有个体的集合,个体则是构成总体的最基本的单位。
(2分)
样本就是从总体中按照一定方式抽取的一部分个体的集合。
(2分〉
12.抽样分布
抽样分布是指样本统计量的概率分布,它是在重复选取容量为n的样本时,由每个样本计算出来的统计量值的相对频数分布。
(4分)
13.二维表
二维表就是行列交叉的表格,将两个变量一个分行排放,一个分列排放,行列交叉处就是同属于两个变量的不同类的数据,也称为列联表。
(4分〉
14.相关系数
离散系数是一组数据的标准差与该数据均值之比,也称为变异系数。
(4分〉
15.独立样本与配对样本
独立样本是指我们得到的样本是相互独立的。
(2分〉
配对样本就是一个样本中的数据与另一个样本中的数据相对应的两个样本。
(l分)配对
样本可以消除由于样本指定的不公平造成的差异。
(1分〉。