基于蚁群算法的路径规划

合集下载

基于蚁群算法的路径规划

基于蚁群算法的路径规划

基于蚁群算法的路径规划路径规划是指在给定起点和终点的情况下,找到一条最优路径使得在特定条件下完成其中一种任务或达到目标。

蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁寻找食物路径的启发式算法,已经广泛应用于路径规划领域。

本文将详细介绍基于蚁群算法的路径规划的原理、方法和应用,旨在帮助读者深入理解该领域。

1.蚁群算法原理蚁群算法的灵感源自蚂蚁在寻找食物过程中携带信息以及通过信息交流来引导其他蚂蚁找到食物的群体行为。

算法的基本原理如下:1)路径选择方式:蚂蚁根据信息素浓度和距离的启发信息进行路径选择,信息素浓度高的路径和距离短的路径更容易被选择。

2)信息素更新方式:蚂蚁在路径上释放信息素,并通过信息素挥发过程和信息素增强机制来更新路径上的信息素浓度。

3)路径优化机制:较短路径上释放的信息素浓度较高,经过多次迭代后,社会积累的信息素会指引蚂蚁群体更快地找到最优路径。

4)局部和全局:蚂蚁在选择路径时,既有局部的能力,也有全局的能力,这使得算法既能收敛到局部最优解,又能跳出局部最优解继续探索新的路径。

2.蚁群算法步骤1)定义问题:明确起点、终点以及路径上的条件、约束等。

2)初始化信息素与距离矩阵:设置初始信息素值和距离矩阵。

3)蚂蚁移动:每只蚂蚁根据信息素浓度和距离的启发选择下一个节点,直到到达终点。

4)信息素更新:蚂蚁根据路径上释放的信息素更新信息素矩阵。

5)迭代:不断重复蚂蚁移动和信息素更新过程,直到满足停止条件为止。

6)输出最优路径:根据迭代结果输出最优路径。

3.蚁群算法应用1)TSP问题:旅行商问题(Traveling Salesman Problem,TSP)是蚁群算法应用的典型问题之一、该问题是在给定一组城市以及它们之间的距离,求解一条经过每个城市一次且最短的路径。

蚁群算法通过模拟蚂蚁在城市之间的移动来求解该问题,并能够较快地找到接近最优解的路径。

2)无人机路径规划:无人机路径规划是指在给定起点和终点的情况下,找到无人机的最优飞行路径。

基于蚁群算法全自主机器人路径规划研究

基于蚁群算法全自主机器人路径规划研究

( l , nI l , n;, n 分别 是对 平 面工作 i , …, j , …,, 和 , — 2 = 2 n
环 境 的二 维划 分 维数 ) 为平 面环 境 中位 置 点 i j 与 之
1 蚁群算法 的原理
蚁群算 法f : 自然界 中蚂 蚁的寻食 过程进 行 3 对
间 的距离 ; i) t - 位于 位置 点 i 的蚂 蚁数 目; bt N刻 (为 处
刘祚 时 ,罗 爱华 ,彭建 云
LU Zu — h 。 UO . u . I o s i L Ai a PENG in y n h Ja . u
( 江西理工大学 , 赣州 3 0 0 41 0 )

要 :蚁群 算法是一种源于大自然中生物世界的仿生类算 法 ,它模 仿昆虫王国中蚂蚁搜索食物的行
显然 ,有等 式w 一 b ( 。因为 在 初始 时刻 , 条 。t ) 每 路 径 的信 息素 轨迹 的量 都是 相 等的 , 有 预设 条件 所
,.; c
() C,C是一 定 常量 。 0=
收稿 日期 :2 0 —60 0 90 —1 作者简介:刘祚时 (9 3一) 16 ,男, 教授 ,博士 ,研究方向: 勾人工智能 、车 辆工程 、软件 工程 。
2 蚁群 算法的全 自主机器人路径规划
21 蚁 群 算法 的描述 .
在 求 解 的过 程 中 , 为 了对 蚁群 的 行 为 进 行仿
真 ,引入 以下 描 述符 号 :w 为 蚁群 中蚂蚁 的个数 ;


研究 解决此 类问题 的蚁群算 法, 于扩 大蚁群 算法 的 对
应用 范 围具有 重要 意义 。
径 上 的信 息量却 会 随着 时 间的流 逝 而逐渐 消 减 ,最

基于蚁群算法的机器人全局路径规划的开题报告

基于蚁群算法的机器人全局路径规划的开题报告

基于蚁群算法的机器人全局路径规划的开题报告一、选题背景机器人在工业、农业、医疗等领域得到了广泛的应用。

机器人的路径规划是机器人移动的核心问题之一。

机器人路径规划技术主要分为局部路径规划和全局路径规划两种。

局部路径规划是指在已知的地图和机器人位置的情况下,通过运用不同的算法,生成机器人移动时的轨迹,保证机器人能够安全、高效地从当前位置移动向目标位置。

全局路径规划则是指在未知或部分未知环境下,机器人需要找到从起点到终点的全局最优路径。

蚁群算法是一种基于群体智能的优化算法,该算法的主要思想是通过模拟蚂蚁寻找食物的行为,使得种群中的个体在不断地移动和搜索中,最终找到全局最优解。

与其他基于群体智能算法相比,蚁群算法具有很强的全局搜索能力和优化能力。

因此,本文将研究基于蚁群算法的机器人全局路径规划方法,通过模拟蚂蚁寻找食物的行为,找到机器人从起点到终点的全局最优路径。

二、论文研究内容及意义2.1 研究内容本文主要研究在未知环境下基于蚁群算法的机器人全局路径规划,主要包括以下几个方面:1. 建立机器人运动的数学模型,确定机器人的运动方程和状态转移方程。

2. 基于蚁群算法,设计机器人的全局路径规划算法,通过模拟蚂蚁寻找食物的行为,找到机器人从起点到终点的全局最优路径。

3. 结合机器人的运动模型和路径规划算法,实现基于ROS的机器人路径规划系统,并对系统进行实验验证。

2.2 研究意义机器人路径规划技术与实际应用密切相关,对机器人的自主行动和任务执行具有重要意义。

本文基于蚁群算法研究机器人全局路径规划,将具有以下意义:1. 通过研究基于蚁群算法的机器人全局路径规划,使得机器人能够在未知环境中找到全局最优路径,提高了机器人的自主控制能力。

2. 设计基于ROS的机器人路径规划系统,有效地将理论研究应用到实际中去。

3. 本研究通过蚁群算法为机器人路径规划提供了一种新的思路和方法,具有一定的理论和实际参考价值。

三、研究方法本文主要采用以下几种研究方法:1. 理论分析法:分析机器人的运动模型和状态转移方程,推导蚁群算法应用于机器人路径规划的数学模型。

基于蚁群算法的物流运输路径规划研究

基于蚁群算法的物流运输路径规划研究

基于蚁群算法的物流运输路径规划研究近年来,物流行业得到了快速的发展,越来越多的企业采用物流配送来提高运作效率和降低成本,而物流运输路径规划是其中非常重要的一环。

路径规划的目的是寻找最短路径或最优路径,从而缩短物流运输时间,降低成本,提高效率。

蚁群算法是一种模拟自然界中蚂蚁觅食行为的算法,具有全局搜索、高度并行、自适应和高效性等优点,因此被广泛应用于物流运输路径规划领域。

一、蚁群算法的基本原理蚁群算法源于自然界中蚂蚁觅食行为,蚂蚁会在找到食物后,向巢穴释放信息素,吸引同类蚂蚁沿着这条路径前往食物。

随着蚂蚁数量的增加,信息素浓度会逐渐增加,导致新的蚂蚁更容易选择已有路径。

蚁群算法利用信息素的积累,不断地优化路径,直到找到最短路径或最优路径。

二、蚁群算法的应用于物流运输路径规划在物流运输路径规划领域,蚁群算法被广泛应用。

根据实际情况,可以将路径规划问题建模成TSP问题或VRP问题。

TSP问题是指在给定的城市之间寻找一条最短的路径,使得每个城市只被访问一次;VRP问题是指在给定的城市集合中找到一组路径,满足每个城市只被访问一次,且路径长度最小。

使用蚁群算法进行物流运输路径规划,需要首先建立好模型。

对于TSP问题,需要将每个城市和城市之间的距离表示成矩阵形式。

对于VRP问题,需要确定车辆的容量、起点和终点以及每个城市的需求量等信息。

然后根据信息素和启发式信息等因素,模拟蚂蚁在不断地寻找路径的过程,最终找到最短路径或最优路径。

蚁群算法的运用可以有效解决物流规划中的大量信息和复杂的计算问题,提高规划质量和效率。

例如,针对长距离物流配送的问题,蚁群算法可以帮助企业选择最优的物流路线,减少物流成本和时间,提高物流效率;对于中短距离的城市配送问题,蚁群算法则可以帮助企业快速响应客户需求,实现快速配送。

蚁群算法的优点在于它具有强鲁棒性和全局搜索能力,不会被初始点和局部最优解所限制,因此可以找到全局最优解。

与其他优化算法相比,蚁群算法对于大规模问题的解决能力更加优秀。

基于蚁群算法的路径规划研究

基于蚁群算法的路径规划研究

基于蚁群算法的路径规划研究近年来,随着人工智能技术的不断发展,各种智能算法也呈现多样化和广泛性,其中蚁群算法是一种基于自然现象的群体智能算法,具有很好的鲁棒性、适应性和通用性,在路径规划领域得到了广泛的研究和应用。

一、蚁群算法简介蚁群算法(Ant Colony Optimization,简称ACO)是一种基于群体智能的优化算法,模拟了蚂蚁的觅食行为,通过“觅食-回家-释放信息”的三个过程实现路径规划的优化,具有自适应性和强鲁棒性。

蚁群算法是一种全局搜索的算法,能够在多个复杂的条件下找到最优解。

蚁群算法的主要特点有以下五点:1. 信息素的引导。

在路径搜索过程中,蚂蚁根据信息素的浓度选择路径,信息素浓度高的路径被更多的蚂蚁选择,信息素浓度低的路径则会逐渐被遗弃,从而保证了路径的收敛性和优化性。

2. 分散探索和集中更新。

蚂蚁在搜索过程中会自发地进行分散探索和集中更新,同时保证了全局搜索和局部搜索的平衡性。

3. 自适应性。

蚁群算法能够根据搜索条件自适应地调整搜索策略,从而更好地适应复杂的环境变化。

4. 并行性。

蚁群算法的搜索过程可以并行进行,充分利用计算机的并行计算能力,在效率和速度上有很大的优势。

5. 通用性。

蚁群算法不仅可以用于路径规划,在组合优化、图论等领域也有广泛的应用。

二、蚁群算法在路径规划中的应用蚁群算法在路径规划中的应用可以分为两种类型:单一目标路径规划和多目标路径规划。

1. 单一目标路径规划。

单一目标路径规划是指在一个起点和终点之间,寻找一条最短的路径或耗时最少的路径。

蚁群算法在单一目标路径规划中的应用最为广泛,在典型应用中包括迷宫求解、地图导航、自动驾驶等。

以地图导航为例,地图导航需要考虑注重路径的最短距离和最短时间两个方面。

蚁群算法可以根据具体的需求,通过选择较小的权值系数来优化路径规划的结果。

在蚁群算法的搜索过程中,由于每只蚂蚁选择路径的过程都受到信息素强度的影响,因此在搜索的过程中,每只蚂蚁都有相应的机会选择最短距离或最短时间路径,并以此更新信息素,最终找到最优的路径。

基于蚁群算法的多目标路径规划研究

基于蚁群算法的多目标路径规划研究

基于蚁群算法的多目标路径规划研究在现代社会,路径规划已经成为了人们生活的必需品。

无论是在城市导航、物流配送还是机器人自动导航等领域,都需要实现高效、准确的路径规划。

而蚁群算法则是一种非常有效的方法,可以在多目标路径规划中得到广泛应用。

本文将介绍基于蚁群算法的多目标路径规划研究。

一、路径规划路径规划是一种解决从起点到终点之间如何到达的问题。

在计算机科学中,路径规划是一种基本问题,针对不同的应用有不同的算法。

在实际应用中,进行路径规划时一般需要考虑多个因素,如路况、距离、时间、速度、安全等等。

因此,对多目标路径规划的研究具有重要的意义。

二、蚁群算法蚁群算法最初是受到蚂蚁觅食的行为启发而提出的。

在蚁群算法中,一群蚂蚁在寻找食物的过程中,会通过信息素的传递和蒸发来寻找最短路径,并最终找到食物。

这一过程可以非常好地应用于路径规划问题。

蚁群算法具有以下特点:(1)多个人工蚂蚁共同搜索蚁群算法是通过多个人工蚂蚁在搜索空间中移动,从而寻找目标的最优解。

(2)信息素在蚁群算法中,每个人工蚂蚁都会释放信息素,这些信息素会在搜寻过程中在路径上积累,蚂蚁会选择信息素强度大的路径来移动。

(3)正反馈在蚁群算法中,信息素的强度会随着蚂蚁的路径选择而发生变化,当某条路径被选择后,信息素的强度会增加,从而更有可能吸引其他蚂蚁选择这条路径。

三、多目标路径规划在多目标路径规划中,需要同时考虑多种因素。

例如,在城市导航中,既需要考虑最短距离,同时还需要考虑路况、道路拥堵等因素;在机器人自动导航中,既需要考虑路径的连贯性,同时还需要避开障碍物、保证安全等等。

传统的路径规划算法通常采用单一的评价函数,而对于多目标问题,通常采用Pareto最优解来解决问题。

其中,Pareto最优解指的是在多个目标之间不存在更好的解,而多个目标之间又相互独立。

四、基于蚁群算法的多目标路径规划应用基于蚁群算法的多目标路径规划方法原理简单、易于实现,并且可以较好地找到Pareto最优解。

蚁群算法在路径规划与优化中的应用

蚁群算法在路径规划与优化中的应用

蚁群算法在路径规划与优化中的应用第一章:引言在现实生活中,路径规划和优化一直是一个重要且具有挑战性的问题。

无论是城市道路的交通拥堵还是物流配送中心的最优路径选择,路径规划和优化能帮助我们节约时间和资源。

近年来,蚁群算法作为一种基于自然现象的模拟优化方法,已经被广泛应用于路径规划和优化问题中。

本文将重点介绍蚁群算法的原理和应用,以及其在路径规划与优化中的作用。

第二章:蚁群算法原理蚁群算法是由Marco Dorigo等人于1992年提出的一种模拟蚂蚁觅食行为的计算方法。

蚁群算法模拟了蚂蚁在寻找食物时的行为规律,其中包括信息素释放和信息素挥发等行为。

蚂蚁通过释放信息素,与其他蚂蚁进行信息交流,并根据信息素浓度来选择路径。

信息素会随着时间的推移而挥发,从而不断影响蚂蚁的行为选择。

通过这种方式,蚁群算法能够找到一条较优的路径。

蚁群算法的原理类似于人类社会中的群体智慧,即通过合作与信息交流来寻找最优解。

第三章:蚁群算法在路径规划中的应用蚁群算法在路径规划中的应用主要包括:城市道路交通规划、无人车路径规划和物流配送路径规划等。

例如,在城市道路交通规划中,蚁群算法可以帮助确定最佳的路网连接方式,以及解决交通拥堵问题。

在无人车路径规划中,蚁群算法可以根据交通流量和道路状况等因素,选择合适的行驶路径。

在物流配送路径规划中,蚁群算法可以帮助确定最优的配送路线,以减少成本和提高效率。

第四章:蚁群算法在路径优化中的应用蚁群算法在路径优化中的应用主要包括:路线优化、资源调度和路径搜索等。

例如,在路线优化中,蚁群算法可以帮助优化货车的行驶路线,以减少行驶距离和时间成本。

在资源调度中,蚁群算法可以帮助优化人员的分配和任务调度,以提高工作效率和资源利用率。

在路径搜索中,蚁群算法可以帮助找到最短路径或者最优解,以满足用户需求。

第五章:蚁群算法的优缺点蚁群算法作为一种模拟生物行为的优化算法,具有一些优点和缺点。

其优点包括:能够寻找复杂问题的较优解、容易实现和灵活性强。

基于改进蚁群算法的路径规划优化方法研究

基于改进蚁群算法的路径规划优化方法研究

基于改进蚁群算法的路径规划优化方法研究近年来,随着人工智能技术的不断发展,路径规划优化成为了一个备受关注的研究领域。

在实际生产与生活中,很多问题都需要最优的路径规划方法来解决。

而蚁群算法,作为一种优化搜索算法,已被广泛应用在路径规划领域中。

然而,传统的蚁群算法存在着某些缺陷,如易陷入局部最优等问题。

因此,基于改进蚁群算法的路径规划优化方法研究具有重要意义。

第一部分:蚁群算法原理及其应用蚁群算法是一种模拟蚁群觅食行为的人工智能算法。

蚂蚁寻找食物的过程类比为信息素分布和发现的过程。

在此过程中,蚂蚁在多次探测后,通过信息素的积累和挥发调整自身行为,最终找到最短路径。

蚁群算法的应用十分广泛,不仅可用于路径规划领域,还可以用于图像分割、物流调度、模式识别等领域。

而在路径规划领域中,蚁群算法可以有效地解决复杂的路径规划问题,特别是对于多目标优化问题,蚁群算法在贴近实际的应用中取得了良好的效果。

第二部分:蚁群算法的缺陷及其改进然而,传统的蚁群算法存在着一些缺陷,其中较为突出的是易陷入局部最优。

由于信息素的积累需要长时间的迭代更新,这个过程相当于一种漫无目的的搜索过程,容易被那些信息素较强的路径所吸引。

为了解决这个问题,研究人员提出了多种改进蚁群算法的方案。

例如,采用局部搜索策略或全局搜索策略、降低信息素挥发率等。

注重信息素挥发率的调节,可以使得信息素积累的路径更具有全局性。

这些改进方案都能够有效地提高算法的搜索能力,使得算法较少陷入局部最优,从而找寻出更优的路径。

第三部分:改进蚁群算法在路径规划中的应用基于改进蚁群算法的路径规划优化方法在实际应用中也得到了广泛的应用。

通过对多种路径规划算法进行对比实验,研究人员发现,相较于其他算法,改进的蚁群算法在搜索能力、路径质量等方面均表现出了优越的性能。

例如,在智能物流领域,改进蚁群算法被应用于物流路径优化。

该算法结合了蚁群算法的搜索能力和改进方案,有效地提高了物流路径的准确度和路程质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB实现基于蚁群算法的机器人路径规划1、问题描述移动机器人路径规划是机器人学的一个重要研究领域。

它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。

机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。

2 算法理论蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。

该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。

但是算法本身性能的评价等算法理论研究方面进展较慢。

Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。

次年Dorigo 博士给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。

Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。

蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。

蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。

这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。

经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。

下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。

如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE,其中AB,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。

当t=0时,从A 点,E 点同时各有30 只蚂蚁从该点出发。

当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC。

同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。

当t=2 时,选择BC 与DC的蚂蚁分别走过了BCD 和DCB,而选择BH 与DH 的蚂蚁都走到了H 点。

所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。

这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。

这就是它们群体智能的体现。

蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。

在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。

归结蚁群算法有如下特点:(1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。

这使得算法具有较强的适应性;(2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。

同样的蚁群算法中的各个蚂蚁的决策是根据系统内部信息素的分布进行的。

这使得算法具有较强的鲁棒性;(3)正反馈机制与负反馈机制结合:若某部分空间上分布的信息素越多,那么在这个空间上走过的蚂蚁也就越多;走过的蚂蚁越多,在那个空间上留下的信息素也就越多,这就是存在的正反馈机制。

但蚁群算法中解的构造是通过计算转移概率实现的,也就是说构造解的时候可以接受退化解,这限制了正反馈机制,可以使得搜索范围扩大,这是蚁群算法中隐含的负反馈机制。

3求解步骤应用蚁群算法求解机器人路径优化问题的主要步骤如下:(1)输入由0和1组成的矩阵表示机器人需要寻找最优路径的地图的地图,其中0表示此处可以通过的,1表示此处为障碍物。

0246810121416182002468101214161820上图的表示矩阵为:0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0;0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0;0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;(2)输入初始的信息素矩阵,选择初始点和终止点并且设置各种参数。

在此次计算中, 我们设置所有位置的初始信息素相等。

(3)选择从初始点下一步可以到达的节点,根据每个节点的信息素求出前往每个节点的 概率,并利用轮盘算法选取下一步的初始点。

()[][]()[][]{}{}⎪⎪⎩⎪⎪⎨⎧-∈••=∑-∈otherwise tabu N ifj t t p k tabu N k ij ij ij ij k ij k 0βαβαητητ其中()t ij τ为析取图中弧()j i ,上的信息素的浓度。

ij η为与弧()j i ,相关联的启发式信 息。

α,β分别为()t ij τ,ij η的权重参数。

(4)更新路径,以及路程长度。

(5) 重复(3)(4)过程,直到蚂蚁到达终点或者无路可走。

(6)重复(3)(4)(5),直到某一代m 只蚂蚁迭代结束。

(7)更新信息素矩阵,其中没有到达的蚂蚁不计算在内。

()()()ij ij ij t t ττρτ∆+*-=+11()()⎪⎩⎪⎨⎧=∆ji k 0j i k ,不经过,如果蚂蚁,经过,如果蚂蚁t L Q t k ij τ其中ρ为信息素挥发系数。

Q 为信息量增加强度。

()t L k 为路径长度。

(8)重复(3)-(7),直至n 代蚂蚁迭代结束。

4 运行结果(图、表等)将上述矩阵输入到程序中,画出最短路径的路线,并且输入每一轮迭代的最短路径,查看程序的收敛效果,在程序中设置plotif=1则输出收敛和最短路径图,在程序中设置plotif2=1则输出每一代蚂蚁的路径图。

最终输出的结果如图02468101214161820024681012141618200102030405060708090100051015202530354045收敛曲线(最小路径长度)迭代次数路径长度5 MA TLAB 程序function m_main()G=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0;0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0;0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;];MM=size(G,1); % G 地形图为01矩阵,如果为1表示障碍物Tau=ones(MM*MM,MM*MM);% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)Tau=8.*Tau;K=100; % K 迭代次数(指蚂蚁出动多少波)M=50; % M 蚂蚁个数(每一波蚂蚁有多少个)S=1 ; % S 起始点(最短路径的起始点)E=MM*MM; % E 终止点(最短路径的目的点)Alpha=1; % Alpha 表征信息素重要程度的参数Beta=7; % Beta 表征启发式因子重要程度的参数Rho=0.3 ; % Rho 信息素蒸发系数Q=1; % Q 信息素增加强度系数minkl=inf;mink=0;minl=0;D=G2D(G);N=size(D,1);%N表示问题的规模(象素个数)a=1;%小方格象素的边长Ex=a*(mod(E,MM)-0.5);%终止点横坐标if Ex==-0.5Ex=MM-0.5;endEy=a*(MM+0.5-ceil(E/MM));%终止点纵坐标Eta=zeros(N);%启发式信息,取为至目标点的直线距离的倒数%下面构造启发式信息矩阵for i=1:Nix=a*(mod(i,MM)-0.5);if ix==-0.5ix=MM-0.5;endiy=a*(MM+0.5-ceil(i/MM));if i~=EEta(i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;elseEta(i)=100;endendROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- for k=1:Kfor m=1:M%% 第一步:状态初始化W=S;%当前节点初始化为起始点Path=S;%爬行路线初始化PLkm=0;%爬行路线长度初始化TABUkm=ones(N);%禁忌表初始化TABUkm(S)=0;%已经在初始点了,因此要排除DD=D;%邻接矩阵初始化%% 第二步:下一步可以前往的节点DW=DD(W,:);DW1=find(DW);for j=1:length(DW1)if TABUkm(DW1(j))==0DW(DW1(j))=0;endendLJD=find(DW);Len_LJD=length(LJD);%可选节点的个数%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同while W~=E&&Len_LJD>=1%% 第三步:转轮赌法选择下一步怎么走PP=zeros(Len_LJD);for i=1:Len_LJDPP(i)=(Tau(W,LJD(i))^Alpha)*((Eta(LJD(i)))^Beta);endsumpp=sum(PP);PP=PP/sumpp;%建立概率分布Pcum(1)=PP(1);Pcum(i)=Pcum(i-1)+PP(i);endSelect=find(Pcum>=rand);to_visit=LJD(Select(1));%% 第四步:状态更新和记录Path=[Path,to_visit];%路径增加PLkm=PLkm+DD(W,to_visit);%路径长度增加W=to_visit;%蚂蚁移到下一个节点for kk=1:Nif TABUkm(kk)==0DD(W,kk)=0;DD(kk,W)=0;endendTABUkm(W)=0;%已访问过的节点从禁忌表中删除DW=DD(W,:);DW1=find(DW);for j=1:length(DW1)if TABUkm(DW1(j))==0DW(j)=0;endendLJD=find(DW);Len_LJD=length(LJD);%可选节点的个数end%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度ROUTES{k,m}=Path;if Path(end)==EPL(k,m)=PLkm;if PLkm<minklmink=k;minl=m;minkl=PLkm;endelsePL(k,m)=0;endend%% 第六步:更新信息素Delta_Tau=zeros(N,N);%更新量初始化for m=1:Mif PL(k,m)ROUT=ROUTES{k,m};TS=length(ROUT)-1;%跳数PL_km=PL(k,m);x=ROUT(s);y=ROUT(s+1);Delta_Tau(x,y)=Delta_Tau(x,y)+Q/PL_km;Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;endendendTau=(1-Rho).*Tau+Delta_Tau;%信息素挥发一部分,新增加一部分end%% ---------------------------绘图--------------------------------plotif=1;%是否绘图的控制参数if plotif==1 %绘收敛曲线minPL=zeros(K);for i=1:KPLK=PL(i,:);Nonzero=find(PLK);PLKPLK=PLK(Nonzero);minPL(i)=min(PLKPLK);endfigure(1)plot(minPL);hold ongrid ontitle('收敛曲线(最小路径长度)');xlabel('迭代次数');ylabel('路径长度'); %绘爬行图figure(2)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]);hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);hold onendendendhold onROUT=ROUTES{mink,minl};LENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM)); endplot(Rx,Ry)endplotif2=0;%绘各代蚂蚁爬行图if plotif2==1figure(3)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]); hold onendendendfor k=1:KPLK=PL(k,:);minPLK=min(PLK);pos=find(PLK==minPLK);m=pos(1);ROUT=ROUTES{k,m};LENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));endplot(Rx,Ry)hold onendendfunction D=G2D(G)l=size(G,1);D=zeros(l*l,l*l);for i=1:lfor j=1:lif G(i,j)==0for m=1:lfor n=1:lif G(m,n)==0im=abs(i-m);jn=abs(j-n);if im+jn==1||(im==1&&jn==1)D((i-1)*l+j,(m-1)*l+n)=(im+jn)^0.5;endendendendendendend。

相关文档
最新文档