数列求和的典型方法 (学生版)

合集下载

专题--数列求和的基本方法和技巧(学生版)

专题--数列求和的基本方法和技巧(学生版)

数列求和的基本方法与技巧一、利用常用求和公式求和:利用下列常用求和公式求和是数列求和的最基本最重要的方法。

1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+= 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S n k n 5、213)]1(21[+==∑=n n k S nk n 例1 金榜108页典例1二、错位相减法求和:这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求各项是由一个等差数列和一个等比数列的对应项之积构成的数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列。

例2. 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①例3.设数列{}n a 满足21112,32n n n a a a -+=-= ,(1)求数列{}n a 的通项公式;(2)令n n b na =,求数列的前n 项和n S 。

变式练习:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和。

三、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。

形如:①{}n n b a +,其中{}{}⎩⎨⎧是等比数列;是等差数列;n n b a ②()()⎩⎨⎧∈=-==*Nk k n n g k n n f a n ,2,,12, 例 4.已知数列{}n a 的通项公式为,132-+=n a n n 求数列{}n a 的前n 项和.变式练习: 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…1n n c a a +⎧⎫⎨⎬⎩⎭四、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。

数列求和基本方法(学生版)

数列求和基本方法(学生版)

数列求和的基本方法和技巧教案梳理主干1、 公式法求和(1)如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况,要分1q =或1q ≠. (2)一些常见数列的求和公式①1234=n +++++… . ②13572-1=n +++++… . ③2+4+6+8++2=n … .④6)12)(1(3212222++=++++n n n n⑤23333]2)1([321+=++++n n n 2、 倒序相加法求和如果一个数列{}n a ,与首末两端等“距离”的两项和相等或有一定规律,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 3、 错位相见发求和如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的. 4、 列项相消法和把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 5、 分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后相加减. 6、 并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和,形如(1)()n n a f n =-类型,可采用两项合并求解.一、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例1、(1)已知数列{}n a 的通项公式为2n n a n =+,则其前n 项和为 .(2)(2015届湖北龙泉中学高三模拟)已知数列{}n a满足*11),n a a n N +==∈n S 为数列{}n a 的前n 项和,2015S = .变式训练1、(2014年湖南卷)已知数列{}n a 的前n 项和2*,2n n nS n N +=∈. (1)、求数列{}n a 的通项公式;(2)、设2(1)n ann n b a =+-,求数列{}n b 的前2n 项和.二、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1))()1(n f n f a n -+= (2)111)1(1+-=+=n n n n a n (3)n n n n a n -+=++=111例2、(2015课标17)n S 为数列{}n a 的前n 项.已知0n a >,2243n n n a a S +=+.(1)、求{}n a 的通项公式; (2)、设11n n n b a a +=,求数列{}n b 的前n 项和.变式训练2、在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.三、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{}.n n a b 的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列.例3、(2015湖北,18)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,d q =,10100S =.(1)求数列{}n a ,{}n b 的通项公式; (2)当1d >时,记nn na cb =,求数列{}nc 的前项和n T .变式训练3、求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.专题训练 数列求和练习1、数列}{n a 的通项na n ++++=3211,则数列}{n a 的前n 项和为 ( )A .122+n nB .12+n nC .12++n nD .12+n n2、数列 ,1614,813,412,211的前n 项和可能为 ( )A .n n n 21)2(212-++B .12211)(21--++n n nC .n n n 21)2(212-+- D .)211(2)(212n n n -++3、已知数列}{n a 的前n 项和12-=n n S ,则22221na a a ++等于 ( ) A .2)12(-n B .)12(31-n C .14-n D .)14(31-n4、数列}{n a 的通项公式)(11*N n n n a n ∈++=,若前n 项和为10,则项数n 为 ( )A .11B .99C .120D .1215、在数列}{n a 中,2,121==a a 且)()1(1*2N n a a n n n ∈-+=-+,则=100S .6、已知)34()1(2117139511--++-+-+-=-n S n n ,则=+2215S S .7、已知等差数列}{n a 的前n 项和为n S ,若,0,,1211=-+∈>+-m m m a a a N m m 3812=-m S ,则m = . 8、(2015届云南玉溪一中高三月考)已知数列{}n a 与{}n b ,若13a =且对任意正整数n 满足12n n a a +-=,数列{}n b 的前n 项和2n n S n a =+. (1)、求数列{}n a ,{}n b 的通项公式; (2)、求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .9、等比数列}{n a 同时满足下列条件:①3361=+a a ,②3243=a a ,③三个数432,2,4a a a 依次成等差数列.(1)求数列}{n a 的通项公式; (2)记nn a nb ,求数列}{n b 的前n 项和T n .。

数列求和的8种常用方法

数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。

下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。

一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。

三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

数列求和掌握小学生数列求和的技巧

数列求和掌握小学生数列求和的技巧

数列求和掌握小学生数列求和的技巧数列是由一系列按照一定规律排列的数所组成的序列。

数列求和是常见的数学问题,对于小学生来说,掌握数列求和的技巧可以帮助他们更好地理解数学知识。

本文将介绍几种应用于小学生数列求和的方法,并帮助他们加深对数列求和的理解。

一、等差数列求和等差数列是一种常见的数列形式,它的特点是相邻两项之间的差值是一个固定的常数。

为了求解等差数列的和,我们可以使用以下公式:Sn = (a1 + an) × n / 2其中,Sn表示等差数列的前n项和,a1表示第一项的值,an表示第n项的值,n表示项数。

例如,求解1,4,7,10,13……的前10项和,我们可以进行如下步骤:1. 确定a1=1,an=?,n=10;2. 通过计算,我们可以得到an = a1 + (n-1)×d = 1 + (10-1)×3 = 28;3. 将a1,an,n带入公式Sn = (a1 + an) × n / 2,即可得到Sn = (1 +28) × 10 / 2 = 145。

二、等比数列求和等比数列是一种常见的数列形式,它的特点是相邻两项之间的比值是一个固定的常数。

为了求解等比数列的和,我们可以使用以下公式:S = a(q^n-1)/ (q - 1)其中,S表示等比数列的前n项和,a表示第一项的值,q表示公比,n表示项数。

例如,求解2,6,18,54……的前5项和,我们可以进行如下步骤:1. 确定a=2,q=?,n=5;2. 通过计算,我们可以得到q = a2 / a1 = 6 / 2 = 3;3. 将a,q,n带入公式S = a(q^n-1)/ (q - 1),即可得到S = 2(3^5-1)/ (3 - 1) = 242。

三、奇数数列求和奇数数列是一种特殊的数列形式,它的特点是每一项都是连续的奇数。

为了求解奇数数列的和,我们可以使用以下公式:Sn = n^2其中,Sn表示奇数数列的前n项和,n表示项数。

数列的求和方法(专题)

数列的求和方法(专题)

例析数列求和的常用方法数列求和是数列教学内容的中心问题之一,也是近年高考命题的一个热点问题。

掌握一些求和的方法和技巧可以提高解决此问题的能力。

本文例析了一些求和的方法,仅供参考。

一、倒序相加法将一个数列倒过来排序(倒序),当它与原数列相加时,若有因式可提,并且剩余的项的和易于求得,则这样的数列可用倒序相加法求和。

如等差数列的求和公式2)(1n n a a n S +=的推导。

例1.已知)(x f 满足R x x ∈21,,当121=+x x 时,21)()(21=+x f x f ,若N n f nn f n f n f f S n ∈+-++++=),1()1()2()1()0( ,求n S 解:∵N n f nn f n f n f f S n ∈+-++++=),1()1()2()1()0( ,①. ∴+=)1(f S n N n f nf n f n n f ∈++++-),0()1()2()1( ,②,①+②整理后可得)1(41+=n S n 二、错位相减法(此法是学生错误率最高的,到高三还有近半数还计算错误,教学时要多用几课时练习巩固)这是推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ⋅的前n 项和,其中}{n a 、}{n b 分别是等差数列和等比数列。

例2.求数列}2{n n ⋅的前n 项和n S 。

解:∵ n n n n n S 22)1(2322211321⨯+⨯-++⨯+⨯+⨯=-①,所以①-①2⨯错位相消得1132122222+-⨯-++++=-n n n n S ,所以12)1(2+⨯-+=n n n S 。

三、分组求和法所谓分组求和法,即将一个数列中的项拆成几项,转化成特殊数列求和。

例3.已知数列}{n a 满足1)21(-+=n n n a ,求其前n 项和n S 。

解:∵1131211)21()21(3)21(2)21(1----++++++++=n n n S )321(n ++++= ])21()21()21[(11211---++++n 12122)1(--++=n n n 四、公式法(恒等式法)利用已知的求和公式来求和,如等差数列与等比数列求和公式,再如n ++++ 3212)1(+=n n 、)12)(1(613212222++=++++n n n n 等公式。

学会数列求和的几种常用方法

学会数列求和的几种常用方法

学会数列求和的几种常用方法数列求和是高中数学的一个重要知识点,是高考的热点。

数列求和方法有很多,但在高考中离不开以下三种常用方法。

1、分解为等差数列与等比数列的前n 项和【例1】求222222)2()12(4321n n S n --++-+-=【解】)12(22)21(]2)12(4321[]2)12)][(2()12[()43)(43()21)(21(+-=+-=+-+++++-=+---+++-++-=n n nn n n n n n n S n【例2】设数列}{n a 满足:当5≤n 时,12-=n n a ,当6≥n 时,12-=n a n ,求它的前n项和n S .【解】当5≤n 时,122121222112-=--=++++=-n n n n S ;当6≥n 时,由于前5项成等比数列,从第6项起成等差数列,故)12()172()162()12(5-++-⨯+-⨯+-=n S n62)5)(12162()12(25+=--+-⨯+-=n n n S n ,所以⎪⎩⎪⎨⎧≥+≤-=)6(6)5(122n n n S n n 【例3】求)1()1()1(1122-+++++++++++=n n a a a a a a S【解】当1≠a 时,aa a a a n a a a a a a a a S nn n -+++--=--++--+--+--=1111111111232 即21)1(1]1)1([111a a a a n a a a a a n S n n n ----=-----=+ 当1=a 时,2)1(321+=++++=n n n S n ,故⎪⎪⎩⎪⎪⎨⎧=+≠----=+)1(2)1()1()1(121a n n a a a a a n S n n2、裂项相消法【例4】求∑=-=nk n kS 12141【解】由于)121121(211412+--=-k k k ,所以 12)1211(21)]121121()5131()311[(2114112+=+-=+--++-+-=-=∑=n n n n n k S nk n 【例5】求∑=-+=nk n k k S 122391【解】由于)231131(3123912+--=-+k k k k ,所以 23)23121(31)]231131()7151()5121[(31239112+=+-=+--++-+-=-+=∑=n nn n n k k S nk n 一般地,数列}{n a 是公差d 不为零且各项不为零的等差数列,则∑=+=nk k k n a a S 111与∑=+=nk k k n a a S 121的求和问题都是用裂项求和法。

数列求和方法(带例题和练习题)

数列求和方法(带例题和练习题)

数列的求和数列求和主要思路:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 11123(1)2nn k S k n n n ===+++++=+∑… 4、2222211123(1)(21)6nn k S k n n n n ===++++=++∑5、 2333331(1)1232nn k n n S kn =+⎡⎤===++++=⎢⎥⎣⎦∑ 公式法求和注意事项(1)弄准求和项数n 的值;(2)等比数列公比q 未知时,运用前n 项和公式要分类。

例1.求和221-++++n xx x (0,2≠≥x n )二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S例3.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 三、倒序相加法如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的例4.求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例5.已知数列{}n a 的通项公式321n n a n =+-,求数列{}n a 的前n 项和n S 。

数列求和的8种常用方法(最全)(1)

数列求和的8种常用方法(最全)(1)

求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。

这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111n n a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+L ;(2)21n k k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++L ;(3)31nk k ==∑33332(1)2123[]n n n +++++=L ;(4)1(21)n k k =-=∑2135(21)n n ++++-=L .例1 已知3log 1log 23-=x ,求23n x x x x ++++ 的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 23n n S x x x x =++++L=x x x n--1)1(=211)211(21--n =1-n 21例2 设123n S n =++++ ,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n n S n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和的典型方法(学生版)
※ 典型例题
考点1.分组求和法求数列的前n 项和
一、分组求和
◎题型1:求数列{}n n a b ±的前n 项和n S
思路1:1122()()()n n n S a b a b a b =±+±++±…1212()()n n a a a b b b =++⋅⋅⋅+±++⋅⋅⋅+
◎题型2:求通项为()()n f n n a g n n ⎧=⎨⎩,是奇,是偶数数
或(1)()n n a f n =-的数列的前n 项和n S 思路2:相邻项组合
(1)当n 为偶数时,12341()()()n n n S a a a a a a -=+++++…;
(2)当n 为奇数时,123421()()()n n n n S a a a a a a a --=++++++….
思路3:奇偶项组合
(1)当n 为偶数时,n S =13124()()n n a a a a a a -++++++……;
(2)当n 为奇数时,n S 13241()()n n a a a a a a -=++++++…….
思路4
:公式优化
(1)当n 为偶数时,利用套路2、3其中之一;
(2)当n 为奇数时,S S a =-.
例3、数列{}n a 的通项公式为2cos 3
n a n =⋅,其前n 项和为n S . (Ⅰ)求32313n n n a a a --++及n S 3;
(Ⅱ)若312
n n n S b n -=
⋅,求数列{}n b 的前n 项和n T .
考点2.倒序相加法
【例2】设()442x
x f x =+,求122012201320132013f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
的值. 变式1.求222289sin 1sin 2sin 3....sin 89S =︒+︒+︒++︒
变式2.已知函数()f x 对任意的x R ∈,都有()+(1)=1f x f x -,
求1231(0)()()()....()(1)n n S f f f f f f n n n n
-=++++++.
考点4.裂项相消法求数列的前n 项和
变式2(Ⅰ)已知数列{}n a 满足:1(21)(21)
n a n n =-+,求数列{}n a 的n 项和n S . (Ⅱ)已知数列{}n a 满足:4(1)(21)(21)
n n n a n n =--+,求数列{}n a 的n 项和n S . .
考点5.数列的综合应用
【例5】各项均为正数的数列{}n a 的前n 项和为n S ,n S 满足()223n n S n n S -+--()
230n n +=,n N *∈. (1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对任意n N *∈,有1223111114
n n a a a a a a ++++<. 变式1.设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *,且a 2,a 5,a 14
构成等比数列.。

相关文档
最新文档