2019届高考数学专题二十几何概型总结练习题及答案(最新整理)

合集下载

2019年高考理科数学一轮单元卷:第二十单元平面解析几何综合B卷(含答案)

2019年高考理科数学一轮单元卷:第二十单元平面解析几何综合B卷(含答案)

一轮单元训练金卷▪高三▪数学卷(B )第二十单元 平面解析几何综合注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线4=+ny mx 与圆22:4O x y +=没有交点,则过点(),P m n 的直线与椭圆22194x y +=的交点个数为( ) A .0B .1C .2D .0或12.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与`双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A .⎛ ⎝⎭B .⎡⎢⎣⎦C .(D .⎡⎣3.经过抛物线24x y =的焦点,倾斜角为120︒的直线交抛物线于A ,B 两点,则线段AB 的长为( )A .2B C D .164.若点O 和点F 分别为椭圆13422=+y x 的中心和左焦点,点P 为椭圆上的任意一点, 则OP FP ⋅的最大值为( ) A .2B .3C .6D .85.设双曲线()222210,0x y a b a b-=>>的渐近线与抛物线22y x =+相切,则该双曲线的离心率等于( )A B .2 C D .36.已知椭圆()2221024x y b b+=<<的左、右焦点分别为1F ,2F ,过1F 的直线l 交椭圆于A ,B两点,若22BF AF +的最大值为5,则b 的值是( )A .1BC D7.已知点P 在抛物线24y x =上,那么点P 到点()2,1Q -的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .1,14⎛⎫- ⎪⎝⎭B .1,14⎛⎫⎪⎝⎭C .()1,2D .()1,2-8.过椭圆221164x y +=内一点()3,1P ,且被这点平分的弦所在直线的方程是( )A .34130x y +-=B .43130x y +-=C .3450x y -+=D .3450x y ++=9.已知椭圆()222210x y a b a b+=>>,过椭圆上一点M 作直线MA ,MB ,分别交椭圆于A ,B 两点,且斜率分别为1k ,2k ,若点A ,B 关于原点对称,则21k k ⋅的值为( )A .13B .12 C .12- D .13-10.已知A ,B 为抛物线2:4C y x =上的不同两点,F 为抛物线C 的焦点,若40FA FB +=, 则直线AB 的斜率为( )A .23±B .34±C .43±D .32±11.双曲线221169x y -=的左、右焦点分别1F 、2F ,P 为双曲线右支上的点,12PF F △的内切圆与x 轴相切于点A ,则圆心I 到y 轴的距离为( )A .1B .2C .3D .412.抛物线22y x =上两点()11,A x y 、()22,B x y 关于直线y x m =+对称,且2121-=⋅x x ,则m 等于( ) A .2 B .1 C .32D .3二、填空题(本大题有4小题,每小题5分,共20分. 请把答案填在题中横线上)13.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,6AB =,P 为C 的准线上一点,则ABP △的面积为 .14.已知双曲线221kx y -=的一条渐近线与直线250x y -+=平行,则双曲线的离心率为 .15.已知焦点在x 轴上椭圆222125x y b +=,点124,5P ⎛⎫ ⎪⎝⎭在椭圆上,过点P 作两条直线与椭圆分别交于A ,B 两点,若椭圆的右焦点F 恰是PAB △的重心,则直线AB 的方程为 .16.过点3,12P ⎛⎫- ⎪⎝⎭作抛物线2ax y =的两条切线PA ,PB (A ,B 为切点),若0PA PB ⋅=,则a 的值为 .三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)在平面直角坐标系xOy 中,直线l 与抛物线24y x =相交于不同的A ,B 两点. (1)如果直线l 过抛物线的焦点,求OA OB ⋅的值;(2)如果4OA OB ⋅=-,证明:直线l 必过一定点,并求出该定点.18.(12分)已知圆22:20G x y x +-=经过椭圆22221x y a b+=()0a b >>的右焦点F 及上顶点B .过椭圆外一点(),0M m ,()m a >作倾斜角为56π的直线l 交椭圆于C ,D 两点.(1)求椭圆的方程;(2)若右焦点F 在以线段CD 为直径的圆E 的内部,求m 的取值范围.19.(12分)如图所示,已知圆()22:18C x y ++=,定点()1,0A ,M 为圆上一动点,点P 在AM 上,点N 在CM 上,且满足2AM AP =,0NP AM ⋅=,点N 的轨迹为曲线E . (1)求曲线E 的方程;(2)过点A 且倾斜角是45︒的直线l 交曲线E 于两点H ,Q ,求HQ .20.(12分)已知直线:l y x =,圆22:5O x y +=,椭圆()2222:10y x E a b a b+=>>的离心率e ,直线l被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证两切线斜率之积为定值.21.(12分)如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且1AF FB ⋅=,1OF =. (1)求椭圆的标准方程;(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使点F 恰为PQM △的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.22.(12分)设椭圆()2222:10x y C a b a b+=>>的焦点分别为()11,0F -,()1,0,点()2,0A a ,且122AF AF =.(1)求椭圆C 的方程;(2)过1F 、2F 分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积的最大值和最小值.一轮单元训练金卷▪高三▪数学卷答案(B )第二十单元 平面解析几何综合一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】C【解析】∵直线4mx ny +=与圆22:4O x y +=2>,∴422<+n m ,∴22194m n +<,∴点(),m n 在椭圆内,故选C .2.【答案】B【解析】由题意知,焦点为()4,0F ,双曲线的两条渐近线方程为y x =. 当过点F 的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选B . 3.【答案】D【解析】设()11,A x y ,()22,B x y ,由题意知AB的方程为1y =+,由214y x y⎧=+⎪⎨=⎪⎩,得240x +-=,12x x ∴+=-124x x =-,∴AB =16==,故选D .4.【答案】C【解析】由椭圆的方程得()1,0F -,()0,0O ,设(),P x y ,()22x -≤≤为椭圆上任意一点,则()2222221131322444x OP FP x x y x x x x x ⎛⎫⋅=++=++-=++=++ ⎪⎝⎭,当且仅当2x =时,OP FP ⋅取得最大值6,故选C . 5.【答案】D【解析】双曲线22221x y a b-=的一条渐近线方程为b y x a =,由方程组22⎧=⎪⎨⎪=+⎩b y x a y x ,消去y , 得220b x x a -+=有唯一解,所以280b a∆⎛⎫=-= ⎪⎝⎭,所以b a =223c a b e a +===,故选D . 6.【答案】C【解析】由椭圆的方程可知2=a ,由椭圆的定义可知,2248AF BF AB a ++==,所以()2283AB AF BF =-+≥,由椭圆的性质可知,过椭圆焦点的弦中通径最短,且223b a=,∴23b =,b =C . 7.【答案】A 【解析】如图,∵点()2,1Q -在抛物线的内部,由抛物线的定义,PF 等于点P 到准线1x =-的距离, 过Q 作1x =-的垂线QH 交抛物线于点K ,则点K 为取最小值时所求的点.当1y =-时,由41x =得14x =,所以点P 的坐标为1,14⎛⎫- ⎪⎝⎭,故选A . 8.【答案】A【解析】设直线与椭圆交于()11,A x y ,()22,B x y 两点,由于A ,B 两点均在椭圆上,故22111164x y +=,22221164x y +=,两式相减得()()()()121212120164x x x x y y y y +⋅-+⋅-+=, ∵126x x +=,122y y +=,∴()()121212121344AB x x y y k x x y y +-==-⨯=--+,∴直线AB 的方程为()3134y x -=--,即34130x y +-=,故选A . 9.【答案】D【解析】设点(),M x y ,()11,A x y ,()11,B x y --,∴111211y y y y k k x x x x -+⋅=⋅-+ 222212222222221111113x x b b a a b c e x x a a ⎛⎫⎛⎫--- ⎪⎪⎝⎭⎝⎭==-=-=-=--,∴21k k ⋅的值为13-,故选D . 10.【答案】C【解析】∵40FA FB +=,∴4FA FB =-,∴4FA FB =,设FB t =,则4FA t =,设点A ,B 在抛物线C 准线上的射影分别为1A ,1B ,过A 作1BB 的垂线,交线段1BB 的延长线于点M ,则113BM AA BB AF BF t =-=-=,5AB AF BF t =+=, ∴4AM t =,∴34tan =∠ABM ,由对称性可得直线AB 的斜率为43±,故选C .11.【答案】D故选D . 12.【答案】C 【解析】∵21211AB y y k x x -==--,又()2221212y y x x -=-,∴2112x x +=-,由于212122x x y y ++⎛⎫⎪⎝⎭,在直线y x m =+上,即212122y y x x m ++=+,21212y y x x m +=++, ∵2112y x =,2222y x =,∴()22212122x x x x m +=++,即()2212121222x x x x x x m ⎡⎤+-=++⎣⎦,∵2112x x +=-,2121-=⋅x x ,∴23m =,32m =.故选C .二、填空题(本大题有4小题,每小题5分,共20分. 请把答案填在题中横线上) 13.【答案】9【解析】设抛物线C 的方程为22y px =,则26AB p ==,∴3=p ,∴192ABP S AB p =⨯=△. 14.2【解析】由双曲线221kx y -=知,它的渐近线方程为y k x =,∵一条渐近线与直线250x y -+=12=,则14k =,∴双曲线方程为2214x y -=, 则2a =,1b =,c =c e a ==. 15.【答案】2015680x y --=【解析】将点P 代人椭圆的方程可得216b =,所以椭圆的方程为2212516x y +=,椭圆的焦点225a =,216b =,22225169c a b =-=-=,(3,0)F ,设()11,A x y ,()22,B x y ,直线AB 的斜率为k ,由12121212435312125503x x x x y y y y ++⎧=⎪+=⎧⎪⎪⇒⎨⎨+=-++⎪⎪⎩=⎪⎩,代人椭圆的方程可得22111212222214251602516312516x y x x y y k k x y ⎧+=⎪++⎪⇒+⨯=⇒=⎨⎪+=⎪⎩, ∴AB 的中点坐标为56,25⎛⎫- ⎪⎝⎭,所求的直线方程为2015680x y --=.16.【答案】14【解析】设切线方程为312y k x ⎛⎫=-- ⎪⎝⎭,由2312y ax y k x ⎧=⎪⎨⎛⎫=-- ⎪⎪⎝⎭⎩,联立并化简得01232=++-k kx ax ,由题意,234102k a k ∆⎛⎫=-+= ⎪⎝⎭,即0462=--a ak k ,又两切线垂直,∴1241k k a =-=-,∴14a =.三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3-;(2)见解析.【解析】(1)由题意知,抛物线焦点为()1,0,设:1l x ty =+,代入抛物线24y x =, 消去x 得2440y ty --=.设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,∴()()()212121212121212111OA OB x x y y ty ty y y t y y t y y y y ⋅=+=+++=++++ 2244143t t =-++-=-.(2)设:l x ty b =+,代入抛物线24y x =,消去x 得2440y ty b --=, 设()11,A x y ,()22,B x y ,则124y y t +=,124y y b =-,∴()()()2212121212121212OA OB x x y y ty b ty b y y t y y tb y y b y y ⋅=+=+++=++++ 222244444bt bt b b b b =-++-=-=-,∴2b =.∴直线l 过定点()2,0.∴若4OA OB ⋅=-,则直线l 必过一定点()2,0.18.【答案】(1)22162x y +=;(2)).【解析】(1)∵圆22:20G x y x +-=经过点F ,B ,∴()2,0F,(B ,∴2c =,b ,∴2226a b c =+=,椭圆的方程为22162x y +=.(2)由题意知直线l的方程为)y x m =-,m >,由)22162x y y x m⎧+=⎪⎪⎨⎪=-⎪⎩消去y ,整理得222260x mx m -+-=. 由()224860m m ∆=-->,解得m -<,∵mm <设()11,C x y ,()22,D x y ,则12x x m +=,21262m x x -=,∴))()2121212121333m m y y x m x m x x x x ⎡⎤⎡⎤=-⋅-=-++⎢⎥⎢⎥⎣⎦⎣⎦.∴()()()()112212122,2,22FC FD x y x y x x y y ⋅=-⋅-=-⋅-+ ()()21212234643333m m m m x x x x -+=-+++=. ∵点F 在圆E 内部,∴0FC FD ⋅<,即()2303m m -<,解得03m <<.m <<3m <,故m的取值范围是).19.【答案】(1)2212x y +=;(2)3.【解析】(1)2AM AP =,0NP AM ⋅=,∴NP 为AM 的垂直平分线,∴NA NM =,又CN NM +=2CN AN ∴+=>,∴动点N 的轨迹是以点()1,0C -,()1,0A 为焦点的椭圆,且椭圆长轴长为2a =焦距22c=,a ∴,1c =,21b =.∴曲线E 的方程为2212x y +=.(2)直线l 的斜率tan451k =︒=,∴直线l 的方程为1y x =-, 由22112y x x y =-⎧⎪⎨+=⎪⎩,消去y 得2340x x -=. 设()11,H x y ,()22,Q x y ,则1243x x +=,120x x =,∴12HQ x -. 20.【答案】(1)22132y x +=;(2)见解析. 【解析】(1)设随圆半焦距为c ,圆心O 到l的距离d ==l 被圆O 截得弦长为以b =.由题意得222c a a b c ⎧=⎪⎨⎪=+⎩,又b =,∴23a =,22b =. ∴椭圆E 的方程为22132y x +=.(2)设点()00,P x y ,过点P 的椭圆E 的切线0l 的方程为()00y y k x x -=-,联立直线0l 与椭圆E 的方程得:()0022132y k x x y y x ⎧=-+⎪⎨+=⎪⎩消去y 并整理得:()()()2220000324260k x k y kx x kx y ++-+--=,∵0l 与椭圆E 相切.∴()()()22200004432260k y kx k kx y ∆⎡⎤⎡⎤=--+--=⎣⎦⎣⎦, 整理得:()()22200002230x k kx y y -+--=,设满足题意的椭圆E 的两条切线的斜率分别为1k ,2k ,则20122032y k k x -⋅=--,∵点P 在圆O 上,∴22005x y +=,∴2012205312x k k x --⋅=-=--. ∴两条切线斜率之积为常数1-.21.【答案】(1)2212x y +=;(2)存在,43y x =-.【解析】(1)如图建系,设椭圆方程为()222210x y a b a b+=>>,则1c =,又∵1AF FB ⋅=,即()()221a c a c a c +⋅-==-,∴22a =.故椭圆方程为2212x y +=.(2)假设存在直线l 交椭圆于P ,Q 两点,且F 恰为PQM △的垂心,则设()11,P x y ,()22,Q x y ,∵()0,1M ,()1,0F ,故1PQ k =,于是设直线l 为y x m =+,由2222y x mx y =+⎧⎨+=⎩,得2234220x mx m ++-=, ∵()()1221011MP FQ x x y y ⋅==-+-,又()1,2i i y x m i =+=, 得()()()1221110x x x m x m -+++-=, 即()()21212210x x x x m m m ++-+-=,由韦达定理得()2222421033m mm m m -⋅--+-=,解得43m =-或1m =(舍去),经检验43m =-符合条件.∴直线l 的方程为43y x =-.22.【答案】(1)22132x y +=;(2)最大值为4,最小值为9625. 【解析】(1)由题意,1222F F c ==,∵122AF AF =,∴2F 为1AF 的中点.∴23a =,22b =,所以椭圆方程为22132x y +=.(2)当直线DE 与x轴垂直时,22b DE a ==,此时2MN a == 四边形DMEN 的面积142S DE MN =⋅=. 同理当MN 与x 轴垂直时,也有四边形DMEN 的面积142S DE MN =⋅=.当直线DE ,MN 均与x 轴不垂直时,设():1DE y k x =+,代入消去y 得()()2222236360k x k x k +++-=, 设()11,D x y ,()22,E x y ,则212221226233623k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩,所以12x x -=,所以12DE x =-=,同理()22221113322k k MN k k⎡⎤⎛⎫-+⎢⎥⎪+⎝⎭⎢⎥⎣⎦==++,所以四边形的面积()()22221111223232k k S DE MN k k ++=⋅=⋅⋅++, ()242242221242242116136613k k k k k k k k ⎛⎫⋅++ ⎪⋅++⎝⎭==++⎛⎫++ ⎪⎝⎭, 令221t k k=+,则()24244613136t S t t +==-++, ∵2212t k k =+≥,()'224()0136S t t =>+, ∴()44136S t t=-+为[)2,t ∈+∞上的增函数,当2t =,即1k =±时,9625S =,∴96425S ≤<,综上可知,96425S ≤≤.故四边形DMEN 面积的最大值为4,最小值为9625.。

完整版几何概型的经典题型及答案

完整版几何概型的经典题型及答案

几何概型的常见题型及典例分析一•几何概型的定义1. 定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或 体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型 .2. 特点:(1) 无限性,即一次试验中,所有可能出现的结果(基本事件)有无限 多个;(2) 等可能性,即每个基本事件发生的可能性均相等 . 构成事件A 的区域长度(面积或体 积) 试验的全部结果所构成的区域长度(面积或体积)说明:用几何概率公式计算概率时,关键是构造出随机事件所对应 的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系:(1) 联系:每个基本事件发生的都是等可能的.(2) 区别:①古典概型的基本事件是有限的, 几何概型的基本事件是无 限的;②两种概型的概率计算公式的含义不同..常见题型(一)、与长度有关的几何概型分析:在区间[1,1]上随机取任何一个数都是一个基本事件.所取的数是 区间[1,1]的任意一个数,基本事件是无限多个,而且每一个基本事件的 发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的3.计算公式:P (A )例1、在区间[1,1]上随机取一个数x 1X ,cos 2-的值介于0到2之间的概率为().A.- 3B.C.D.区间长度有关,符合几何概型的条件 解:在区间[1,1]上随机取一个数X ,即x [0到-之间,需使x或 x22 2 33 2 2 2••• 1 x 2或-x 1,区间长度为3 3由几何概型知使cos —x 的值介于0到1之间的概率为2 22符合条件的区间长度 J 1所有结果构成的区间长 度 2 3 .例2、如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯 C,D ,问A 与C,B 与D 之间的距离都不小于10米的 概率是多少?思路点拨从每一个位置安装都是一个基本事件,基本事件有无限 多个,但在每一处安装的可能性相等,故是几何概型.解 记E : “ A 与C,B 与D 之间的距离都不小于10米”,把AB1等分,由于中间长度为妙3=10米,方法技巧我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生 则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型 就可以用几何概型来求解.例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交 点在该直径上的位置是等可能的,求任意画的弦的长度不小于 R 的概率 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以, 地分布在于平行弦垂直的直径上(如图1-1 ) O 也就是说,样本空间所对应的区域 G 是一维空 间(即直线)上的线段 MN 而有利场合所对 应的区域G 是长度不小于R 的平行弦的中点K 所在的区间。

2019年高考理科数学一轮单元卷:第二十单元平面解析几何综合B卷(含答案)

2019年高考理科数学一轮单元卷:第二十单元平面解析几何综合B卷(含答案)

一轮单元训练金卷▪高三▪数学卷(B )第二十单元 平面解析几何综合注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线4=+ny mx 与圆22:4O x y +=没有交点,则过点(),P m n 的直线与椭圆22194x y +=的交点个数为( ) A .0B .1C .2D .0或12.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与`双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( ) A .33⎛ ⎝⎭B .33⎡⎢⎣⎦C .(3,3-D .3,3⎡-⎣3.经过抛物线24x y =的焦点,倾斜角为120︒的直线交抛物线于A ,B 两点,则线段AB 的长为( ) A .2B 3C 43D .164.若点O 和点F 分别为椭圆13422=+y x 的中心和左焦点,点P 为椭圆上的任意一点, 则OP FP ⋅的最大值为( ) A .2B .3C .6D .85.设双曲线()222210,0x y a b a b-=>>的渐近线与抛物线22y x =+相切,则该双曲线的离心率等于( )A 3B .2C 5D .36.已知椭圆()2221024x y b b+=<<的左、右焦点分别为1F ,2F ,过1F 的直线l 交椭圆于A ,B两点,若22BF AF +的最大值为5,则b 的值是( ) A .1B 2C 3D 57.已知点P 在抛物线24y x =上,那么点P 到点()2,1Q -的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .1,14⎛⎫- ⎪⎝⎭B .1,14⎛⎫⎪⎝⎭C .()1,2D .()1,2-8.过椭圆221164x y +=内一点()3,1P ,且被这点平分的弦所在直线的方程是( )A .34130x y +-=B .43130x y +-=C .3450x y -+=D .3450x y ++=9.已知椭圆()222210x y a b a b+=>>6M 作直线MA ,MB ,分别交椭圆于A ,B 两点,且斜率分别为1k ,2k ,若点A ,B 关于原点对称,则21k k ⋅的值为( )A .13B .12 C .12- D .13-10.已知A ,B 为抛物线2:4C y x =上的不同两点,F 为抛物线C 的焦点,若40FA FB +=, 则直线AB 的斜率为( )A .23±B .34±C .43±D .32±11.双曲线221169x y -=的左、右焦点分别1F 、2F ,P 为双曲线右支上的点,12PF F △的内切圆与 x 轴相切于点A ,则圆心I 到y 轴的距离为( )A .1B .2C .3D .412.抛物线22y x =上两点()11,A x y 、()22,B x y 关于直线y x m =+对称,且2121-=⋅x x ,则m 等于( ) A .2 B .1 C .32D .3二、填空题(本大题有4小题,每小题5分,共20分. 请把答案填在题中横线上)13.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,6AB =,P 为C 的准线上一点,则ABP △的面积为 .14.已知双曲线221kx y -=的一条渐近线与直线250x y -+=平行,则双曲线的离心率为 .15.已知焦点在x 轴上椭圆222125x y b+=,点124,5P ⎛⎫⎪⎝⎭在椭圆上,过点P 作两条直线与椭圆分别交于A ,B 两点,若椭圆的右焦点F 恰是PAB △的重心,则直线AB 的方程为 .16.过点3,12P ⎛⎫- ⎪⎝⎭作抛物线2ax y =的两条切线PA ,PB (A ,B 为切点),若0PA PB ⋅=,则a 的值为 .三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)在平面直角坐标系xOy 中,直线l 与抛物线24y x =相交于不同的A ,B 两点. (1)如果直线l 过抛物线的焦点,求OA OB ⋅的值;(2)如果4OA OB ⋅=-,证明:直线l 必过一定点,并求出该定点.18.(12分)已知圆22:220G x y x +-=经过椭圆22221x y a b +=()0a b >>的右焦点F 及上顶点B .过椭圆外一点(),0M m ,()m a >作倾斜角为56π的直线l 交椭圆于C ,D 两点.(1)求椭圆的方程;(2)若右焦点F 在以线段CD 为直径的圆E 的内部,求m 的取值范围.19.(12分)如图所示,已知圆()22:18C x y ++=,定点()1,0A ,M 为圆上一动点,点P 在AM 上, 点N 在CM 上,且满足2AM AP =,0NP AM ⋅=,点N 的轨迹为曲线E . (1)求曲线E 的方程;(2)过点A 且倾斜角是45︒的直线l 交曲线E 于两点H ,Q ,求HQ .20.(12分)已知直线:6l y x =圆22:5O x y +=,椭圆()2222:10y x E a b a b+=>>的离心率e =直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证两切线斜率之积为定值.21.(12分)如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且1AF FB ⋅=,1OF =. (1)求椭圆的标准方程;(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使点F 恰为PQM △的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.22.(12分)设椭圆()2222:10x y C a b a b+=>>的焦点分别为()11,0F -,()1,0,点()2,0A a ,且122AF AF =. (1)求椭圆C 的方程;(2)过1F 、2F 分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积的最大值和最小值.一轮单元训练金卷▪高三▪数学卷答案(B )第二十单元 平面解析几何综合一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】C【解析】∵直线4mx ny +=与圆22:4O x y +=222m n >+,∴422<+n m ,∴22194m n +<,∴点(),m n 在椭圆内,故选C .2.【答案】B【解析】由题意知,焦点为()4,0F ,双曲线的两条渐近线方程为3y =. 当过点F 的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选B . 3.【答案】D【解析】设()11,A x y ,()22,B x y ,由题意知AB 的方程为31y x =-+,由2314y x x y⎧=-+⎪⎨=⎪⎩,得24340x x +-=,1243x x ∴+=-124x x =-,∴()()22121214AB k x x x x ⎡⎤++-⎣⎦16,故选D .4.【答案】C【解析】由椭圆的方程得()1,0F -,()0,0O ,设(),P x y ,()22x -≤≤为椭圆上任意一点,则()2222221131322444x OP FP x x y x x x x x ⎛⎫⋅=++=++-=++=++ ⎪⎝⎭,当且仅当2x =时,OP FP ⋅取得最大值6,故选C . 5.【答案】D【解析】双曲线22221x y a b-=的一条渐近线方程为b y x a =,由方程组22⎧=⎪⎨⎪=+⎩b y x a y x ,消去y ,得220b x x a -+=有唯一解,所以280b a ∆⎛⎫=-= ⎪⎝⎭,所以22b a =223c a b e a +==,故选D . 6.【答案】C【解析】由椭圆的方程可知2=a ,由椭圆的定义可知,2248AF BF AB a ++==,所以()2283AB AF BF =-+≥,由椭圆的性质可知,过椭圆焦点的弦中通径最短,且223b a=,∴23b =,3b =C . 7.【答案】A 【解析】如图,∵点()2,1Q -在抛物线的内部,由抛物线的定义,PF 等于点P 到准线1x =-的距离, 过Q 作1x =-的垂线QH 交抛物线于点K ,则点K 为取最小值时所求的点.当1y =-时, 由41x =得14x =,所以点P 的坐标为1,14⎛⎫- ⎪⎝⎭,故选A . 8.【答案】A【解析】设直线与椭圆交于()11,A x y ,()22,B x y 两点,由于A ,B 两点均在椭圆上,故22111164x y +=,22221164x y +=,两式相减得()()()()121212120164x x x x y y y y +⋅-+⋅-+=, ∵126x x +=,122y y +=,∴()()121212121344AB x x y y k x x y y +-==-⨯=--+,∴直线AB 的方程为()3134y x -=--,即34130x y +-=,故选A . 9.【答案】D【解析】设点(),M x y ,()11,A x y ,()11,B x y --,∴111211y y y y k k x x x x -+⋅=⋅-+ 2222122222221111113x x b b a a b c e x x a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭==-=-=-=--,∴21k k ⋅的值为13-,故选D . 10.【答案】C【解析】∵40FA FB +=,∴4FA FB =-,∴4FA FB =,设FB t =,则4FA t =,设点A ,B 在抛物线C 准线上的射影分别为1A ,1B ,过A 作1BB 的垂线,交线段1BB 的延长线于点M ,则113BM AA BB AF BF t =-=-=,5AB AF BF t =+=, ∴4AM t =,∴34tan =∠ABM ,由对称性可得直线AB 的斜率为43±,故选C .11.【答案】D故选D . 12.【答案】C 【解析】∵21211AB y y k x x -==--,又()2221212y y x x -=-,∴2112x x +=-,由于212122x x y y ++⎛⎫⎪⎝⎭,在直线y x m =+上,即212122y y x x m ++=+,21212y y x x m +=++, ∵2112y x =,2222y x =,∴()22212122x x x x m +=++,即()2212121222x x x x x x m ⎡⎤+-=++⎣⎦,∵2112x x +=-,2121-=⋅x x ,∴23m =,32m =.故选C .二、填空题(本大题有4小题,每小题5分,共20分. 请把答案填在题中横线上) 13.【答案】9【解析】设抛物线C 的方程为22y px =,则26AB p ==,∴3=p ,∴192ABP S AB p =⨯=△. 14.5【解析】由双曲线221kx y -=知,它的渐近线方程为y kx =±,∵一条渐近线与直线250x y -+=12k =,则14k =,∴双曲线方程为2214x y -=, 则2a =,1b =,5c =52c e a ==. 15.【答案】2015680x y --=【解析】将点P 代人椭圆的方程可得216b =,所以椭圆的方程为2212516x y +=,椭圆的焦点225a =,216b =,22225169c a b =-=-=,(3,0)F ,设()11,A x y ,()22,B x y ,直线AB 的斜率为k ,由12121212435312125503x x x x y y y y ++⎧=⎪+=⎧⎪⎪⇒⎨⎨+=-++⎪⎪⎩=⎪⎩, 代人椭圆的方程可得22111212222214251602516312516x y x x y y k k x y ⎧+=⎪++⎪⇒+⨯=⇒=⎨⎪+=⎪⎩, ∴AB 的中点坐标为56,25⎛⎫- ⎪⎝⎭,所求的直线方程为2015680x y --=.16.【答案】14【解析】设切线方程为312y k x ⎛⎫=-- ⎪⎝⎭,由2312y a x y k x ⎧=⎪⎨⎛⎫=-- ⎪⎪⎝⎭⎩,联立并化简得01232=++-k kx ax ,由题意,234102k a k ∆⎛⎫=-+= ⎪⎝⎭,即0462=--a ak k ,又两切线垂直,∴1241k k a =-=-,∴14a =. 三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3-;(2)见解析.【解析】(1)由题意知,抛物线焦点为()1,0,设:1l x ty =+,代入抛物线24y x =, 消去x 得2440y ty --=.设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,∴()()()212121212121212111OA OB x x y y ty ty y y t y y t y y y y ⋅=+=+++=++++2244143t t =-++-=-.(2)设:l x ty b =+,代入抛物线24y x =,消去x 得2440y ty b --=, 设()11,A x y ,()22,B x y ,则124y y t +=,124y y b =-,∴()()()2212121212121212OA OB x x y y ty b ty b y y t y y tb y y b y y ⋅=+=+++=++++ 222244444bt bt b b b b =-++-=-=-,∴2b =.∴直线l 过定点()2,0.∴若4OA OB ⋅=-,则直线l 必过一定点()2,0.18.【答案】(1)22162x y +=;(2))6,3.【解析】(1)∵圆22:220G x y x y +-=经过点F ,B ,∴()2,0F ,(2B ,∴2c =,2b =2226a b c =+=,椭圆的方程为22162x y +=.(2)由题意知直线l 的方程为)3y x m =-,6m 由)221623x y y x m⎧+=⎪⎪⎨⎪=-⎪⎩消去y ,整理得222260x mx m -+-=. 由()224860m m ∆=-->,解得2323m -< ∵6m >623m <设()11,C x y ,()22,D x y ,则12x x m +=,21262m x x -=,∴))()212121212331333m m y y x m x m x x x x ⎡⎤⎡⎤=-⋅-=-++⎢⎥⎢⎥⎣⎦⎣⎦.∴()()()()112212122,2,22FC FD x y x y x x y y ⋅=-⋅-=-⋅-+ ()()21212234643333m m m m x x x x -+=-+++=. ∵点F 在圆E 内部,∴0FC FD ⋅<,即()2303m m -<,解得03m <<.23m <63m <,故m 的取值范围是)6,3.19.【答案】(1)2212x y +=;(242.【解析】(1)2AM AP =,0NP AM ⋅=,∴NP 为AM 的垂直平分线,∴NA NM =,又22CN NM +=222CN AN ∴+=,∴动点N 的轨迹是以点()1,0C -,()1,0A 为焦点的椭圆,且椭圆长轴长为222a =焦距22c =,2a ∴1c =,21b =.∴曲线E 的方程为2212x y +=.(2)直线l 的斜率tan 451k =︒=,∴直线l 的方程为1y x =-, 由22112y x x y =-⎧⎪⎨+=⎪⎩,消去y 得2340x x -=. 设()11,H x y ,()22,Q x y ,则1243x x +=,120x x =, ∴()222212121244211423HQ k x kx x x x ⎛⎫=+-=++- ⎪⎝⎭.20.【答案】(1)22132y x +=;(2)见解析. 【解析】(1)设随圆半焦距为c ,圆心O 到l 的距离6311d ==+则直线l被圆O 截得弦长为所以2b =2223c a a b c ⎧=⎪⎨⎪=+⎩,又2b =,∴23a =,22b =. ∴椭圆E 的方程为22132y x +=.(2)设点()00,P x y ,过点P 的椭圆E 的切线0l 的方程为()00y y k x x -=-,联立直线0l 与椭圆E 的方程得:()0022132y k x x y y x ⎧=-+⎪⎨+=⎪⎩消去y 并整理得:()()()2220000324260k x k y kx x kx y ++-+--=,∵0l 与椭圆E 相切.∴()()()22200004432260k y kx k kx y ∆⎡⎤⎡⎤=--+--=⎣⎦⎣⎦,整理得:()()22200002230x k kx y y -+--=,设满足题意的椭圆E 的两条切线的斜率分别为1k ,2k ,则20122032y k k x -⋅=--,∵点P 在圆O 上,∴22005x y +=,∴2012205312x k k x --⋅=-=--. ∴两条切线斜率之积为常数1-.21.【答案】(1)2212x y +=;(2)存在,43y x =-.【解析】(1)如图建系,设椭圆方程为()222210x y a b a b+=>>,则1c =,又∵1AF FB ⋅=,即()()221a c a c a c +⋅-==-,∴22a =.故椭圆方程为2212x y +=.(2)假设存在直线l 交椭圆于P ,Q 两点,且F 恰为PQM △的垂心, 则设()11,P x y ,()22,Q x y ,∵()0,1M ,()1,0F ,故1PQ k =,于是设直线l 为y x m =+,由2222y x m x y =+⎧⎨+=⎩,得2234220x mx m ++-=, ∵()()1221011MP FQ x x y y ⋅==-+-,又()1,2i i y x m i =+=, 得()()()1221110x x x m x m -+++-=, 即()()21212210x x x x m m m ++-+-=,由韦达定理得()2222421033m mm m m -⋅--+-=,解得43m =-或1m =(舍去),经检验43m =-符合条件.∴直线l 的方程为43y x =-.22.【答案】(1)22132x y +=;(2)最大值为4,最小值为9625. 【解析】(1)由题意,1222F F c ==,∵122AF AF =,∴2F 为1AF 的中点.∴23a =,22b =,所以椭圆方程为22132x y +=.(2)当直线DE 与x 轴垂直时,223b DE a ==223MN a == 四边形DMEN 的面积142S DE MN =⋅=.同理当MN 与x 轴垂直时,也有四边形DMEN 的面积142S DE MN =⋅=.当直线DE ,MN 均与x 轴不垂直时,设():1DE y k x =+,代入消去y 得()()2222236360k x k x k +++-=, 设()11,D x y ,()22,E x y ,则212221226233623k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩, 所以()221212124314k x x x x x x ⋅+-=+-,所以221243(1)1k DE k x ⋅+=+-=,同理()222214314313322k k MN k k⎡⎤⎛⎫-+⎢⎥⎪+⎝⎭⎢⎥⎣⎦==++, 所以四边形的面积()()222243143111223232k k S DE MN k k ++=⋅=⋅⋅++, ()242242221242242116136613k k k k k k k k ⎛⎫⋅++ ⎪⋅++⎝⎭==++⎛⎫++ ⎪⎝⎭, 令221t k k =+,则()24244613136t S t t +==-++,∵2212t k k =+≥,()'224()0136S t t =>+, ∴()44136S t t=-+为[)2,t ∈+∞上的增函数,当2t =,即1k =±时,9625S =,∴96425S ≤<,综上可知,96425S ≤≤.故四边形DMEN 面积的最大值为4,最小值为9625.。

(完整word版)2019届高考数学专题二十几何概型总结练习题及答案

(完整word版)2019届高考数学专题二十几何概型总结练习题及答案

专题二十 几何概型1.长度类几何概型 例1:已知函数()22f x x x =--,[]5,5x ∈-,在定义域内任取一点0x ,使()00f x ≤的概率是( ) A .110 B .23C .310D .45【答案】C【解析】先解出()00f x ≤时0x 的取值范围:22012x x x --≤⇒-≤≤,从而在数轴上[]1,2-区间长度占[]5,5-区间长度的比例即为事件发生的概率,∴310P =,故选C .2.面积类几何概型 (1)图形类几何概型例2-1:如图所示,在矩形ABCD 中,2AB a =,AD a =,图中阴影部分是以AB 为直径的半圆,现在向矩形ABCD 内随机撒4000粒豆子(豆子的大小忽略不计),根据你所学的概率统计知识,下列四个选项中最有可能落在阴影部分内的豆子数目是( )A .1000B .2000C .3000D .4000【答案】C【解析】在矩形ABCD 中,2AB a =,AD a =,面积为22a ,半圆的面积为212a π, 故由几何概型可知,半圆所占比例为4π,随机撒4000粒豆子,落在阴影部分内的豆子数目大约为3000,故选C . (2)线性规划类几何概型例2-2:甲乙两艘轮船都要在某个泊位停靠6小时,假定他们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停泊位时必须等待的概率( ) A .14 B.13C .34D .716【答案】D【解析】设甲船到达的时间为x ,乙船到达的时间为y ,则所有基本事件构成的区域满足024024x y ≤≤≤≤⎧⎨⎩,这两艘船中至少有一艘在停泊位时必须等待包含的基本事件构成的区域A 满足0240246x y x y ⎧≤≤⎪≤≤⎨⎪-≤⎩,作出对应的平面区域如图所示:这两艘船中至少有一艘在停泊位时必须等待的概率为()181871242416S P A S Ω⨯==-=⨯阴,故选D .(3)利用积分求面积例2-3:如图,圆222:O x y +=π内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A .24π B .34πC .22πD .32π【答案】B【解析】构成试验的全部区域为圆内的区域,面积为3π, 正弦曲线sin y x =与x 轴围成的区域记为M ,根据图形的对称性得:面积为002sin dx 2cos 4S x x ππ==-=⎰,由几何概率的计算公式可得,随机往圆O 内投一个点A ,则点A 落在区域M 内的概率34P =π,故选B .3.体积类几何概型例3:一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为( )A .34 B .23C .13D .12【答案】D【解析】所求概率为棱锥F AMCD -的体积与棱柱ADF BCE -体积的比值. 由三视图可得AD DF CD a ===,且AD ,DF ,CD 两两垂直, 可得31122ADF BCE ADF V SDC AD DF DC a -=⋅=⋅⋅=, 棱锥体积13F AMCD ADMC V DF S -=⋅,而()21324ADCMS AD AM CD a =⋅+=, ∴214F AMCD V a -=.从而12F AMCD ADF BCEV P V --==.故选D .一、单选题1.如图,边长为2的正方形中有一阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23.则阴影区域的面积约为( )A .23 B .43C .83D .无法计算【答案】C【解析】设阴影区域的面积为s ,243s =,∴83s =.故选C .2.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为( )A .110B .16C .15D .56【答案】B【解析】由题意,此人在50分到整点之间的10分钟内到达,等待时间不多于10分钟,∴概率101606P ==.故选B .3.一只蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点距离都大于2的区域内的概率为( ) A .31-π B .34C .3π D . 14【答案】A【解析】满足条件的正三角形如图所示:其中正三角形ABC 的面积31643S ==三角形满足到正三角形ABC 的顶点A ,B ,C 的距离都小于2的平面区域如图中阴影部分所示,则2S =π阴,则使取到的点到三个顶点A ,B ,C 的距离都大于2的概率为:31143P ==.故选A .4.在区间[]0,1上随机取两个数x ,y ,记P 为事件2""3x y +≤的概率,则P =( )A .23 B .12C .49D .29【答案】D【解析】如图所示,01x ≤≤,01y ≤≤表示的平面区域为ABCD ,平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中203P ⎛⎫⎪⎝⎭,,203Q ⎛⎫⎪⎝⎭,,结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯,故选D .5.在区间[]02,上随机取一个数,sin 2x π的值介于0到12之间的概率为( )A .13B .2πC .12D .23【答案】A【解析】由10sin 22x π≤≤,得026x ππ≤≤,或562x ππ≤≤π,∴103x ≤≤或523x ≤≤, 记sin 2A x =π的值介于0到12之间,则构成事件A 的区域长度为15202333-+-=;全部结果的区域[]02,长度为2;∴()21323P A ==,故选A .6.点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离1PA <的概率为( ) A .14 B .12C .π4D .π【答案】C【解析】满足条件的正方形ABCD ,如图所示:其中满足动点P 到定点A 的距离1PA <的平面区域如图中阴影部分所示,则正方形的面积1S=正,阴影部分的面积14S=π阴.故动点P到定点A的距离1PA<的概率π4SPS==阴正.故选C.7.如图所示,在椭圆2214xy+=内任取一个点P,则P恰好取自椭圆的两个端点连线与椭圆围成阴影部分的概率为()A.1142-πB.1144-πC.18D.1188-π【答案】A【解析】先求椭圆面积的14,由2214xy+=知214xy=-,∴22220011dx4dx442S xx=-=-⎰⎰椭圆,而224dxx-⎰表示24y x=-与0x=,2x=围成的面积,即圆224x y+=面积的14,∴224dxx-=π⎰,∴2214dx422Sxπ=-=⎰椭圆,∴2S=π椭圆,∴概率1112242Pπ-==-ππ,故选A.8.如图,若在矩形OABC中随机撒一粒豆子,则豆子落在图中阴影部分的概率为()A .21-π B .2πC .22πD .221-π【答案】A【解析】1S =π⨯=π矩形,又()00sin dx cos cos cos02x ππ=-=-π-=⎰,∴2S =π-阴影,∴豆子落在图中阴影部分的概率为221π-=-ππ.故选A .9.把不超过实数x 的最大整数记为[]x ,则函数()[]f x x =称作取整函数,又叫高斯函数,在[]14,上任取x ,则[]2x x ⎡⎤=⎣⎦的概率为( )A .14 B .13C .12D .23【答案】D【解析】当[)12x ∈,时,则21x ⎡⎤=⎣⎦,满足[]2x x ⎡⎤=⎣⎦;当[)2,3x ∈时,[]2x =,)22,6x ⎡∈⎣,则22x ⎡⎤=⎣⎦,满足[]2x x ⎡⎤=⎣⎦; 当[)3,4x ∈时,[]3x =,)2622x ⎡∈⎣,,则22x ⎡⎤=⎣⎦不满足[]2x x ⎡⎤=⎣⎦;当4x =时,[]4x =,222x =,则22x ⎡⎤=⎣⎦,不满足[]2x x ⎡⎤=⎣⎦.综上,满足[]2x x ⎡⎤=⎣⎦的[)1,3x ∈,则[]2x x ⎡⎤=⎣⎦的概率为312413--=, 故选D .10.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( ) A .227B .4715C .5116D .5317【答案】B【解析】由题意,120对都小于的正实数()x y,,满足0101xy<<⎧⎨<<⎩,面积为1,两个数能与1构成钝角三角形的三边的数对()x y,,满足221x y+<且0101xy<<⎧⎨<<⎩,面积为142π-,∵统计两数能与1构成钝角三角形三边的数对()x y,的个数为34m=,则34112042π=-,∴4715π=,故选B.11.为了节省材料,某市下水道井盖的形状如图1所示,其外围是由以正三角形的顶点为圆心,正三角形的边长为半径的三段圆弧组成的曲边三角形,这个曲边三角形称作“菜洛三角形”.现有一颗质量均匀的弹珠落在如图2所示的莱洛三角形内,则弹珠恰好落在三角形ABC内的概率为()A3223π-B3223π+C3D.31【答案】A【解析】弹珠落在莱洛三角形内的每一个位置是等可能的,由几何概型的概率计算公式可知所求概率:222212sin60321112233222sin602sin602322ABCABCSPSπ⨯⨯===⎛⎫π-⨯⨯⨯-⨯⨯⨯+⨯⨯⎪⎝⎭ou u u u u u o ou r△△(ABCS u u u u u u u r△为莱洛三角形的面积),故选A.12.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+【答案】A【解析】设AC b =,AB c =,BC a =,则有222b c a +=, 从而可以求得ABC △的面积为112S bc =,黑色部分的面积为22222221122224442c b a c b a S bc bc ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=π⋅+π⋅-π⋅-=π+-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦22211422c b a bc bc +-=π⋅+=,其余部分的面积为223112242a a S bc bc π⎛⎫=π⋅-=- ⎪⎝⎭,∴有12S S =,根据面积型几何概型的概率公式,可以得到12p p =,故选A .二、填空题13.在区间[]02,内任取一个实数a ,则使函数()()21log a f x x -=在()0+∞,上为减函数的概率是___________.【答案】14【解析】∵函数()()21log a f x x -=在()0+∞,上为减函数,∴0211a <-<,112a <<,因此所求概率为1112204-=-.14.记集合(){}2216A x y xy =+≤,,集合()(){}40, B x y x y x y A =+-≤∈,,表示的平面区域分别为1Ω,2Ω.若在区域1Ω内任取一点()P x y ,,则点P 落在区域2Ω中的概率为__________. 【答案】324π+π【解析】画出(){}2216A x y x y =+≤,表示的区域1Ω,即图中以原点为圆心,半径为2的圆;集合()(){}40, B x y x y x y A =+-≤∈,,表示的区域2Ω,即图中的阴影部分. 由题意可得116S Ω=π,231164412842S Ω=⨯π+⨯⨯=π+,根据几何概型概率公式可得所求概率为21324S P S ΩΩπ+==π.15.如图,曲线sin32xy π=+把边长为4的正方形OABC 分成黑色部分和白色部分.在正方形内随机取一点,则此点取自黑色部分的概率是__________.【答案】14【解析】由题意可知,阴影部分的面积4410 024sin3dx cos422xS x x⎡π⎤π⎛⎫⎛⎫=-+=-⨯=⎪ ⎪⎢⎥π⎝⎭⎝⎭⎣⎦⎰,正方形的面积:24416S=⨯=,由几何概型计算公式可知此点取自黑色部分的概率:1241 164SpS===.16.父亲节小明给爸爸从网上购买了一双运动鞋,就在父亲节的当天,快递公司给小明打电话话说鞋子已经到达快递公司了,马上可以送到小明家,到达时间为晚上6点到7点之间,小明的爸爸晚上5点下班之后需要坐公共汽车回家,到家的时间在晚上5点半到6点半之间.求小明的爸爸到家之后就能收到鞋子的概率(快递员把鞋子送到小明家的时候,会把鞋子放在小明家门口的“丰巢”中)为__________.【答案】18【解析】设爸爸到家时间为x,快递员到达时间为y,以横坐标表示爸爸到家时间,以纵坐标表示快递送达时间,建立平面直角坐标系,爸爸到家之后就能收到鞋子的事件构成区域如下图:根据题意,所有基本事件构成的平面区域为() 5.5 6.567x x y y ⎧⎫≤≤⎧⎪⎪⎨⎨⎬≤≤⎩⎪⎪⎩⎭,,面积1S =,爸爸到家之后就能收到鞋子的事件,构成的平面区域为() 5.5 6.5670x x y y x y ⎧⎫≤≤⎧⎪⎪⎪≤≤⎨⎨⎬⎪⎪⎪-≥⎩⎩⎭,, 直线0x y -=与直线 6.5x =和6y =交点坐标分别为()66,和()6.56.5,,2111228S ⎛⎫=⨯= ⎪⎝⎭阴影, 由几何概型概率公式可得,爸爸到家之后就能收到鞋子的概率:18S P S==阴影. 故答案为18.。

2019年高考数学试题及答案word版

2019年高考数学试题及答案word版

2019年高考数学试题及答案word版一、选择题(本题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是正确的。

)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为多少?A. 0B. 2C. 5D. 32. 已知等差数列{an}的首项a1=1,公差d=3,求该数列的第5项a5。

A. 13B. 16C. 19D. 223. 计算三角函数值:sin(π/6) + cos(π/3)。

A. 1B. √3/2C. √2D. 24. 已知圆C的方程为(x-2)^2 + (y+1)^2 = 9,求圆C的半径。

A. 1B. 2C. 3D. 45. 若直线l的方程为y=2x+3,且点P(1,2)在直线l上,则直线l的斜率是多少?A. 1/2B. 2C. 3D. 46. 已知复数z=3+4i,求|z|的值。

A. 5B. √7C. √13D. √257. 计算定积分∫(0到1) (x^2 - 2x + 1) dx。

A. 0B. 1/3C. 1D. 2/38. 已知向量a=(2, -1),b=(1, 3),求向量a与向量b的数量积。

A. 1B. 3C. 5D. 7二、填空题(本题共4小题,每小题4分,共16分。

)9. 若函数f(x)=x^3-6x^2+11x-6,求f'(x)。

________________。

10. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1,且双曲线C的渐近线方程为y=±(b/a)x,求双曲线C的离心率e。

________________。

11. 计算二项式展开式(1+x)^5的第3项。

________________。

12. 已知抛物线y=x^2-4x+4,求抛物线的顶点坐标。

________________。

三、解答题(本题共3小题,共52分。

解答应写出文字说明、证明过程或演算步骤。

)13. (本题满分12分)已知函数f(x)=x^3-3x^2+2,求证f(x)在区间[1,2]上单调递增。

几何概型、古典概型常考经典好题(史上最全面含答案)

几何概型、古典概型常考经典好题(史上最全面含答案)

几何概型、古典概型常考经典题(史上最全面)1.在长为2的线段AB 上任意取一点C ,则以线段AC 为半径的圆的面积小于π的概率为( ) A .14 B.12 C .34 D.π42.已知正棱锥S-ABC 的底面边长为4,高为3,在正棱锥内任取一点P ,使得V P-ABC <12V S-ABC 的概率是( ) A .34 B.78 C .12 D.143.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为( )A .12 B.32 C .13 D.144.在区间⎣⎢⎡⎦⎥⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈[1, 2 ]的概率是( ) A .12 B.34 C .38 D.585.若m ∈(0,3),则直线(m +2)x +(3-m)y -3=0与x 轴、y 轴围成的三角形的面积小于98的概率为________.6.如图,正四棱锥S-ABCD 的顶点都在球面上,球心O 在平面ABCD 上,在球O 内任取一点,则这点取自正四棱锥内的概率为________.7.平面区域A 1={}(x ,y )|x 2+y 2<4,x ,y ∈R ,A 2={(x ,y )||x |+|y |≤3,x ,y ∈R}.在A 2内随机取一点,则该点不在A 1内的概率为________.8.在边长为4的等边三角形OAB 及其内部任取一点P ,使得OA ―→·OP ―→≤4的概率为( )A.12B.14C.13D.189.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为35,则AD AB =________. 10.某人对某台的电视节目进行了长期的统计后得出结论,他任意时间打开电视机看该台节目时,看不到广告的概率为910,那么该台每小时约有________分钟的广告.11.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.12.在面积为S 的ABC ∆ 的边AB 上任取一点P ,则PBC ∆的面积大于4S 的概率为 .13.在ABC ∆中,060,2,6ABC AB BC ∠===,在BC 上任取一点D ,则使ABD ∆为钝角三角形的概率为( )A .16B .13C .12D .23 14.从区间[0,1]上随机抽取2n 个数1212,,,,,,,n n x x x y y y ,构成n 个数对11(,)x y ,22(,)x y ,[来源:学+,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为__________. A .4n m B .2n m C .4m n D .m n15. 在等腰Rt △ABC 中, (1)在斜边A B 上任取一点M ,求AM 的长小于AC 的长的概率.(2)过直角顶点C 在ACB ∠内作一条射线CM ,与线段AB 交于点M ,求AM<AC 的概率.(3)已知P 是△ABC 所在平面内一点,PB +PC +2PA =0,现将一粒黄豆随机撒在△PBC 内,则黄豆落在△PBC 内的概率是( )A .14B .13C .23D .1216.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率。

最新最全2019高考数学(全国卷、北京卷、江苏、天津、浙江)立体几何汇编含选择填空解答题

最新最全2019高考数学(全国卷、北京卷、江苏、天津、浙江)立体几何汇编含选择填空解答题

2019高考数学立体几何汇编1.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面2.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A.158 B.162C.182 D.323.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线4.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面5.已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D6.设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β7.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.8.已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 9.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.9.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.10.已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.11.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_ ________.(本题第一空2分,第二空3分.)12.如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是▲.13.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC ,那么P 到平面ABC 的距离为___________.14. 图1是由矩形ADEB 、Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.15.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,(Ⅰ)设分别为的中点,求证:平面; (Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.16.如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值; (Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.P ABCD -ABCD PCD PAC ⊥PCD PA CD ⊥2CD =3AD=G H ,PB AC ,GH ∥PAD PA ⊥PCD ADPAC17.图1是由矩形ADEB 、R t △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B-CG-A 的大小.18.如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C 的体积.19.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.20.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.21.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.22.如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.23.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.24.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.25.如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且13 PFPC=.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)设点G在PB上,且23PGPB=.判断直线AG是否在平面AEF内,说明理由.。

2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一)1.如图所示,四棱锥P ABCD 中,底面ABCD 为正方形,⊥PD 平面ABCD ,2PD AB ,点,,E F G 分别为,,PC PD BC 的中点.(1)求证:EF PA ⊥;(2)求二面角D FG E 的余弦值.2.如图所示,该几何体是由一个直角三棱柱ADE BCF 和一个正四棱锥P ABCD 组合而成,AF AD ⊥,2AEAD .(1)证明:平面⊥PAD 平面ABFE ;(2)求正四棱锥P ABCD 的高h ,使得二面角C AF P 的余弦值是223.3.四棱锥P ABCD-中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是面积为ADC∠为锐角,M为PB的中点.(Ⅰ)求证:PD∥面ACM.(Ⅱ)求证:PA⊥CD.(Ⅲ)求三棱锥P ABCD-的体积.4.如图,四棱锥S ABCD-满足SA⊥面ABCD,90DAB ABC∠=∠=︒.SA AB BC a===,2AD a=.(Ⅰ)求证:面SAB⊥面SAD.(Ⅱ)求证:CD⊥面SAC.SB A DMC BAPD5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD .6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A .E DABC C 1B 1A 1DAB CEF P7.在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AB CD ,AB AD ⊥,PA PB =,::2:2:1AB AD CD =.(1)证明BD PC ⊥;(2)求二面角A PC D --的余弦值;(3)设点Q 为线段PD 上一点,且直线AQ 平面PAC 所成角的正弦值为23,求PQ PD的值.8.在正方体1111ABCD A B C D -中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO . (1)若λ=1,求异面直线DE 与CD 1所成角的余弦值; (2)若λ=2,求证:平面CDE ⊥平面CD 1O .9.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD =︒∠,侧面PAB ⊥底面ABCD ,90BAP =︒∠,2AB AC PA ===,E ,F 分别为BC ,AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC .(Ⅱ)若M 为PD 的中点,求证:ME ∥平面PAB . (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所在的角相等,求PMPD的值.10.如图,在三棱柱111ABC A B C -,1AA ⊥底面ABC ,AB AC ⊥,1AC AB AA ==,E ,F 分别是棱BC ,1A A 的中点,G 为棱1CC 上的一点,且1C F ∥平面AEG . (1)求1CGCC 的值. (2)求证:1EG AC ⊥. (3)求二面角1A AG E --的余弦值.A 1B 1C 1G F AB CEM F E CBAPD11.如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD BC ∥,AD AB ⊥,且3PB AB AD ===,1BC =.(Ⅰ)若点F 为PD 上一点且13PF PD =,证明:CF ∥平面PAB .(Ⅱ)求二面角B PD A --的大小. (Ⅲ)在线段PD 上是否存在一点M ,使得CM PA ⊥?若存在,求出PM 的长;若不存在,说明理由.12.如图,在四棱锥E ABCD -中,平面EAD ⊥平面ABCD ,CD AB ∥,BC CD ⊥,EA ED ⊥,4AB =,2BC CD EA ED ====.Ⅰ证明:BD AE ⊥.Ⅱ求平面ADE 和平面CDE 所成角(锐角)的余弦值.DABCEPF DBCA13.己知四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,且2PA AB ==.60ABC ∠=︒,BC 、PD 的中点分别为E ,F .(Ⅰ)求证BC PE ⊥.(Ⅱ)求二面角F AC D --的余弦值.(Ⅲ)在线段AB 上是否存在一点G ,使得AF 平行于平面PCG ?若存在,指出G 在AB 上的位置并给予证明,若不存在,请说明理由.14.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF DE ∥,3DE AF =,BE 与平面ABCD 所成角为60︒.(Ⅰ)求证:AC ⊥平面BDE . (Ⅱ)求二面角F BE D --的余弦值.(Ⅲ)设点M 线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.DDABCEF15.如图,PA ⊥面ABC ,AB BC ⊥,22AB PA BC ===,M 为PB 的中点. (Ⅰ)求证:AM ⊥平面PBC . (Ⅱ)求二面角A PC B --的余弦值. (Ⅲ)在线段PC 上是否存在点D ,使得BD AC ⊥,若存在,求出PDPC的值,若不存在,说明理由.16.如图所示,在四棱锥P -ABCD 中,AB ⊥平面,//,PAD AB CD E 是PB 的中点,2,5,3,2AHPD PA AB AD HD===== . (1)证明:PH ⊥平面ABCD ;(2)若F 是CD 上的点,且23FC FD ==,求二面角B EF C --的正弦值.MDABCP17.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=︒,Q为AB 的中点.(Ⅰ)证明:CQ ⊥平面ABE ; (Ⅱ)求多面体ACED 的体积; (Ⅲ)求二面角A -DE -B 的正切值.18.如图1 ,在△ABC 中,AB =BC =2, ∠B =90°,D 为BC 边上一点,以边AC 为对角线做平行四边形ADCE ,沿AC 将△ACE 折起,使得平面ACE ⊥平面ABC ,如图2.(1)在图 2中,设M 为AC 的中点,求证:BM 丄AE ; (2)在图2中,当DE 最小时,求二面角A -DE -C 的平面角.19.如图所示,在已知三棱柱ABF -DCE 中,90ADE ∠=︒,60ABC ∠=︒,2AB AD AF ==,平面ABCD ⊥平面ADEF ,点M在线段BE 上,点G 是线段AD 的中点.(1)试确定点M 的位置,使得AF ∥平面GMC ; (2)求直线BG 与平面GCE 所成角的正弦值.20.已知在四棱锥P -ABCD 中,底面ABCD 是菱形,AC =AB ,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点.(Ⅰ)求证:AF ∥平面PCE ;(Ⅱ)若22AB AP ==,求平面P AD 与平面PCE 所成锐二面角的余弦值.21.如图,五面体P ABCD 中,CD ⊥平面P AD ,ABCD 为直角梯形,,2BCD PD BC CD π∠===1,2AD AP PD =⊥. (1)若E 为AP 的中点,求证:BE ∥平面PCD ; (2)求二面角P -AB-C 的余弦值.22.如图(1)所示,已知四边形SBCD 是由Rt △SAB 和直角梯形ABCD 拼接而成的,其中90SAB SDC ∠=∠=︒.且点A 为线段SD 的中点,21AD DC ==,2AB =.现将△SAB沿AB 进行翻折,使得二面角S -AB -C 的大小为90°,得到图形如图(2)所示,连接SC ,点E ,F 分别在线段SB ,SC 上. (Ⅰ)证明:BD AF ⊥;(Ⅱ)若三棱锥B -AEC 的体积为四棱锥S -ABCD 体积的25,求点E 到平面ABCD 的距离.23.四棱锥S-ABCD中,AD∥BC,,BC CD⊥060SDA SDC∠=∠=,AD DC=1122BC SD==,E为SD的中点.(1)求证:平面AEC⊥平面ABCD;(2)求BC与平面CDE所成角的余弦值.24.已知三棱锥P-ABC,底面ABC是以B为直角顶点的等腰直角三角形,P A⊥AC,BA=BC=P A=2,二面角P-AC-B的大小为120°.(1)求直线PC与平面ABC所成角的大小;(2)求二面角P-BC-A的正切值.25.如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,090=∠=∠BCD ABC ,AB CB DC PD PA 21====,E 是PB 的中点, (Ⅰ)求证:EC ∥平面APD ;(Ⅱ)求BP 与平面ABCD 所成的角的正切值; (Ⅲ)求二面角P -AB -D 的余弦值.26.四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,P A =2,PB =PD =22,E ,F ,G ,H 分别为棱P A ,PB ,AD ,CD 的中点.(1)求CD 与平面CFG 所成角的正弦值;(2)探究棱PD 上是否存在点M ,使得平面CFG ⊥平面MEH ,若存在,求出PDPM的值;若不存在,请说明理由.试卷答案1以点D 为坐标原点,建立如图所示的空间直角坐标系D xyz ,则 0,0,0D ,0,2,0A ,2,0,0C,0,0,2P ,1,0,1E ,0,0,1F ,2,1,0G .(1)∵0,2,2PA ,1,0,0EF,则0PA EF ,∴PA EF .(2)易知0,0,1DF,2,11FG, 设平面DFG 的法向量111,,m x y z ,则m DF m FG ,即1111020z x yz ,令11x ,则1,2,0m 是平面DFG 的一个法向量,同理可得0,1,1n 是平面EFG 的一个法向量,∴210cos ,552m n m nm n, 由图可知二面角D FG E 为钝角, ∴二面角D FG E 的余弦值为105.2.(1)证明:直三棱柱ADE BCF 中,AB 平面ADE ,所以:AB AD ,又AD AF ,所以:AD平面ABFE ,AD 平面PAD ,所以:平面PAD 平面ABFE .(2)由(1)AD平面ABFE ,以A 为原点,,,AB AE AD 方向为,,x y z 轴建立空间直角坐标系A xyz ,设正四棱锥P ABCD 的高h ,2AE AD ,则0,0,0A ,2,2,0F ,2,0,2C ,1,,1P h . 2,2,0AF,2,0,2AC,1,,1APh .设平面ACF 的一个法向量111,,m x y z ,则:1111220220m AF x y n ACx z ,取11x ,则111y z ,所以:1,1,1m .设平面AFP 的一个法向量222,,n x y z ,则222222200n AF x y n APx hy z ,取21x ,则21y ,21z h ,所以:1,1,1n h ,二面角C AF P 的余弦值是223,所以:211122cos ,3321m n h m n m nh , 解得:1h .3.E ODPABC M(Ⅰ)证明:连结AC 交BD 于O ,则O 是BD 中点, ∵在PBD △中,O 是BD 的中点,M 是PB 的中点, ∴PD MO ∥,又PD ⊄平面ACM ,MO ⊂平面ACM ,∴PD ∥平面ACM .(Ⅱ)证明:作PE CD ⊥,则E 为CD 中点,连结AE , ∵底面ABCD 是菱形,边长为2,面积为,∴11sin 222sin 222S AD DC ADC ADC =⨯⨯⨯∠⨯=⨯⨯∠⨯=∴sin ADC ∠,60ADC ∠=︒, ∴ACD △是等边三角形, ∴CD AE ⊥, 又∵CD PE ⊥, ∴CD ⊥平面PAE , ∴CD PA ⊥.(Ⅲ)11233P ABCD ABCD V S PE -=⨯=⨯.4.DABCSE(1)证明:∵SA ⊥平面ABCD ,AB ⊂平面ABCD , ∴AB SA ⊥, 又∵90BAD ∠=︒, ∴AB AD ⊥, ∵SA AD A =, ∴AB ⊥平面SAD , 又AB ⊂平面SAB , ∴平面SAB ⊥平面SAD . (Ⅱ)证明:取AD 中点为E ,∵90DAB ABC ∠=∠=︒,2AD a =,BC a =,E 是AD 中点, ∴ABCE ∠是矩形,CE AB a ==,DE a =,∴CD =,在ACD △中,AC,CD =,2AD a =, ∴222AC CD AD +=, 即CD AC ⊥,又∵SA ⊥平面ABCD ,CD ⊂平面ABCD , ∴CD SA ⊥, ∴CD ⊥平面PAC . 5.P F ECB AD(Ⅰ)证明:∵PD ⊥底面ABCD ,BC ⊂平面ABCD , ∴PD BC ⊥,又∵底面ABCD 为矩形, ∴BC CD ⊥, ∴BC ⊥平面PCD , ∵BC ⊂平面PBC , ∴平面PCD ⊥平面PBC .(Ⅱ)证明:∵PD DC =,E 是PC 中点, ∴DE PC ⊥,又平面PCD ⊥平面PBC ,平面PCD 平面PBC PC =, ∴DE ⊥平面PBC , ∴DE PB ⊥, 又∵EF PB ⊥,EF DE E =,∴PB ⊥平面EFD .6.E A 1B 1C 1CBAD(Ⅰ)证明:连结1A B , ∵D 是1AB 的中点, ∴D 是1A B 的中点,∵在1A BC △中,D 是1A B 的中点,E 是1A C 的中点, ∴DE BC ∥,又DE ⊄平面11BCC B ,BC ⊂平面11BCC B , ∴DE ∥平面11BCC B .(Ⅱ)证明:∵111ABC A B C -是直棱柱, ∴1AA ⊥平面ABC , ∴1AA AB ⊥, 又AB AC ⊥, ∴AB ⊥平面11ACC A , ∵AB ⊂平面11ABB A , ∴平面11ABB A ⊥平面11ACC A .7.以A 为坐标原点,建立空间直角坐标系(2,0,0)B,D ,(0,0,2)P,C(1)(BD =-,(1,2)PC =-, ∵0BD PC •=∴BD PC ⊥(2)(1,AC =,(0,0,2)AP =,平面PAC 的法向量为(2,1,0)m =-(0,2)DP =,(1,0,0)AP =,平面DPC 的法向量为(0,2,1)n =--.2cos ,3m n m n m n•==•,二面角B PC D --的余弦值为3.(3)∵AQ AP PQ AP tPD =+=+,[]0,1t ∈ ∴(0,0,2)(0,2,2)(0,2,22)AQ t t t =+-=- 设θ为直线AQ 与平面PAC 所成的角2sin cos ,3AQ m AQ m AQ mθ•===• 2222223684332(22)tt t t t t =⇒=-++-,解得2t =(舍)或23. 所以,23PQ PD =即为所求.8.解:(1)不妨设正方体的棱长为1,以DA ,DC ,1DD 为单位正交基底建立如图所示的空间直角坐标系D xyz -. 则A (1,0,0),()11022O ,,,()010C ,,,D 1(0,0,1), E ()111442,,, 于是,.由cos==.所以异面直线AE 与CD 1所成角的余弦值为36. (2)设平面CD 1O 的向量为m =(x 1,y 1,z 1),由m ·CO =0,m ·1CD =0 得 取x 1=1,得y 1=z 1=1,即m =(1,1,1) .由D 1E =λEO ,则E ,.又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD =0,n ·DE =0. 得取x 2=2,得z 2=-λ,即n =(-2,0,λ) .因为平面CDE ⊥平面CD 1F ,所以m ·n =0,得λ=2.9.(Ⅰ)证明:在平行四边形ABCD 中, ∵AB AC =,135BCD =︒∠,45ABC =︒∠, ∴AB AC ⊥,∵E ,F 分别为BC ,AD 的中点, ∴EF AB ∥,∴EF AC ⊥,∵侧面PAB ⊥底面ABCD ,且90BAP =︒∠, ∴PA ⊥底面ABCD ,∴PA EF ⊥, 又∵PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,∴EF ⊥平面PAC .(Ⅱ)证明:∵M 为PD 的中点,F 为AD 的中点, ∴MF PA ∥,又∵MF ⊄平面PAB ,PA ⊂平面PAB , ∴MF ∥平面PAB ,同理,得EF ∥平面PAB , 又∵MFEF F =,MF ⊂平面M EF ,EF ⊂平面M EF ,∴平面MEF ∥平面PAB ,又∵ME ⊂平面M EF , ∴ME ∥平面PAB .(Ⅲ)解:∵PA ⊥底面ABCD ,AB AC ⊥,∴AP ,AB ,AC 两两垂直,故以AB ,AC ,AP 分别为x 轴,y 轴和z 轴建立如图空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,(0,0,2)P ,(2,2,0)D -,(1,1,0)E , 所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, ∴(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--, 易得平面ABCD 的法向量(0,0,1)m =, 设平面PBC 的法向量为(,,z)n x y =,则:n BC n PB ⎧⋅=⎪⎨⋅=⎪⎩,即220220x y x z -+=⎧⎨-=⎩,令1x =,得(1,1,1)n =, ∴直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等, ∴|cos ,||cos ,|ME m ME n <>=<>,即||||||||||||ME m ME n ME m ME n ⋅⋅=⋅⋅,∴|21|λ-=,解得λ=或λ=(舍去),故PM PD .D10.(1)∵1C F ∥平面AEG ,又1C F ⊂平面11ACC A ,平面11ACC A 平面AEG AG =,∴1C F AG ∥,∵F 为1AA 的点,且侧面11ACC A 为平行四边形, ∴G 为1CC 中点, ∴112CG CC =. (2)证明:∵1AA ⊥底面ABC ,1AA AB ⊥,1AA AC ⊥, 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得(2,0,0)C ,(0,2,0)B ,1(2,0,2)C ,1(0,0,2)A , ∵E ,G 分别是BC ,1CC 的中点,∴(1,1,0)E ,(2,0,1)G , ∴1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=, ∴1EG CA ⊥, ∴1EG AC ⊥. (3)设平面AEG 的法向量为(,,)n x y z =,则:0n AE n AG ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x z +=⎧⎨+=⎩,令1x =,则1y =-,2z =-, ∴(1,1,2)n =--,由已知可得平面1A AG 的法向量(0,1,0)m =, ∴6cos ,6||||n m n m n m ⋅<>==-⋅由题意知二面角1A AG E --为钝角, ∴二面角1A AG E --的余弦值为.111.(Ⅰ)证明:过点F 作FH AD ∥, 交PA 于H ,连结BH ,如图所示,∵13PF PD =,∴13HF AD BC ==,又FH AD ∥,AD BC ∥,HF BC ∥, ∴四边形BCFH 为平行四边形, ∴CF BH ∥,又BH ⊄平面PAB ,CF ⊄平面PAB , ∴CF ∥平面PAB .z D(Ⅱ)解:∵梯形ABCD 中,AD BC ∥,AD AB ⊥, ∴BC AB ⊥, ∵PB ⊥平面ABCD , ∴PB AB ⊥,PB BC ⊥,∴如图,以B 为原点,BC ,BA ,BP 所在直线为x ,y ,z 轴建立空间直角坐标系, 则(1,0,0)C ,(3,0,0)D ,(0,3,0)A ,(0,0,3)P ,设平面BPD 的一个法向量为(,,)n x y z =, 平面APD 的一个法向量为(,,)m a b c =, ∵(3,3,3)PD =-,(0,0,3)BP =,∴00PD n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即333030x y z z +-=⎧⎨=⎩,令1x =得(1,1,0)n =-,同理可得(0,1,1)m =, ∴1cos ,2||||n m n m n m ⋅<>==-⋅,∵二面角B PD A --为锐角, ∴二面角B PD A --为π3. (Ⅲ)假设存在点M 满足题意,设(3,3,3)PM PD λλλλ=-, ∴(13,3,33)CM CP PD λλλλ=+=-+-,∵(0,3,3)PA =-,∴93(33)0PA CM λλ⋅=+-=,解得12λ=,∴PD 上存在点M 使得CM PA ⊥,且12PM PD =.12.Ⅰ∵BC CD ⊥,2BC CD ==,∴BD =,同理EA ED ⊥,2EA ED ==,∴AD =,又∵4AB =,∴由勾股定理可知222BD AD AB +=,BD AD ⊥, 又∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,BD ⊂平面ABCD ,∴BD ⊥平面AED , 又∵AE ⊂平面AED , ∴BD AE ⊥.Ⅱ解:取AD 的中点O ,连结OE ,则OE AD ⊥, ∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,∴OE ⊥平面ABCD ,取AB 的中点F ,连结DF BD ∥,以O 为原点,建立如图所示的空间直角坐标系O xyz -,则(D ,(C -,E ,(DC =-,(2,0,DE =, 设平面CDE 的法向量为(,,)n x y z =,则00DC n DE n ⎧⋅=⎪⎨⋅=⎪⎩即00x z x y +=⎧⎨-+=⎩,令1x =,则1z =-,1y =,∴平面CDE 的法向量(1,1,1)n =-, 又平面ADE 的一个法向量为1(0,1,0)n =, 设平面ADE 和平面CDE 所成角(锐角)为θ, 则1113cos |cos ,|3||||nn n n n n θ⋅=<>==⋅,∴平面ADE 和平面CDE. C13.(1)证明:连结AE ,PE .∵PA ⊥平面ABCD ,BC ⊂平面ABCD , ∴PA BC ⊥.又∵底面ABCD 是菱形,AB BC =,60ABC ∠=︒, ∴ABC △是正三角形. ∵E 是BC 的中点, ∴AE BC ⊥.又∵PA AE A =,PA ⊂平面PAE ,PE ⊂平面PAE ,∴BC ⊥平面PAE , ∴BC PE ⊥.(2)由(1)得AE BC ⊥,由BC AD ∥可得AE AD ⊥. 又∵PA ⊥底面ABCD ,∴PA AE ⊥,PA AD ⊥.∴以A 为原点,分别以AE ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系A xyz -,如图所示,则(0,0,0)A,E ,(0,2,0)D ,(0,0,2)P,1,0)B -,C ,(0,1,1)F .∵PA ⊥平面ABCD ,∴平面ABCD 的法向量为(0,0,2)AP =. 又∵(3,1,0)AC =,(0,1,1)AF =. 设平面ACF 的一个法向量(,,)n x y z =,则:AC n AF n ⎧⋅=⎪⎨⋅=⎪⎩,即00y y z +==⎪⎩+,令1x =,则y =z ,∴(1,3,n =-. ∴21cos ,7||||AP n AP n AP n ⋅==. ∵二面角F AC D --是锐角, ∴二面角F AC D -- (3)G 是线段AB 上的一点,设(01)AG t AB t =≤≤. ∵(3,1,0)AB =-,∴,,0)G t -. 又∵(3,1,2)PC =-,(3,,2)PG t t =--. 设平面PCG 的一个法向量为(,,)n x y z =,则:1100PC n PGn ⎧⋅=⎪⎨⋅=⎪⎩,即1111112020yz ty z-=--=+,∴1()n t t =-+, ∵AF ∥平面PCG ,∴AF n ⊥,0AF n ⋅=1)0t -=, 解得12t =. 故线段AB 上存在一点G ,使得AF 平行于平面PCG ,G 是AB 中点.14.(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD , ∴DE AC ⊥. ∵ABCD 是正方形, ∴AC BD ⊥. 又DEBD D =,∴AC ⊥平面BDE .(2)∵DA ,DC ,DE 两两重叠,∴建立空间直角坐标系D xyz -如图所示.∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴EDDB. 由3AD =,可知DZ =AF ,则(3,0,0)A,F,E ,(3,3,0)B ,(0,3,0)C .∴(0,BF =-,(3,0,EF =-, 设平面BEF 的法向量为(,,)n x y z =,则00n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩,即3030y x ⎧-=⎪⎨-=⎪⎩,令z (4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,(3,3,0)CA =-,∴cos ,||||32n CA n CA n CA ⋅==.∵二面角F BE D --为锐角, ∴二面角F BE D -- (3)点M 线段BD 上一个动点,设(,,0)M t t ,则(3,,0)AM t t =-.∵AM ∥平面BEF ,∴0AM n ⋅=,即4(3)20t t -+=,解得2t =,此时,点M 坐标为(2,2,0),13BM BD =,符合题意.15.(1)证明:∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA BC ⊥.∵BC AB ⊥,PA AB A =, ∴BC ⊥平面PAB . 又AM ⊂平面PAB , ∴AM BC ⊥.∵PA AB =,M 为PB 的中点, ∴AM PB ⊥. 又∵PBBC B =,∴AM ⊥平面PBC .(2)如图,在平面ABC 内作AZ BC ∥,则AP ,AB ,AZ 两两垂直,建立空间直角坐标系A xyz -.则(0,0,0)A ,(2,0,0)P ,(0,2,0)B ,(0,2,1)C ,(1,1,0)M . (2,0,0)AP =,(0,2,1)AC =,(1,1,0)AM =.设平面APC 的法向量为(,,)n x y z =,则:0n AP n AC ⎧⋅=⎪⎨⋅=⎪⎩,即020x y z =⎧⎨+=⎩,令1y =,则2z =-. ∴(0,1,2)n =-.由(1)可知(1,1,0)AM =为平面PBC 的一个法向量,∴cos||||5AM nn AMAM n⋅⋅==∵二面角A PC B--为锐角,∴二面角A PC B--.(3)证明:设(,,)D v wμ是线段PC上一点,且PD PCλ=,(01)λ≤≤,即(2,,)(2,2,1)v wμλ-=-,∴22μλ=-,2vλ=,wλ=.∴(22,22,)BDλλλ=--.由0BD AC⋅=,得4[0,1]5λ=∈,∴线段PC上存在点D,使得BD AC⊥,此时45PDPCλ==.16.解:(1)证明:因为AB⊥平面PAD,所以PH AB⊥,因为3,2AHADHD==,所以2,1AH HD==,设PH x=,由余弦定可得,22221cos22x HD PH xPHDx HD x+--∠==⋅22221cos24x HA PH xPHAx HA x+--∠==⋅因为cos cosPHD PHA∠=-∠,故1PH x==,所以PH AD⊥,因为AD AB A=,故PH⊥平面ABCD.(2)以H为原点,以,,HA HP HP所在的直线分别为,,x y z轴,建立空间直角坐标系,则3139(2,3,0),(0,0,1),(1,,),(1,,0),(1,,0)2222B P E F C--,所以可得,3311(3,,0),(1,,),(2,0,),(0,3,0)2222BF BE EF FC=--=--=-=,设平面BEF的法向量(,,)n x y z=,则有:33002(1,2,4)30022x yBF nnzBE n x y⎧--=⎪⎧⋅=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩--+=⎪⎩,设平面EFC的法向量(,,)m x y z=,则有:020(1,0,4)2030z EF m x m FC m y ⎧⎧⋅=--=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩=⎩,故17cos ,21n m n m n m⋅===⋅设二面角B EF C --的平面角为θ ,则sin 21θ=.17.解(Ⅰ)证明:∵DC ⊥平面ABC ,//BE DC ∴BE ⊥平面ABC ∴CQ BE ⊥ ①又∵2AC BC ==,点Q 为AB 边中点 ∴CQ AB ⊥ ②AB BE B =故由①②得CQ ⊥平面ABE(Ⅱ)过点A 作AM BC ⊥交BC 延长线于点M ∵,AM BC AM BE ⊥⊥ ∴AM ⊥平面BEDC ∴13A CED CDE V S AM -∆=sin33AM AC π==11212CDE S ∆=⨯⨯= ∴113A CED V -=⨯= (Ⅲ)延长ED 交BC 延长线于S ,过点M 作MQ ES ⊥于Q ,连结AQ 由(Ⅱ)可得:AQM ∠为A DE B --的平面角∵1//2CD BC ∴2SC CB == ∴SE ==1MC MS ==∵SQM ∆∽SBE ∆∴QM SM BE SE=∴1225QM=即55QM=∴3tan1555AMAQMQM∠===18.(1)证明:∵在中,,∴当为的中点时,∵平面平面,平面,平面平面∴平面∵平面∴(2)如图,分别以射线,的方向为,轴的正方向,建立空间直角坐标系设,则,,,∵,,平面平面∴∴当且仅当时,最小,此时,设,平面,则,即∴令,可得,,则有∴∴观察可得二面角的平面角19.(1)取FE 的中点P ,连接CP 交BE 于点M ,M 点即为所求的点. 连接PG ,∵G 是AD 的中点,P 是FE 的中点,∴//PG AF , 又PG ⊂平面MGC ,AF ⊄平面MGC ,所以直线//AF 平面MGC , ∵//PE AD ,//AD BC ,∴//PE BC ,∴2BM BCME PE==, 故点M 为线段BE 上靠近点E 的三等分点. (2)不妨设2AD =,由(1)知PG AD ⊥, 又平面ADEF ⊥平面ABCD ,平面ADEF平面ABCD AD =,PG ⊂平面ADEF ,∴PG ⊥平面ABCD .故PG GD ⊥,PG GC ⊥,以G 为坐标原点,GC ,GD ,GP 分别为x ,y ,z 轴建立空间直角坐标系G xyz -,∵60ABC ∠=︒,2AB AD AF ==,∴ADC ∆为正三角形,3GC =,∴(0,0,0)G ,3,0,0)C ,(0,1,0)D ,(0,1,1)E ,∴(0,1,1)GE =,(3,0,0)GC =,设平面CEG 的一个法向量1(,,)n x y z =,则由10n GE ⋅=,10n GC ⋅=可得0,30,y z x +=⎧⎪⎨=⎪⎩令1y =,则1(0,1,1)n =-,∵(3,1,0)CD =-BA =,且(0,1,0)A -,故3,2,0)B -,故(3,2,0)BG =-, 故直线BG 与平面GCE 所成角的正弦值为11||14sin 7||||n BG n BG θ⋅==⋅.20.(Ⅰ)取PC 中点H ,连接、EH FH .∵E 为AB 的中点,ABCD 是菱形,∴//AE CD ,且12AE CD =,又F 为PD 的中点,H 为PC 的中点,∴//FH CD ,且12FH CD =,∴//AE FH ,且AE FH =,则四边形AEHF 是平行四边形,∴//AF EH .又AF ⊄平面PCE ,EH ⊂面PCE ,∴//AF 平面PCE .(Ⅱ)取BC 的中点为O ,∵ABCD 是菱形,AC AB =,∴AO BC ⊥,以A 为原点,,,AO AD AP 所在直线分别为,,z x y 轴,建立空间直角坐标系A xyz -,则)()()3,1,0,3,1,0,0,2,0BCD -,)()313,0,0,0,0,1,,02OP E ⎫-⎪⎪⎝⎭,∴()333,1,1,,,022PC EC ⎛⎫=-= ⎪ ⎪⎝⎭,()3,0,0AO =,设平面的法向量为()1,,n x y z =,则1100n PC n EC ⎧⋅=⎪⎨⋅=⎪⎩,即3033022x y z x y ⎧+-=⎪+=⎪⎩,令1y =-,则3,2x z ==,∴平面PCE 的一个法向量为)13,1,2n =-,又平面PAD 的一个法向量为()21,0,0n =.∴12121236cos ,|n ||n |4314n n n n ⋅<>===⋅++.即平面PAD 与平面PCE 621.解:(1)证明:取PD 的中点F ,连接,EF CF , 因为,E F 分别是,PA PD 的中点,所以//EF AD 且12EF AD =, 因为1,//2BC AB BC AD =,所以//EF BC 且EF BC =,所以//BE CF , 又BE ⊄平面,PCD CF ⊂平面PCD ,所以//BE 平面PCD .(2)以P 为坐标原点,,PD PA 所在直线分别为x 轴和y 轴,建立如图所示的空间直角坐标系,不妨设1BC =,则13(0,0,0),3,0),(1,0,0),(1,0,1),(2P A D C B , 13(0,3,0),(,1),(1,3,0)2PA AB AD ==-=-,设平面PAB 的一个法向量为(,,)n x y z =,则30013002n PA yn AB x z ⎧=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩, 令2x =,得(2,0,1)n =-, 同理可求平面ABD 的一个法向量为6(3,3,0)cos ,55n m m n m n m⋅=⇒===⨯,平面ABD 和平面ABC 为同一个平面, 所以二面角P AB C --.22.解:(Ⅰ)证明:因为二面角S AB C --的大小为90°,则SA AD ⊥, 又SA AB ⊥,故SA ⊥平面ABCD ,又BD ⊂平面ABCD ,所以SA BD ⊥; 在直角梯形ABCD 中,90BAD ADC ∠=∠=︒,21AD CD ==,2AB =, 所以1tan tan 2ABD CAD ∠=∠=,又90DAC BAC ∠+∠=︒, 所以90ABD BAC ∠+∠=︒,即AC BD ⊥; 又ACSA A =,故BD ⊥平面SAC ,因为AF ⊂平面SAC ,故BD AF ⊥.(Ⅱ)设点E 到平面ABCD 的距离为h ,因为B ABC E ABC V V --=,且25E ABC S ABCD V V --=,故511215*********ABCD S ABCD E ABCABC S SAV V S h h --∆⨯⋅⨯===⋅⨯⨯⨯梯形,故12h =,做点E 到平面ABCD 的距离为12.23.(1)E 为SD 的中点,01,602AD DC SD SDA SDC ==∠=∠=.ED EC AD DC ∴===设O 为AC 的中点,连接,EO DO 则EO AC ⊥//,AD BC BC CD ⊥ .AD BC ∴⊥又OD OA OC ==EOC EOD ∴∆≅∆ 从而EO OD ⊥AC ABCD = DO ⊂面ABCD 0AC DO =EO ∴⊥面ABCD EO ⊂面AEC∴面EAC ⊥面ABCD ………………6分(2)设F 为CD 的中点,连接OF EF 、,则OF 平行且等于12AD AD ∥BC EF ∴∥BC不难得出CD ⊥面OEF (EO CD ⊥ FO CD ⊥)∴面ECD ⊥面OEFOF 在面ECD 射影为EF ,EFO ∠的大小为BC 与面ECD 改成角的大小设AD a =,则2aOF =32EF a = 3os OF c EFO EF <== 即BC 与ECD 3(亦可以建系完成) ………………12分24.解(Ⅰ)过点P 作PO ⊥底面ABC ,垂足为O , 连接AO 、CO ,则∠PCO 为所求线面角,,AC PA ⊥,AC PO PA PO P ⊥⋂=且,AC ∴⊥平面PAO .则∠P AO 为二面角P -AC -B 平面角的补角∴∠ 60=PAO ,又23PA =∴,,1sin 2PO PCO CO ∠== 030PCO ∴∠=,直线PC 与面ABC 所成角的大小为30°.(Ⅱ)过O 作OE BC ⊥于点E ,连接PE ,则PEO ∠为二面角P -BC -A 的平面角,AC ⊥平面PAO ,AC OA ⊥045AOE ∠=,设OE 与CA 相交于F 22OE EF FO ∴=+=+在PEO ∆中,3436tan 7222POPEO EO-∠===+则二面角P -BC -A 的正切值为4367-.25.解:(Ⅰ)如图,取PA 中点F ,连接FD EF ,,E 是BP 的中点,AB EF // 且AB EF 21=,又AB DC AB DC 21,//= ∴∴DC EF //四边形EFDC 是平行四边形,故得//EC FD又⊄EC 平面⊂FD PAD ,平面PAD//EC ∴平面ADE(Ⅱ)取AD 中点H ,连接PH ,因为PD PA =,所以AD PH ⊥平面⊥PAD 平面ABCD 于AD ,⊥∴PH 面ABCD ,HB ∴是PB 在平面ABCD 内的射影 PBH ∠∴是PB 与平面ABCD 所成角四边形ABCD 中,090=∠=∠BCD ABC ∴四边形ABCD 是直角梯形AB CB DC 21== 设a AB 2=,则a BD 2=在ABD ∆中,易得a AD DBA 2,450=∴=∠.22212222a a a DH PD PH =-=-=又22224AB a AD BD ==+ABD ∆∴是等腰直角三角形,090=∠ADBa a a DB DH HB 2102212222=+=+=∴ ∴ 在PHB Rt ∆中,5521022tan ===∠a aHB PH PBH(Ⅲ)在平面ABCD 内过点H 作AB 的垂线交AB 于G 点,连接PG ,则HG 是PG 在平面ABCD 上的射影,故AB PG ⊥,所以PGH ∠是二面角D AB P --的平面角, 由a HA a AB 22,2==,又a HG HAB 21450=∴=∠ 在PHG Rt ∆中,22122tan ===∠a aHG PH PGH ∴ 二面角D AB P --的余弦值大小为.3326.(1)∵四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,PA=2,PB=PD=2,∴PA 2+AB 2=PB 2,PA 2+AD 2=PD 2, ∴PA ⊥AB ,PA ⊥AD ,∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴, 建立空间直角坐标系,∵E ,F ,G ,H 分别为棱PA ,PB ,AD ,CD 的中点. ∴C (2,2,0),D (0,2,0),B (2,0,0), P (0,0,2),F (1,0,1),G (0,1,0), =(﹣2,0,0),=(﹣1,﹣2,1),=(﹣2,﹣1,0),设平面CFG 的法向量=(x ,y ,z ), 则,取x=1,得=(1,﹣2,﹣3),设CD与平面CFG所成角为θ,则sinθ=|cos<>|===.∴CD与平面CFG所成角的正弦值为.(2)假设棱PD上是否存在点M(a,b,c),且,(0≤λ≤1),使得平面CFG⊥平面MEH,则(a,b,c﹣2)=(0,2λ,﹣2λ),∴a=0,b=2λ,c=2﹣2λ,即M(0,2λ,2﹣2λ),E(0,0,1),H(1,2,0),=(1,2,﹣1),=(0,2λ,1﹣2λ),设平面MEH的法向量=(x,y,z),则,取y=1,得=(,1,),平面CFG的法向量=(1,﹣2,﹣3),∵平面CFG⊥平面MEH,∴=﹣2﹣=0,解得∈[0,1].∴棱PD上存在点M,使得平面CFG⊥平面MEH,此时=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 专题二十 几何概型1. 长度类几何概型例 1:已知函数 f ( x ) = x 2 - x - 2 , x ∈[-5, 5] ,在定义域内任取一点 x ,使 f ( x ) ≤ 0 的概率是( )A.110 【答案】CB.2 3C.310D.45【解析】先解出 f ( x 0 ) ≤ 0 时x 0 的取值范围: x 2 - x - 2 ≤ 0 ⇒ -1 ≤ x ≤ 2 ,从而在数轴上[-1, 2] 区间长度占[-5, 5] 区间长度的比例即为事件发生的概率,∴P = 3,故选 C . 102. 面积类几何概型(1) 图形类几何概型例 2-1:如图所示,在矩形 ABCD 中, AB = 2a , AD = a ,图中阴影部分是以 AB 为直径的半圆,现在向矩形 ABCD 内随机撒 4000 粒豆子(豆子的大小忽略不计),根据你所学的概率统计知识,下列四个选项中最有可能落在阴影部分内的豆子数目是 ( )A .1000B .2000C .3000D .4000【答案】C【解析】在矩形 ABCD 中, AB = 2a , AD = a ,面积为2a 2 ,半圆的面积为1 a 2π ,2π故由几何概型可知,半圆所占比例为 4 ,随机撒 4000 粒豆子,⎩⎨⎩落在阴影部分内的豆子数目大约为 3000,故选 C .(2) 线性规划类几何概型例 2-2:甲乙两艘轮船都要在某个泊位停靠 6 小时,假定他们在一昼夜的时间段中随机地到达, 试求这两艘船中至少有一艘在停泊位时必须等待的概率 ( )A.14【答案】DB.1 3C.34D.716【解析】设甲船到达的时间为x ,乙船到达的时间为 y ,Ω⎧0 ≤ x ≤ 24则所有基本事件构成的区域 满足⎨0 ≤ y ≤ 24 ,这两艘船中至少有一艘在停泊位时必须等待包含的基本事件构成的区域 A 满足⎧0 ≤ x ≤ 24 ⎪0 ≤ y ≤ 24 ⎪ x - y ≤ 6,作出对应的平面区域如图所示:这两艘船中至少有一艘在停泊位时必须等待的概率为P ( A ) = S 阴= 1 - 18 ⨯18 = 7 ,故选S Ω24 ⨯ 24 16D .(3) 利用积分求面积例 2-3:如图,圆O : x 2 + y 2 = π2 内的正弦曲线 y = sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点 A 落在区域M 内的概率是( )D.C . π34A . π24 22π3π2π3【答案】B【解析】构成试验的全部区域为圆内的区域,面积为π3 , 正弦曲线 y = sin x 与x 轴围成的区域记为M ,π⎰根据图形的对称性得:面积为S = 2 sin x dx = -2 cos x π= 4 , 0由几何概率的计算公式可得,随机往圆O 内投一个点 A ,则点 A 落在区域M 内的概率P = 4 ,故选 B .3. 体积类几何概型例 3:一个多面体的直观图和三视图所示, M 是 AB 的中点,一只蝴蝶在几何体ADF - BCE 内自由飞翔,由它飞入几何体F - AMCD 内的概率为()A.34【答案】DB.23C.13D.12B .【解析】所求概率为棱锥F -AMCD 的体积与棱柱ADF -BCE 体积的比值.由三视图可得AD =DF =CD =a ,且AD ,DF ,CD 两两垂直,可得V ADF -BCE =S ADF ⋅DC =1AD ⋅DF ⋅DC =1a3,2 2棱锥体积V F -AMCD =1DF ⋅S3 ADMC,而S ADCM =1AD ⋅(AM +CD)=3 a2,2 4∴V =1 a2 .从而P =V F -AMCD=1.故选 D.F -AMCD 4V ADF -BCE 2一、单选题1.如图,边长为 2 的正方形中有一阴影区域,在正方形中随机撒一粒豆子,它2落在阴影区域内的概率为.则阴影区域的面积约为()3A.23【答案】CB.43C.83D.无法计算【解析】设阴影区域的面积为s ,s =2 ,∴ s =8 .故选 C.4 3 32.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于 10 分钟的概率为()A.110【答案】BB.16C.15D.562π 4 3【解析】由题意,此人在 50 分到整点之间的 10 分钟内到达,等待时间不多于 10分钟, ∴概率P=10 = 1.故选 B . 60 63. 一只蚂蚁在边长为 4 的正三角形区域内随机爬行,则它在离三个顶点距离都大于 2 的区域内的概率为()A. 1 -3 πB . 3C .3π D .1 6464【答案】A【解析】满足条件的正三角形如图所示:其中正三角形 ABC 的面积S 三角形 =3 ⨯16 =4 4满足到正三角形 ABC 的顶点 A , B , C 的距离都小于 2 的平面区域如图中阴影部分所示,则S 阴 = 2π ,则使取到的点到三个顶点 A , B , C 的距离都大于 2 的概率为:P = 1 -= 1 -3 π .故选 A .64. 在区间[0,1] 上随机取两个数 x , y , 记 P 为事件" x + y ≤ 2" 的概率, 则 P =3( )A.23B.12C.49D.29【答案】D3π【解析】如图所示, 0 ≤ x ≤ 1, 0 ≤ y≤ 1 表示的平面区域为 ABCD ,平面区域内满足x + y ≤ 2 的部分为阴影部分的区域 APQ ,其中P ⎛ 2 ,0 ⎫ , Q ⎛ 0, 2 ⎫, 33⎪ 3⎪⎝ ⎭⎝ ⎭1 ⨯2 ⨯ 2 结合几何概型计算公式可得满足题意的概率值为 p =2 3 3 = 2 ,故选 D . 1⨯1 95. 在区间[0,2] 上随机取一个数, sin π x 2 1的值介于 0 到 2之间的概率为( )A.13【答案】A B.2 C.12D.23【解析】由0 ≤ sinπ x ≤ 1 ,得0 ≤ π x ≤ π ,或5π ≤ π x ≤ π ,∴ 0 ≤ x ≤ 1 或5≤ x ≤ 2 , 记A = sin πx2 2 2 6 6 23 312的值介于 0 到 2 之间,则构成事件 A 的区域长度为1 - 0 + 2 - 5 = 2;全部结果的区域[0,2] 长度为 2; 3 3 3 2∴ P ( A ) = 3 = 1 ,故选 A .2 36. 点P 在边长为 1 的正方形 ABCD 内运动,则动点P 到定点 A 的距离 PA < 1 的概率为()A. 14【答案】CB. 12C.π4D.π【解析】满足条件的正方形 ABCD ,如图所示:x 21 - 4x 2 1 - 4其中满足动点P 到定点 A 的距离 PA < 1 的平面区域如图中阴影部分所示, 则正方形的面积S = 1,阴影部分的面积S = 1π .正阴4故动点P 到定点 A 的距离 PA < 1 的概率P = S 阴 = π .故选 C . x 2 +2S 正 47. 如图所示,在椭圆 4 y = 1 内任取一个点P ,则P 恰好取自椭圆的两个端点连 线与椭圆围成阴影部分的概率为()A . 1 - 1B . 1 -1 C . 1D . 1 -1 4 2π【答案】A4 4π18x 2 + 28 8π【解析】先求椭圆面积的 4 ,由 4 y = 1 知 y = ,S21 2∴ 椭 圆 = ⎰dx = ⎰ 4 - x 2 dx , 40 2 021而⎰ 4 - x 2 dx 表示 y = 0与x = 0 , x = 2 围成的面积,即圆x 2+ y 2= 4 面积的 ,42S1 2 π ∴ ⎰4 - x 2 dx = π ,∴ 椭圆 = ⎰ 4 - x 2 dx = ,∴ S 椭圆 = 2π ,π - 14 - x 24 20 2∴概率P =2 =1 -1,故选 A.2π 4 2π2π ππ π8. 如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为()A .1 - 2【答案】AB . 22C . π21 -2 π2【解析】S= π⨯1 = π ,又π sin dx = -cos x π = -(cos π - cos 0) = 2 ,∴ S = π - 2 ,矩形⎰0 阴影∴豆子落在图中阴影部分的概率为π - 2 = 1 - 2.故选 A . 9. 把不超过实数x 的最大整数记为[x ] ,则函数 f ( x ) = [x ] 称作取整函数,又叫高斯函数,在[1,4]上任取x ,则[x ] = ⎡ 2x ⎤ 的概率为()A.14【答案】DB.13⎣ ⎦C.12D.23【解析】当x ∈[1,2) 时,则⎡2x ⎤ = 1 ,满足[x ] = ⎡ 2x ⎤ ;当x ∈[2, 3) 时,[x ] = 2 , ⎣ ⎦ ⎣ ⎦ 2x ∈ ⎡2, 6 ) ,则⎡ 2x ⎤ = 2 ,满足[x ] = ⎡ 2x ⎤ ; ⎣⎣⎦⎣⎦当x ∈[3, 4) 时,[x ] = 3 , 2x ∈ ⎡ 6,2 2 ) ,则⎡2x ⎤ = 2 不满足[x ] = ⎡ 2x ⎤ ;当x = 4 时,[x ] = 4 , ⎣= 2,则⎡⎣ ⎦ ⎣ ⎦2x ⎤ = 2 ,不满足[x ] = ⎡ 2x ⎤ .综上,满足[x ] = ⎡ ⎣ ⎦ 2x ⎤ 的x ∈[1, 3) ,则[x ] = ⎡ ⎣ ⎦2x ⎤ 的概率为 3 - 1= 2,⎣ ⎦故选 D .⎣⎦4 - 1 310. 关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验2xD .32π -2 3⎩ ⎩ 和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π 的值:先请 120 名同学每人随机写下一个x , y 都小于 1 的正实数对( x , y ) ,再统计其中x ,y 能与 1 构成钝角三角形三边的数对( x , y ) 的个数m ,最后根据统计个数m 估计π 的值.如果统计结果是m = 34 ,那么可以估计π 的值为( ) A.22 7【答案】BB.47 15C.51 161( x , y )D.53 17⎧0 < x < 1【解析】 由题意,120 对都小于 的正实数,满足⎨0 < y < 1 ,面积为 1,两个数能与 1 构成钝角三角形的三边的数对( x , y ) ,x 2 + y 2 < 1⎧0 < x < 1 π -1满足且⎨0 < y < 1,面积为 4 2 ,∵统计两数能与 1 构成钝角三角形三边的数对( x , y ) 的个数为m = 34 ,34π 1 47则120 = 4 - 2 ,∴ π = 15 ,故选 B . 11. 为了节省材料,某市下水道井盖的形状如图 1 所示,其外围是由以正三角形的顶点为圆心,正三角形的边长为半径的三段圆弧组成的曲边三角形,这个曲边三角形称作“菜洛三角形”.现有一颗质量均匀的弹珠落在如图 2 所示的莱洛三角形内,则弹珠恰好落在三角形 ABC 内的概率为( )A .B .C .3 2D .1 - 3332π + 2 3△ABC 32 【答案】A【解析】弹珠落在莱洛三角形内的每一个位置是等可能的, 由几何概型的概率计算公式可知所求概率:1⨯ 22 ⨯ sin 60oP = S △ABC = 2 = S u u u u u u u r ⎛ 1 21 2 o ⎫ 1 2 o△ABC 3 ⨯ ⨯ ⨯ 2 - 2 ⨯ ⨯ 2 ⨯ sin 60 ⎪ + ⨯ 2 ⨯ sin 60 ⎝ 2 3 2 ⎭ 2( S u u u u u u u r为莱洛三角形的面积),故选 A .12. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边BC ,直角边AB , AC .△ABC 的三边所围成的区域记为 I ,黑色部分记为 II ,其余部分记为 III .在整个图形中随机取一点,此点取自 I ,II ,III 的概率分别记为p 1 , p 2 , p 3 ,则( )A.p 1 = p 2B.p 1 = p 3C.p 2 = p 3D.p 1 = p 2 + p 3【答案】A【解析】设 AC = b , AB = c , BC = a ,则有b 2 + c 2 = a 2 ,从而可以求得△ABC 的面积为S 1 = 1 bc , 2 ⎛ c ⎫2⎛ b ⎫2 ⎡ ⎛ a ⎫2 1 ⎤ ⎛ c 2 b 2 a 2 ⎫ 1 黑色部分的面积为S 2 = π ⋅ 2 ⎪ + π ⋅ 2 ⎪ - ⎢π ⋅ 2 ⎪ - 2 bc ⎥ = π 4 + 4 - 4 ⎪ + 2 bc= π ⋅ c 2 + b 2 - a 2 + 1 bc = 1bc ,4 2 2⎝ ⎭ ⎝ ⎭ ⎣⎢ ⎝ ⎭ ⎦⎥ ⎝ ⎭ ⎛ a ⎫2其余部分的面积为S = π ⋅ ⎪ ⎝⎭ - 1 bc = 2 πa 2 4 - 1 bc ,∴有S = S , 2 1 23 2π - 2 32π 1根据面积型几何概型的概率公式,可以得到 p 1 = p 2 ,故选 A .二、填空题13. 在区间[0,2] 内任取一个实数a ,则使函数f ( x ) = log (2a -1) x 在(0, + ∞) 上为减函数的概率是 .【答案】14【解析】∵函数 f ( x ) = log (2a -1) x 在(0, + ∞) 上为减函数,11 - 1∴ 0 < 2a - 1 < 1 , < a < 1,因此所求概率为 2 = 1 . 2 - 0 414.记集合 A = {( x , y ) x 2 + y 2 ≤ 16},集合B = {( x , y ) x + y - 4 ≤ 0,( x , y ) ∈ A } 表示的平面区域分别为Ω1 , Ω2 . 若在区域Ω1 内任取一点 P ( x , y ) , 则点 P 落在区域Ω2 中的概率为.【答案】3π + 2 4【解析】画出 A = {( x , y ) x 2 + y 2≤ 16}表示的区域Ω ,即图中以原点为圆心,半径为 2的圆;集合B = {( x , y ) x + y - 4 ≤ 0, 由题意可得S Ω = 16π , S( x , y ) ∈ A } 表示的区域Ω2 ,即图中的阴影部分. = 3 ⨯16π + 1⨯ 4 ⨯ 4 = 12π + 8 , 1Ω24 2ΩS ⎣ ⎝2⎡ ⎛ πx ⎫⎤ ⎛ 2 π ⎫根据几何概型概率公式可得所求概率为P = S Ω2 1= 3π + 2 4π 15. 如图, 曲线 y = sinπx + 3 把边长为 4 的正方形 OABC 分成黑色部分和白色部2分.在正方形内随机取一点,则此点取自黑色部分的概率是.【答案】 14【解析】由题意可知,阴影部分的面积S4= ⎰ ⎢4 - sin + 3⎪⎥ dx = x - ⨯ cos x ⎪ 4 = 4 , 1⎭⎦ ⎝π 2 ⎭正方形的面积: S 2 = 4 ⨯ 4 = 16 ,由几何概型计算公式可知此点取自黑色部分的概率: p = S 1=4 = 1 .S 2 16 416. 父亲节小明给爸爸从网上购买了一双运动鞋,就在父亲节的当天,快递公司给小明打电话话说鞋子已经到达快递公司了,马上可以送到小明家,到达时间为晚上 6 点到 7 点之间,小明的爸爸晚上 5 点下班之后需要坐公共汽车回家,到家的时间在晚上 5 点半到 6 点半之间.求小明的爸爸到家之后就能收到鞋子的概率 (快递员把鞋子送到小明家的时候,会把鞋子放在小明家门口的“丰巢”中)为..⎩ ⎩ ⎝⎭ ⎩⎭ 【答案】18【解析】设爸爸到家时间为x ,快递员到达时间为 y ,以横坐标表示爸爸到家时间,以纵坐标表示快递送达时间,建立平面直角坐标系,爸爸到家之后就能收到鞋子的事件构成区域如下图:⎧⎪( x , y ) ⎧5.5 ≤ x ≤ 6.5⎫⎪ S = 1 根据题意,所有基本事件构成的平面区域为⎨ ⎪⎩ ⎨6 ≤ y ≤7 ⎬ ,面积 , ⎪⎭⎧ ⎧5.5 ≤ x ≤ 6.5⎫ ⎪( x , y ) ⎪6 ≤ y ≤ 7 ⎪爸爸到家之后就能收到鞋子的事件,构成的平面区域为⎨ ⎨ ⎬ , ⎪ ⎪x - y ≥ 0 ⎪直线x - y = 0 与直线x = 6.5 和 y = 6 交点坐标分别为(6,6) 和(6.5,6.5) ,1 ⎛ 1 ⎫21S 阴影 = 2 ⨯ 2 ⎪ = 8,由几何概型概率公式可得,爸爸到家之后就能收到鞋子的概率: P = S 阴影 = 1. S 81故答案为8 .“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

相关文档
最新文档