概率统计章节练习题(1-3章)
《概率论与数理统计》第三版 龙永红 第一、二、三章练习及答案

《概率论》第一章 练 习 一、填空题:(1)设A 、B 为随机事件,P (A )=0.7,P (A -B )=0.3,则P (A B )= 。
(2)设A 、B 为随机事件,P (A )=0.92,P (B )=0.93,P (B/A )=0.85,则P (A/B )=_ _,P (A B )=_ __。
见课本习题—20题(3)设事件A 、B 相互独立,已知P (A )=0.5,P (A B )=0.8,则P(A B )= , P (A B )= 。
(4)袋中有50个乒乓球,其中20个黄球,30个白球,今两人依次随机地从中各取一球,则第二个人取得黄球的概率是 。
(5)设两个独立事件A 、B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则P (A )= 。
(6)一射手对同一目标独立地进行4次射击,若至少命中一次的概率是80/81,则该射手的命中率为 。
(7) 袋中有5个黑球,3个白球,大小相同,一次随机地取出4球,其中“恰好2个黑球,2个白球”的概率为: 、(8) 事件A 、B 、C 中至少有两个不发生,可用运算符号表示为: ;而运算符号C B A -+)(则表示事件 。
(9) A 、B 为相互独立的事件,P (A )=0.4,P (AB )=0.12,则 P (B )= ;P (A B )= 。
(10) 设A 、B 为互不相容事件,P (B )=0.4,P (A+B )=0.75,则 P (A )= ;P (AB )= 。
(11)设A 、B 为互不相容事件,P (A )=0.35,P (A+B )=0.80,则 P (B )= ;P (A )-P (AB )= 。
(12)A 、B 为相互独立的事件,P (A )=0.4,P (AB )=0.12,则B)= 。
P(B)= ;P(A(13)某人射击时,中靶的概率为3/4,如果射击直到中靶为止,则射击次数为3的概率为(14)设每次试验成功的概率为:P(0<P<1),则3次重复试验中至少失败1次的概率为(15)甲、乙两个人独立地对同一目标各射击一次,其中命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率是二、计算题:1、现有编号为1,2,3的3个盒子,1号盒中有3个红球,2个黄球;2号盒中有2个红球,3个黄球;3号盒中有1个红球,4个黄球。
概率统计第一章每一节习题

概率统计第一章每一节习题第一章 随机事件与概率习题一 随机事件一、填空题1. E :将一枚均匀的硬币抛三次,观察结果,则正面出现次数的样本空间=Ω .2.某商场出售电器设备,以事件A 表示“出售74 Cm 海信电视机”,以事件B 表示“出售74 Cm 长虹电视机”,则只出售一种品牌的电视机可以表示为 ;至少出售一种品牌的电视机可以表示为 ;两种品牌的电视机都出售可以表示为 .3.设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示下列随机事件:A 发生而B ,C 都不发生为 ;A ,B ,C 不多于一个发生 .4.设事件n A A A A ,,,,321 若 ; ,则称n A A A A ,,,,321 为完备事件组.5.对立事件A 与A 在每一次试验中 发生.二、设{1,2,,10}Ω= ,{2,3,4}A =,{3,4,5}B =,{5,6,7}.C =写出下列算式表示的集合: 1. AB 2.A B C ++3._____________A B C ++三、写出下式的另外一种形式表达式 1.=++n A A 1 2.=++n A A 1习题二随机事件的概率一、填空题1.概率是事件的自然属性,有事件就一定有 .2.古典概型的两个条件是,.3.今有10张电影票,其中只有2张座号在第一排,现采取抽签方式发放给10名同学,则.A.先抽者有更大可能抽到第一排座票B.后抽者更可能获得第一排座票C.各人抽签结果与抽签顺序无关D.抽签结果受以抽签顺序的严重制约二、8件产品中有5件是一级品,3件是二级品,现从中任取2件,求下列情况下取得的2件产品中只有一件是一级品的概率:( 1 ) 2件产品是无放回的逐次抽取;( 2 ) 2件产品是有放回的逐次抽取.三、有n位同学(n 365),求他们至少有两个人的生日在同一天的概率(一年按365天计算).四、从1,2,…,10这十个数中等可能地任取一个,然后还原,先后取出7个数,试求下列各事件的概率:(1)7个数全不相同;(2)不含9和2;(3)8出现三次.习题三 概率的运算法则一、填空1.设事件,,B A =+)(B A P ,当A ,B 互斥时=+)(B A P .2.设事件,,B A =-)(B A P , )(A P )(AB P .3.设事件C B A ,, =++)(C B A P .4.设事件组n A A A A ,,,,321 ,)(21n A A A P = .5.=)|(A B P .6.=+)|(21B A A P . (条件概率的加法公式)二、袋中装有红、黄、白色球各一个,每次任取一个,有放回地抽取三次,求取到的三个球中没有红球或没有黄球的概率.三、某工厂生产的产品中,36%为一等品,54%为二等品,10%为三等品,任取一件产品,已知它不是三等品,求它是一等品的概率.四、10个签中有4个是难签,3人参加抽签(无放回),甲先、乙次、丙最后.求甲抽到难签、甲乙都抽到难签、甲没有抽到难签而乙抽到难签及甲乙丙都抽到难签的概率。
概率论与数理统计练习册题目

第一章 概率论的基本概念习题一 随机试验、随机事件一、判断题1.()A B B A =⋃- ( )2.C B A C B A =⋃ ( )3.()φ=B A AB ( )4.若C B C A ⋃=⋃,则B A = ( )5.若B A ⊂,则AB A = ( )6.若A C AB ⊂=,φ,则φ=BC ( )7.袋中有1个白球,3个红球,今随机取出3个,则(1)事件“含有红球”为必然事件; ( )(2)事件“不含白球”为不可能事件; ( )(3)事件“含有白球”为随机事件; ( )8.互斥事件必为互逆事件 ( )二、填空题1. 一次掷两颗骰子,(1)若观察两颗骰子各自出现的点数搭配情况,这个随机试验的样本空间为 ;(2)若观察两颗骰子的点数之和,则这个随机试验的样本空间为 。
2.化简事件()()()=⋃⋃⋃B A B A B A 。
3.设A,B,C 为三事件,用A,B,C 交并补关系表示下列事件:(1)A 不发生,B 与C 都发生可表示为 ;(2)A 与B 都不发生,而C 发生可表示为 ;(3)A 发生,但B 与C 可能发生也可能不发生可表示为 ;(4)A,B,C 都发生或不发生可表示为 ;(5)A,B,C 中至少有一个发生可表示为 ;(6)A,B,C 中至多有一个发生可表示为 ;(7)A,B,C 中恰有一个发生可表示为 ;(8)A,B,C 中至少有两个发生可表示为 ;(9)A,B,C 中至多有两个发生可表示为 ;(10)A,B,C 中恰有两个发生可表示为 ;三、选择题1.对飞机进行两次射击,每次射一弹,设A 表示“恰有一弹击中飞机”,B 表示“至少有一弹击中飞机”,C 表示“两弹都击中飞机”,D 表示“两弹都没击中飞机”,则下列说法中错误的是( )。
A 、A 与D 是互不相容的B 、A 与C 是相容的C 、B 与C 是相容的D 、B 与D 是相互对应的事件2.下列关系中能导出“A 发生则B 与C 同时发生”的有( )A 、A ABC =;B 、AC B A =⋃⋃; C 、A BC ⊂ ;D 、C B A ⊂⊂四、写出下列随机试验的样本空间1.记录一个小班一次数学考试的平均分数(设以百分制记分);2.一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球;3.某人射击一个目标,若击中目标,射击就停止,记录射击的次数。
《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
(完整版)概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
概率论与数理统计统计课后习题答案(有过程)

概率论与数理统计统计课后习题答案(有过程)第一章习题解答1.解:(1)Ω={0,1,…,10};(2)Ω={,1,…,100n},其中n为小班人数;n(3)Ω={√,×√, ××√, ×××√,…},其中√表示击中,×表示未击中;(4)Ω={(x,y)}。
2.解:(1)事件AB表示该生是三年级男生,但不是运动员;(2)当全学院运动员都是三年级学生时,关系式是正确的;(3)全学院运动员都是三年级的男生,ABC=C成立;(4)当全学院女生都在三年级并且三年级学生都是女生时,=B成立。
3.解:(1)ABC;(2)AB;(3);(4);(5);(6)4.解:因,则P(ABC)≤P(AB)可知P(ABC)=0 所以A、B、C至少有一个发生的概率为P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)=3×1/4-1/8+0 =5/85.解:(1)P(A∪B)= P(A)+P(B)-P(AB)=0.3+0.8-0.2=0.9 P(A)=P(A)-P(AB)=0.3-0.2=0.1(2)因为P(A∪B)= P(A)+P(B)-P(AB)≤P(A)+P(B)=α+β, 所以最大值maxP (A∪B)=min(α+β,1);又P(A)≤P(A∪B),P(B)≤P(A∪B),故最小值min P(A∪B)=max(α,β)6.解:设A表示事件“最小号码为5”,B表示事件“最大号码为5”。
223由题设可知样本点总数,。
2C52C411所以;7.解:设A表示事件“甲、乙两人相邻”,若n个人随机排成一列,则样本点总数为n!,, 1若n个人随机排成一圈.可将甲任意固定在某个位置,再考虑乙的位置。
表示按逆时针方向乙在甲的第i个位置,。
则样本空间,事件所以8.解:设A表示事件“偶遇一辆小汽车,其牌照号码中有数8”,则其对立事件A表示“偶遇一辆小汽车,其牌照号码中没有数8”,即号码中每一位都可从除8以外的其他9个数中取,因此A包含的基本事件数为,样本点总数为104。
概率题与数理统计(1-3章)(屠瑶瑶)

一 、随机事件及其概率二 、事件的概率三 、条件概率与事件的独立性一、填空题1. 设5.0)(=A P ,2.0)(=B A P ,则=)(A B P __________.2. 设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且2.0)(5.0)()(===C P B P A P ,,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________.3. 甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________.4. 设8.0)(,6.0)(5.0)(===A B P B P A P ,,则B A ,至少发生一个的概率为_________.5. 设B A ,为两个随机事件,且0)(>B P ,则由乘法公式知=)(B A P __________.6. 某柜台有4个服务员 ,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概率为 41,则4人中至多1人需用台秤的概率为_______________. 7. 从1,2,…,10共十个数字中任取一个 ,然后放回 ,先后取出5个数字 ,则所得5个数字全不相同的事件的概率等于 ___________.8. 设A ,B ,C 是随机事件,81)(0)()(41)()()(======AC P BC P AB P C P B P A P ,,, 则A ,B ,C 三个事件恰好出现一个的概率为__________.9. 甲、乙二人独立地向同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲命中的概率是__________.10. 4.0)(=A P ,3.0)(=B P ,4.0)(=B A P ,则___________)(=B A P .11. 设B A ,是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P __________.12. 设B A ,为随机事件,且8.0)(,6.0)(5.0)(===A B P B P A P ,,则=)(B A P __________.13. 某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率14. 设B A ,为随机事件,且 4.0)(=A P ,3.0)(=B P ,6.0)(=B A P , 则=)(B A P __________.15. 设B A ,为随机事件,且 7.0)(=A P ,3.0)(=-B A P ,,则=)(B A P __________.16. 四个人独立地破译一份密码,已知各人能译出的概率分别为,,,,61314151则密码能被译出的概率是__________.17. 设B A ,为随机事件,且 6.0)(=A P ,)()(B A P AB P =,则=)(B P _________.18. 设B A ,为随机事件,且 4.0)(=A P ,3.0)(=B P ,6.0)(=B A P , 则=)(B A P __________.19. 设B A ,为两个随机事件,7.0)(5.0)(4.0)(===B A P B P A P ,,,则=)(B A P __________.20. 在三次独立重复射击中,若至少有一次击中目标的概率为6437,则每次射击击中目标的 概率为__________.21. 一袋中有2个黑球和若干个白球,现有放回地摸球4次,若至少摸到一个白球的概率是8180,则袋中白球的个数是__________. 22. 事件B A 、互斥且B A =,则)(A P =__________.23. 已知25.0)()()(===C P B P A P ,15.0)()(0)(===BC P AB P AC P ,,则C B A 、、中至少有一个发生的概率为 __________.24. 设某试验成功的概率为0.5,现独立地进行该试验3次,则至少有一次成功的概率为__________.25. 把9本书任意地放在书架上,其中指定3本书放在一起的概率为__________.26. 已知2.0)(6.0)(5.0)(===B A P B P A P ,,,则)(AB P =__________.27. 设B A ,为随机事件,且8.0)(6.0)(5.0)(===A B P B P A P ,,,则=)(B A P __________.28. 某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率__________. 29. 已知6.0)(=A P ,8.0)(=B P ,则)(AB P 的最大值为__________.二、选择题(3分)10题1. 设C B A ,,为三个事件,且B A ,相互独立,则以下结论中不正确的是( )A. 若1)(=C P ,则AC 与BC 也独立.B. 若1)(=C P ,则C A 与B 也独立.C. 若0)(=C P ,则C A 与B 也独立.D. 若B C ⊂,则A 与C 也独立.2. 设C B A ,,为三个事件,0)(>AB P 且1)(=AB C P ,则有( )A. 1)()()(-+≤B P A P C PB. )()(B A P C P ≤C. 1)()()(-+≥B P A P C PD. )()(B A P C P ≥3. C B A ,,是任意事件,在下列各式中,不成立的是( )A. B A B B A =-)(.B. B A B A =-)( .C. B A B A AB B A =-)(.D. )()()(C B C A C B A --= . 4. 打靶 3 发,事件 i A 表示“击中 i 发” , 3210,,,=i . 那么事 件 321A A A A =表示( )A. 全部击中B. 至少有一发击中C. 必然击中D. 击中3发5. 设1)()(1)(01)(0=+<<<<B A P B A P B P A P ,,,则下列结论成立的是( ) A. 事件A 和B 互不相容B. 事件A 和B 互相对立C. 事件A 和B 互不独立D. 事件A 和B 互相独立6. 当事件A 与事件B 同时发生时,事件C 必发生,则( )A. 1)()()(-+≤B P A P C PB. 1)()()(-+≥B P A P C PC. )()(AB P C P =D. )()()(B P A P AB P =7. 设B A 、互不相容,且0)(0)(>>B P A P ,,则必有( ) A. 0)(>A B P B. )()(A P B A P = C. 0)(=B A P D. )()()(B P A P AB P =8. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的,中奖的概率分别为,,,02.0)(01.0)(03.0)(===C P B P A P 如果只要有一种奖券中奖此人就一定赚钱,则此人赚钱的概率约为( )A. 0.05B. 0.06C. 0.07D. 0.089. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为( ) A. 11-+-b a a B. )1)(()1(-++-b a b a a a C. b a a + D. 2⎪⎭⎫ ⎝⎛+b a a10. 设事件A 与B 互不相容,且0)(0)(≠≠B P A P ,,则下面结论正确的是( ) A. A 与B 互不相容 B. 0)(>A B PC. )()()(B P A P AB P =D. )()(A P B A P =三、计算题(6-10分,以6分为主)20题1. 设C B A 、、是Ω中的随机事件,将下列事件用C B A 、、表示出来(1)仅A 发生,C B 、都不发生;(2)C B A 、、中至少有两个发生;(3)C B A 、、中不多于两个发生.2. 把长为a 的棒任意折成三段,求它们可以构成三角形的概率.3. 装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率.4. 一年有12个月,假设有365天。
考研概率论与数理统计章节训练题

第一章 随机事件与概率一、选择题。
1、设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有( ) (A )()()P A B P A > (B )()()P A B P B > (C )()()P AB P A = (D )()()P A B P B =2、将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面}3A ={正、反面各出现一次}, 4A ={正面出现两次},则事件有( )(A )123,,A A A 相互独立 (B )234,,A A A 相互独立 (C )123,,A A A 两两独立 (D )234,,A A A 两两独立 3、对于任意二事件A 和B ,则( )(A )若AB ≠Φ,则,A B 一定独立 (B )若AB ≠Φ,则,A B 有可能独立 (C )若AB =Φ,则,A B 一定独立 (D )若AB =Φ,则,A B 一定不独立 4、A ,B 是两随机事件,当A ,B 发生时事件C 发生,则以下正确的是( )A )、)()(C P AB P ≥ B )、)()()(AB PC P AB C P -=- C )、)()(C P B A P ≤⋃D )、)()(C P B A P ≥⋃5、A ,B ,C 是三个随机事件,其中1)(),(),(0<<C P B P A P ,且已知)|()|()|(C B P C A P C B A P +=⋃,则以下正确的是( )A )、)|()|()|(CB PC A P C B A P +=⋃ B )、)()()(AB P AC P AB AC P +=⋃ C )、)()()(B P A P B A P +=⋃D )、)|()()|()()(B C P B P A C P A P C P += 6、A ,B ,C 是三个随机事件,设以下条件概率均有意义,则以下不正确的是( )A )、)|(1)|(C A P C A P -=B )、1)|()|(=+C A P C A P C )、)|()|()|()|(C AB P C B P C A P C B A P -+=⋃D )、)|()|()|()|()|(C B A P C B P BC A P C B P C A P +=7、A ,B 是两个随机事件,其中0)(,0)(≠≠B P A P ,则以下正确的是( )A )、φ≠AB ,A ,B 一定独立 B )、φ≠AB ,A ,B 不一定独立C )、φ=AB ,A ,B 一定独立D )、φ=AB ,A ,B 不一定独立8、甲袋中有2个白球3个黑球,乙袋中全是白球,今从甲袋中任取2球,从乙袋中任取1球混合后,从中任取1球为白球的概率()A 15 ()B 25()C35()D459、10台洗衣机中有3台二等品,现已售出1台,在余下的9台中任取2台发现均为一等品,则原先售出1台为二等品的概率为()A 310()B28 ()C 210()D3810、若A,B 为任意两个随机事件,则 ( )(A) ()()()P AB P A P B ≤ (B) ()()()PAB P A P B ≥(C) ()()()2P A P B P AB +≤ (D) ()()()2P A P B P AB +≥11、某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )(A)(B)(C)(D)12、设是两个随机事件,且则必有( )(A)(B) (C) (D)二、填空题1、A ,B 是两随机事件,5.0)(=A P ,7.0)(=B P ,则 ≤≤)(AB P 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章练习题1. 选择题(1) 掷两颗均匀的骰子,事件“点数之和为3”的概率是( )(A ) 361; (B )181; (C ) 121; (D ) 61 (2) 设,A B ⊂ 则下列正确的为( ))(1)()(A P AB P A -= )()()()(A P B P A B P B -=-)()()(B P A B P C = )()()(A P B A P D =(3) 设事件A 与B 互斥,且1)(0<<B P ,则下列结论正确的是( ))()()()()(AB P B A P B P B A P A =- )()()()()(A P B A P B P B A P B =+)()()()()(A P B A P B P B A P C =- )()()()()(A P B A P B P B A P D =-(4) 设0)(>A P ,则下列结论正确的是( ))()()()()(B P A P A P A B P A -≥ )()()()()(B P A P A P A B P B +≥)()()()()(B P A P A P A B P C -≥+ )()()()()(B P A P A P A B P D +≥2. 填空题(1) 若P A P AB ().,().==0403,则P A B ()+= 。
(2) 某射手在三次射击中至少命中一次的概率为0.875,则这射手在一次射击中命中的概率为 。
(3) 设B A ,为两相互独立的事件,4.0)(,6.0)(==A P B A P ,则=)(B P 。
(4) 已知7.0)(=A P ,3.0)(=-B A P ,则=)(AB P 。
(5) 将数字5,4,3,2,1写在5张卡片,任意取出三张排列成三位数,这个数是奇数的概率=)(A P 。
(6) 假设一批产品中一、二、三等品各占60%,30%,10%,从中随意取出一件,结果不是三等品,则取到的是一等品的概率为 。
(7) 设A 、B 、C 表示三个随机事件,试用A 、B 、C 表示下列事件:①三个事件都发生________________;②A 、B 发生,C 不发生_____________;③三个事件中至少有一个 发生________________________。
(8)设()4.0=A P ,()7.0=+B A P ,若B A ,互不相容,则()=B P __________;若B A , 相互独立,则()=B P ___________。
(9)设B A ,为二事件,且()4.0=A P ,()6.0=A B P ,则()=AB P ____________。
(10) 已知()4.0=A P ,()3.0=B P ,A 与B 相互独立,则()B A P +=_______。
(11) 10件产品中有5件次品,从中随机抽取2件,一次一件,已知第一件是次品,则第二件也是次品的概率为________________。
(12)已知()()4/1==B P A P ,()8/1=AB P ,则()=B A P ___________。
3. 计算题(1) 设有n 个房间,分给n 个人,每个人都以n1的概率进入每一房间,而且每间房间里的人数没有限制,试求不出现空房的概率。
(2) 设某种动物由出生而活到20岁的概率为0.8,活到25岁的概率为0.4,问现年龄为20岁的这种动物活到25岁的概率为多少?(3) 在空战训练中甲机先向乙机开火,击落乙机的概率为0.2;若乙机未被击落,就进行还击,击落甲机的概率是0.3;若甲机未被击落,则再进攻乙机,击落乙机的概率是0.4,求在这几个回合中:①甲机被击落的概率;②乙机被击落的概率(4) 一台机床有1/3的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率是0.3,加工零件B 时停机的概率是0.4。
① 求这台机床停机的概率。
② 若发现停机了,问他在加工零件B 的概率为多少?(5) 在电话号码簿中任取一个电话号码,求后面四个数全不相同的概率(设后面四个数中的每一个数都是等可能地取自0,1,2……,9)。
(6) 甲,乙,丙三人独立地去破译一份密码,已知各人能译出的概率分别为1/5,1/3,1/4,问:①密码被译出的概率;②甲、乙译出而丙译不出的概率。
(7) 设甲袋中装有6只白球、4只红球;乙袋中装有2只白球、3只红球,今从甲袋中任意取一只白球放入乙袋中,再从乙袋中任意取一只球。
问:①取到白球的概率是多少?②若取到白球,则从甲袋取到的也是白球的概率是多少?(8) 从装有10个白球和6个红球的袋中任取1球,取后不放回,取两次。
求:①两次都取到红球的概率;②第二次才取到红球的概率。
(9) 甲、乙两战士同时独立地向一目标射击,已知甲命中率为0.7,乙命中率为0.6。
求:①甲、乙都击中的概率;②目标被击中的概率。
第二章练习题1. 选择题(1) 设离散型随机变量X 的分布律为:X 0 1 2P 0.3 0.5 0.2其分布函数为F(x),则F(3)=( )A. 0B. 0.3C. 0.8D. 1(2) 随机变量X 的分布函数F (x )的概率意义是( )A. X 取值落入(),+∞∞-的概率。
B. X 取值落入(],x ∞-的概率。
C. X 取值落入(),x ∞-的概率。
D. X 取值落入],[x x -的概率。
(3) 下述说法中正确的是( )A.如A 为一事件,且P(A)=0,则A=φ;B.如B 为一事件,且P(B)=1,则B=S ;C.如C=S ,则P(C)=1;D.如A ,B 相互独立,则)()()(B P A P B A P +=⋃。
(4) 设随机变量X 服从正态分布,则随σ的增大,概率)|(|σμ<-X P ( )A. 单调增大B. 单调减小C. 保持不变D. 增减不定(5) 设连续型随机变量X 的概率密度为f(x),分布函数为F(x),则下列选项正确的是( )A.1)(0≤≤x fB.)()(x F x X P ==C. )()(x F x X P <=D. )()(x f x X P ==(6) 随机变量X 的密度函数为⎩⎨⎧=其它0)(sin )(x x f A.20π≤≤x B.ππ≤≤x 2 C.π≤≤x 0 D.23ππ≤≤x (7) 设随机变量X 与Y 均服从正态分布:X ~)4,(2μN ,Y ~)5,(2μN 。
而1p =)4(-≤μX P ,2p =)5(+≥μY P ,则对任意实数μ,下列选项成立的有( )A. 1p =2pB. 1p <2pC. 1p >2pD.不能比较大小(8) 设)(1x F 和)(2x F 分别是随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某一随机变量的分布函数,在下列给定的各组数据中应取( )A. 52,53-==b a B. 32,32==b a C. 23,21=-=b a D. 23,21-==b a (9) 设X ~N(0,1),,)(x ϕ为X 的密度函数,则)0(ϕ =( ) A.0 B.π21 C.1 D.21 (10)设随机变量X 的密度函数为⎩⎨⎧∈=其它0],0[2)(A x x x f ,则常数A=( ) A.41 B.21 C.1 D.2 (11)在相同的条件下,相互独立地进行5次射击,每次射击时命中目标的概率为0.6,则击中目标的次数X 的概率分布为( )A.二项分布)6.0,5(BB.泊松分布)2(πC.均匀分布)3,6.0(UD. 正态分布)5,3(2N(12)设X ~),(2σμN ,且概率密度为),(61)(6)2(2+∞-∞=-x e x f π,则正确的是( ) A.2,3==σμ B. 3,2==σμ C. 3,2==σμ D. 3,2==σμ(13)设F(x)是随机变量X 的分布函数,则对( )随机变量X ,有)()()(1221x F x F x X x P -=<<A.任意B. 连续型C.离散型D. 个别离散型(14)设X ~)4,0(N ,则)1(<X P = ( ) A.dx e x 22110221-⎰π B.⎰-10441dx e x C.2121-e π D.⎰∞--2121221dx e x π (15)对于随机变量X ,函数)()(x X P x F ≤=称为X 的( )A.概率分布B.概率C.概率密度D.分布函数2. 填空题(1) 已知离散型随机变量X 只能取四个值,相应的概率分别为cc c c 167,85,43,21,则c=_______________(2) 设X 服从两点分布,且)0()1(===X aP X P ,其中a>0为一常数,则==)1(X P _______________(3) 随机变量X 的分布函数为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+-<≤<=212122110200)(22x x x x x x x x F 如果)5.1(≤<X a P =0.695,则a=_______________(4) 设X 服从参数为λ的泊松分布,且)4()2(===X P X P ,则λ=_______________(5) 设),()(122+∞-∞=-+-x xke x f 是一密度函数,则k=_______________ (6) 随机变量X 的分布律为5,4,3,2,1,15)(===k k k X P 。
则)21(==X X P 或=_______________(7) 当X 服从参数为n 和p 的二项分布时,)(k X P ==_______________(8) 设X ~]5,1[U ,则当5121<<<x x 时,)(21x X x P ≤≤=_______________(9) 设在一次试验中事件A 发生的概率为p ,则在n 重独立重复独立试验中,事件A 至少发生一次的概率为_______________(10)当X 为连续型随机变量时,必有)()(b X a P b X a P <<=≤≤,因为此时必有_______________3. 计算题(1) 随机变量X 的密度函数为⎩⎨⎧≤>=-000)(x x axe x f x求 ①常数a ;②X 的分布函数;③ )1(≤X P 。
(2) 在某产品的自动生产线上,一旦发现次品,就立即进行调整。
已知在每次调整后出现次品的概率为p ,求在两次相邻调整之间生产出来的正品数X 的概率分布。
(3) 有10只二极管,寿命为1万小时的1只, 寿命为2万小时的2只, 寿命为3万小时的5只, 寿命为4万小时的2只。