第三章课后题答案

合集下载

大学物理第三章-部分课后习题答案

大学物理第三章-部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。

分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。

注意对同一轴而言。

解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。

分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。

分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。

解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。

数字通信原理第二版课后习题答案 第3章

数字通信原理第二版课后习题答案 第3章
=sin(2000πt)+sin(4000πt)
故上边带信号为 SUSB(t)=1/2m(t) coswct-1/2m’(t)sinwct
10
《通信原理》习题第三章
=1/2cos(12000πt)+1/2cos(14000πt)
下边带信号为
SLSB(t)=1/2m(t) coswct+1/2m’(t) sinwct =1/2cos(8000πt)+1/2cos(6000πt) 其频谱如图 3-2 所示。
ω (t ) = 2*106 π + 2000π sin 2000π t
故最大频偏 (2)调频指数
∆f = 10* mf = 2000π = 10 kHZ 2π
∆f 103 = 10* 3 = 10 fm 10
故已调信号的最大相移 ∆θ = 10 rad 。 (3)因为 FM 波与 PM 波的带宽形式相同,即 BFM = 2(1 + m f ) f m ,所以已调信号 的带宽为
《通信原理》习题第三章
第三章习题
习题 3.1 设一个载波的表达式为 c(t ) = 5cos1000π t ,基带调制信号的表达式为: m(t)=1+ cos 200π t 。试求出振幅调制时已调信号的频谱,并画出此频谱图。 解:
s(t ) = m(t )c(t ) = (1 + cos 200πt )5 cos(1000πt )
因为调制信号为余弦波,设
B = 2(1 + m f ) f m ∆f = 1000 kHZ = 100 m'2 (t ) =
2
,故
m' (t ) = 0,
m2 1 ≤ 2 2
则:载波频率为 边带频率为 因此

电磁场与电磁波课后习题答案第3章(杨儒贵编着)

电磁场与电磁波课后习题答案第3章(杨儒贵编着)

第三章 静电场3-1 已知在直角坐标系中四个点电荷分布如习题图3-1所示,试求电位为零的平面。

解 已知点电荷q 的电位为rq 4πεϕ=,令)0,1,0(1q q -=,)0,1,3(2q q +=,)0,0,1(3q q -=,)0,0,0(4q q +=,那么,图中4个点电荷共同产生的电位应为∑=414ii r q πεϕ令0=ϕ,得 0 4 4 4 44321=+-+-r qr q r q r q πεπεπεπε 由4个点电荷的分布位置可见,对于x =1.5cm 的平面上任一点,4321 ,r r r r ==,因此合成电位为零。

同理,对于x =0.5cm 的平面上任一点,3241 ,r r r r ==,因此合成电位也为零。

所以,x =1.5cm 及x =0.5cm 两个平面的电位为零。

3-2 试证当点电荷q 位于无限大的导体平面附近时,导体表面上总感应电荷等于)(q -。

证明 建立圆柱坐标,令导体表面位于xy 平面,点电荷距离导体表面的高度为h ,如图3-2所示。

那么,根据镜像法,上半空间的电场强度为32023101 4 4r q r q πεπεr r E -=X 习题图3-1(r , z )习题图3-2电通密度为)(43223110r r q r r E D -==πε 式中 232231])([h z r r -+=; 232232])([h z r r ++=那么,⎥⎥⎥⎦⎤⎪⎪⎪⎭⎫ ⎝⎛+++-++-+⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛++--+=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++--+-+=z z zh z r hz h z r h z h z r r h z r r q h z r h z r h z r h z r q e e e e e e D r r r 232223222322232223222322])([])([ ])([])([4 ])([)(])([)(4ππ 已知导体表面上电荷的面密度n s D =ρ,所以导体表面的感应电荷为2322232223220)(2][][4h r qh h r h h r h q D z zs +-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+-===ππρ 则总的感应电荷为q h r r r qh r r S q s ss -=+-===⎰⎰⎰∞∞2322)(d d 2d 'πρρ3-3 根据镜像法,说明为什么只有当劈形导体的夹角为π的整数分之一时,镜像法才是有效的?当点电荷位于两块无限大平行导体板之间时,是否也可采用镜像法求解。

自动控制原理第三章课后习题 答案()

自动控制原理第三章课后习题 答案()

3-1 设系统的微分方程式如下:(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。

已知全部初始条件为零。

解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C `闭环传递函数124.004.01)()()(2++==s s s R s C s φ单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s C t e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。

若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。

视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK !用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。

解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T sTs Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 203-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。

会计课后习题答案(第三章)

会计课后习题答案(第三章)
答案: 正确
19 企业计提当年盈余公积的基数,不包括年初未分配利润。
答案: 正确
20 年度终了,“利润分配”账户所属的各明细账户中,除“未分配利润”明细账户可能有余额外,其他明细账户均无余额。
答案: 正确
21 得利与损失是与企业日常活动直接关联的经济利益总流入或总流出。
答案: 错误
8 下列支出不得列入成本费用的是 。
A: 支付给金融机构的手续费
答案: 制造费用
10 “应付职工薪酬”账户可设置 、 、 、 、 和“非货币性福利”等明细分类账户。
答案: 工资 社会保险费 职工福利 工会经费 职工教育经费
11 .直接生产工人的薪酬费用应计入 账户,车间技术及管理人员薪酬费用应计入 账户,销售机构人员的薪酬费用计入 账户,行政管理人员薪酬费用计入 账户。
答案: 正确
15 企业按职工工资总额一定比例计提的工会经费及职工教育经费应记入管理费用。
答案: 错误
16 企业专设销售机构的固定资产修理费用应计入销售费用。
答案: 正确
17 “生产成本”账户若有余额应在借方,反映期末自制半成品的实际生产成本。
答案: 错误
18 企业当年可供分配的利润包括当年实现的净利润和年初未分配利润。
B: 制造费用
C: 本年利润
D: 管理费用
E: 利润分配
答案: B, D
5 工业企业以下收入中应记入其他业务收入的有 。
A: 销售产品
B: 销售材料
C: 固定资产盘盈
D: 固定资产出租收入
E: 处置固定资产净收益
答案: B, D
6 工业企业以下各项应记入营业外支出的是 。

人工智能基础与应用 第三章--课后题答案[2页]

人工智能基础与应用 第三章--课后题答案[2页]

第三章课后习题答案一、判断题1.√2.×3.√4.×5.×6.×7.√8.√9.×10.×二、填空题1.对象2.return3.字典4.逗号(,)5.局部6.文件7.开8.True9.break 10.pass三、选择题1.C2.ABCD3.C4.D5.C6.D7.ABD8.C9.D 10.B四、简答题1.简述Python的应用领域web应用开发、操作系统管理、服务器运维的自动化脚本、科学计算、桌面软件、服务器软件(网络软件)、游戏、构思实现,产品早期原型和迭代2. 简述网络爬虫的基本原理网络爬虫是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。

(1)首先选取一部分精心挑选的种子URL;(2)将这些URL放入待抓取URL队列;(3)从待抓取URL队列中取出待抓取在URL,解析DNS,并且得到主机的ip,并将URL 对应的网页下载下来,存储进已下载网页库中。

此外,将这些URL放进已抓取URL队列。

(4)分析已抓取URL队列中的URL,分析其中的其他URL,并且将URL放入待抓取URL队列,从而进入下一个循环。

3. 简述什么是机器学习机器学习,就是计算机通过学习过往数据,利用特定的计算机算法获得数据模型,从而利用该模型对未来的情况作出有效决策。

五、编程题1. 输入一个直角三角形的两个直角边的长度a、b,求斜边c的长度。

参考代码a=float(input("请输入斜边1 的长度"))b=float(input("请输入斜边2 的长度"))c=(a*a+b*b)**0.5print("斜边长为:",c)2. 编写一个加密程序。

用户输入一个字符串,将下标为偶数的字符提出来合并成一个新的字符串A,再将下标为奇数的字符提出来合并成一个新的字符串B,再将字符串A和字符串B合并起来输出。

计算机网络课后习题答案解析(第三章)

计算机网络课后习题答案(第三章)(2009-12-14 18:16:22)转载▼标签:课程-计算机教育第三章数据链路层3-01 数据链路(即逻辑链路)与链路(即物理链路)有何区别? “电路接通了”与”数据链路接通了”的区别何在?答:数据链路与链路的区别在于数据链路出链路外,还必须有一些必要的规程来控制数据的传输,因此,数据链路比链路多了实现通信规程所需要的硬件和软件。

“电路接通了”表示链路两端的结点交换机已经开机,物理连接已经能够传送比特流了,但是,数据传输并不可靠,在物理连接基础上,再建立数据链路连接,才是“数据链路接通了”,此后,由于数据链路连接具有检测、确认和重传功能,才使不太可靠的物理链路变成可靠的数据链路,进行可靠的数据传输当数据链路断开连接时,物理电路连接不一定跟着断开连接。

3-02 数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点.答:链路管理帧定界流量控制差错控制将数据和控制信息区分开透明传输寻址可靠的链路层的优点和缺点取决于所应用的环境:对于干扰严重的信道,可靠的链路层可以将重传范围约束在局部链路,防止全网络的传输效率受损;对于优质信道,采用可靠的链路层会增大资源开销,影响传输效率。

3-03 网络适配器的作用是什么?网络适配器工作在哪一层?答:适配器(即网卡)来实现数据链路层和物理层这两层的协议的硬件和软件网络适配器工作在TCP/IP协议中的网络接口层(OSI中的数据链里层和物理层)3-04 数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?答:帧定界是分组交换的必然要求透明传输避免消息符号与帧定界符号相混淆差错检测防止合差错的无效数据帧浪费后续路由上的传输和处理资源3-05 如果在数据链路层不进行帧定界,会发生什么问题?答:无法区分分组与分组无法确定分组的控制域和数据域无法将差错更正的范围限定在确切的局部3-06 PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不能使数据链路层实现可靠传输?答:简单,提供不可靠的数据报服务,检错,无纠错不使用序号和确认机制地址字段A 只置为0xFF。

马原,第三章习题及答案

第三章人类社会及其发展规律(课后练习题)一、单项选择题1 .人类社会历史发展的决定力量是( )A .生产方式B .地理条件C .社会意识D .人口因素2 .社会意识相对独立性的最突出表现是它( )A .同社会存在发展的不同步性B .具有历史的继承性C .对社会存在具有能动的反作用D .同社会经济的发展具有不平衡性3 .在生产关系中起决定作用的是( )A .生产资料所有制B .产品的分配和交换C .在生产中人与人的关系D .管理者和生产者的不同地位4 . “手推磨产生的是封建主的社会,蒸汽磨产生的是工业资本家的社会” , 这句话揭示了( )A .生产工具是衡量生产力水平的重要尺度B .科学技术是第一生产力C .社会形态的更替有其一定的顺序性D .物质生产的发展需要建立相应的生产关系5 .十一届三中全会以来,我党制定的一系列正确的路线、方针、政策促进了我国经济的迅猛发展,这说明( )A .经济基础发展的道路是由上层建筑决定的B .上层建筑的发展决定经济基础的发展方向C .上层建筑对经济基础具有积极的能动作用D .社会主义社会的发展不受经济基础决定上层建筑规律的制约6 .一定社会形态的经济基础是( )A .生产力B .该社会的各种生产关系C .政治制度和法律制度D .与一定生产力发展阶段相适应的生产关系的总和7 .上层建筑是指( )A .社会的经济制度B .科学技术C .社会生产关系D .建立在一定社会经济基础之上的意识形态及相应的制度和设施8 .社会形态是( )A .生产力和生产关系的统一B .同生产力发展一定阶段相适应的经济基础和上层建筑的统一体C .社会存在和社会意识的统一D .物质世界和精神世界的统一9 .人类社会发展的一般规律是( )A .生产方式内部的矛盾规律B .生产力和生产关系、经济基础和上层建筑之间的矛盾运动规律C .社会存在和社会意识的矛盾规律D .物质生产和精神生产的矛盾规律10 .阶级斗争对阶级社会发展的推动作用突出表现在( )A .生产力的发展B .生产关系的变革C .社会形态的更替D .科技的进步11 .社会革命根源于( )A .人口太多B .少数英雄人物组织暴动C .先进思想和革命理论的传播D .社会基本矛盾的尖锐化12 .社会主义改革的根本目的在于( )A .改变社会主义制度B .完善社会主义制度C .解放和发展生产力D .实现社会公平13 . “蒸汽、电力和自动纺织机甚至是比巴尔贝斯、拉斯拜尔和布朗基诸位公民更危险万分的革命家。

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第三章

第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y12311/61/91/1821/3a1/9求a.分析:dsfsd1f6d54654646解答:由分布律性质∑i⋅jPij=1,可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0}=P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512,请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1,故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0},{X=0,Y=13,{X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:Y01/31pk7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0),其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它, (1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c;(2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度. 解答:区域G的面积A=∫01(x-x2)dx=16,由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它,fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为从而(X,Y)的联合概率分布为P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0,求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx]=1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为=∫01dy∫y2y12dx=14,P{U=1,V=1}=1-P{U=0,V=0}-P{U=0,V=1}-P{U=1,V=0}=1/2,即U\V01011/401/41/2习题4设(X,Y)的联合分布密度为f(x,y)=12πe-x2+y22,Z=X2+Y2,求Z的分布密度.解答:FZ(z)=P{Z≤z}=P{X2+Y2≤z}.当z<0时,FZ(z)=P(∅)=0;当z≥0时,FZ(z)=P{X2+Y2≤z2}=∫∫x2+y2≤z2f(x,y)dxdy=12π∫∫x2+y2≤z2e-x2+y22dxdy=12π∫02πdθ∫0ze-ρ22ρdρ=∫0ze-ρ22ρdρ=1-e-z22.故Z的分布函数为FZ(z)={1-e-z22,z≥00,z<0.Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它,fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0,故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b.∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)F Y(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y,其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y},则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z}=1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0,F2(z)={1-e-βz,z≥00,z<0,故F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试证明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=1}=2×112×11=166,习题2假设随机变量Y服从参数为1的指数分布,随机变量Xk={0,若Y≤k1,若Y>k(k=1,2),求(X1,X2)的联合分布率与边缘分布率.解答:因为Y服从参数为1的指数分布,X1={0,若Y≤11,若Y>1, 所以有P{X1=1}=P{Y>1}=∫1+∞e-ydy=e-1,P{X1=0}=1-e-1,同理P{X2=1}=P{Y>2}=∫2+∞e-ydy=e-2,P{X2=0}=1-e-2,因为P{X1=1,X2=1}=P{Y>2}=e-2,P{X1=1,X2=0}=P{X1=1}-P{X1=1,X2=1}=e-1-e-2,P{X1=0,X2=0}=P{Y≤1}=1-e-1,P{X1=0,X2=1}=P{X1=0}-P{X1=0,X2=0}=0,故(X1,X2)联合分布率与边缘分布率如下表所示:习题3在元旦茶话会上,每人发给一袋水果,内装3只橘子,2只苹果,3只香蕉. 今从袋中随机抽出4只,以X记橘子数,Y记苹果数,求(X,Y)的联合分布.解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0,P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70,P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70,P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70,P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70,P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70,P{X=3,Y=2}=P{∅}=0,所以,(X,Y)的联合分布如下:习题4设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)的联合分布律及关于X与Y解答:由题设X与Y相互独立,即有pij=pi⋅p⋅j(i=1,2;j=1,2,3), p⋅1-p21=p11=16-18=124,又由独立性,有p11=p1⋅p⋅1=p1⋅16故p1⋅=14.从而p13=14-124-18, 又由p12=p1⋅p⋅2, 即18=14⋅p⋅2.从而p⋅2=12. 类似的有p⋅3=13,p13=14,p2⋅=34.将上述数值填入表中有习题5设随机变量(X,Y)的联合分布如下表:求:(1)a值;(2)(X,Y)的联合分布函数F(x,y);(3)(X,Y)关于X,Y的边缘分布函数FX(x)与FY(y).解答:(1)\because由分布律的性质可知∑i⋅jPij=1, 故14+14+16+a=1,∴a=13.(2)因F(x,y)=P{X≤x,Y≤y}①当x<1或y<-1时,F(x,y)=0;②当1≤x<2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}=1/4;③当x≥2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}=5/12;④当1≤x<2,y>0时,F(x,y)=P{X=1,Y=-1}+P{X=1,Y=0}=1/2;⑤当x≥2,y≥0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}+P{X=1,Y=0}+P{X=2,Y=0}=1;综上所述,得(X,Y)联合分布函数为F(x,y)={0,x<1或y<-11/4,1≤x<2,-1≤y<05/12,x≥2,-1≤y<01/2,1≤x<2,y≥01,x≥2,y≥0.(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)dxdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X};(5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立.习题11设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,试证P{X≤Y}=1/2. 解答:因为X,Y独立,所以f(x,y)=fX(x)fY(y).P{X≤Y}=∫∫x≤yf(x,y)dxdy=∫∫x≤yfX(x)fY(y)dxdy=∫-∞+∞[fY(y)∫-∞yfX(x)dx]dy=∫-∞+∞[fY(y)FY(y)]dy=∫-∞+∞FY(y)dFY(y)=F2(y)2∣-∞+∞=12,也可以利用对称性来证,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X},而P{X≤Y}+P{X≥Y}=1, 故P{X≤Y}=1/12.习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:关于X的边缘分布为由于X与Y独立,则有p22=p2⋅p⋅2 得b=(b+19)(b+49) ①p12=p1⋅p⋅2 得19=(a+19)(b+49) ②由式①得b=29, 代入式②得a=118. 由分布律的性质,有a+b+c+19+19+13=1,代入a=118,b=29, 得c=16.易验证,所求a,b,c的值,对任意的i和j均满足pij=pi⋅×p⋅j.因此,所求a,b,c的值为a=118,b=29,c=16.习题13已知随机变量X1和X2的概率分布为且P{X1X2=0}=1.(1)求X1和X2的联合分布律;(2)问X1和X2是否独立?解答:(1)本题是已知了X1与X2的边缘分布律,再根据条件P{X1X2=0}=1, 求出联合分布. 列表如下:P{X1=1,X2=1}=0,P{X1=-1,X2=1}=0.再由p⋅1=p-11+p11+p01, 得p01=12, p-10=p-1⋅=p-11=14,p10=p1⋅-p11=14,从而得p00=0.(2)由于p-10=14≠p-1⋅⋅p⋅0=14⋅12=18, 所以知X1与X2不独立.习题14设(X,Y)的联合密度函数为f(x,y)={1πR2,x2+y2≤R20,其它,(1)求X与Y的边缘概率密度;(2)求条件概率密度,并问X与Y是否独立?解答:(1)当x<-R或x>R时,fX(x)=∫-∞+∞f(x,y)dy=∫-∞+∞0dy=0;当-R≤x≤R时,fX(x)=∫-∞+∞f(x,y)dy=1πR2∫-R2-x2R2-x2dy=2πR2R2-x2.于是fX(x)={2R2-x2πR2,-R≤x≤R0,其它.由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它.同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题15设(X,Y)的分布律如下表所示X\Y -112-12 1/102/103/102/101/101/10求:(1)Z=X+Y; (2)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类似,本质上是利用事件及其概率的运算法则. 注意,Z的相同值的概率要合并.概率(X,Y)X+YXYX/Ymax{X,Y}1/102/103/102/101/101/10(-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)-2011341-1-2-2241-1-1/2-221-112222于是(1)习题16设(X,Y)的概率密度为f(x,y)={1,0<x<1,0<y<2(1-x)0,其他,求Z=X+Y的概率密度.解答:先求Z的分布函数Fz(z),再求概率密度fz(z)=dFz(z)dz.如右图所示.当z<0时,Fz(z)=P{X+Y≤z}=0;当0≤z<1时,Fz(z)=P{X+Y≤z}=∫∫x+y≤zf(x,y)dxdy=∫0zdx∫0z-x1dy=∫0z(z-x)dx=z2-12x2∣0z=12z2;当1≤z<2时,Fz(z)=∫02-zdx∫0z-xdy+∫2-z1dx∫02(1-x)dy=z(2-z)-12(2-z)2+(z-1)2;当z≥2时,∫∫Df(x,y)dxdy=∫01dx∫02(1-x)dy=1.综上所述Fz(z)={0,z<012z2,0≤z<1z(2-z)-12(2-z)2+(z-1)2,1≤z<21,z≥2,故fz(z)={z,0≤z<12-z,1≤z<20,其它.习题17设二维随机变量(X,Y)的概率密度为f(x,y)={2e-(x+2y),x>0,y>00,其它,求随机变量Z=X+2Y的分布函数.解答:按定义FZ(Z)=P{x+2y≤z},当z≤0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫∫x+2y≤z0dxdy=0.当z>0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫0zdx∫0(z-x)/22e-(x+2y)dy=∫0ze-x⋅(1-ex-z)dx=∫0z(e-x-e-z)dx=[-e-x]∣0z-ze-z=1-e-z-ze-z,故分布函数为FZ(Z)={0,z≤01-e-z-ze-z,z>0.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。

(完整版)计算机操作系统(第四版)课后习题答案第三章

第三章处理机调度与死锁1,高级调度与低级调度的主要任务是什么?为什么要引入中级调度?【解】(1)高级调度主要任务是用于决定把外存上处于后备队列中的那些作业调入内存,并为它们创建进程,分配必要的资源,然后再将新创建的进程排在就绪队列上,准备执行。

(2)低级调度主要任务是决定就绪队列中的哪个进程将获得处理机,然后由分派程序执行把处理机分配给该进程的操作。

(3)引入中级调度的主要目的是为了提高内存的利用率和系统吞吐量。

为此,应使那些暂时不能运行的进程不再占用宝贵的内存空间,而将它们调至外存上去等待,称此时的进程状态为就绪驻外存状态或挂起状态。

当这些进程重又具备运行条件,且内存又稍有空闲时,由中级调度决定,将外存上的那些重又具备运行条件的就绪进程重新调入内存,并修改其状态为就绪状态,挂在就绪队列上,等待进程调度。

3、何谓作业、作业步和作业流?【解】作业包含通常的程序和数据,还配有作业说明书。

系统根据该说明书对程序的运行进行控制。

批处理系统中是以作业为基本单位从外存调入内存。

作业步是指每个作业运行期间都必须经过若干个相对独立相互关联的顺序加工的步骤。

作业流是指若干个作业进入系统后依次存放在外存上形成的输入作业流;在操作系统的控制下,逐个作业进程处理,于是形成了处理作业流。

4、在什么情冴下需要使用作业控制块JCB?其中包含了哪些内容?【解】每当作业进入系统时,系统便为每个作业建立一个作业控制块JCB,根据作业类型将它插入到相应的后备队列中。

JCB 包含的内容通常有:1) 作业标识2)用户名称3)用户账户4)作业类型(CPU 繁忙型、I/O芳名型、批量型、终端型)5)作业状态6)调度信息(优先级、作业已运行)7)资源要求8)进入系统时间9) 开始处理时间10) 作业完成时间11) 作业退出时间12) 资源使用情况等5.在作业调度中应如何确定接纳多少个作业和接纳哪些作业?【解】作业调度每次接纳进入内存的作业数,取决于多道程序度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《微观经济学》(高鸿业第四版)第三章练习题参考答案1、已知一件衬衫的价格为 80元,一份肯德鸡快餐的价格为 20 元,在某消费者关于这两种商品的效用最大化的均衡点上, 一份肯德 鸡快餐对衬衫的边际替代率 MRS 是多少?解:按照两商品的边际替代率 MRS 的定义公式,可以将一份肯德 鸡快餐对衬衫的边际替代率写成:MRS XY其中:X 表示肯德鸡快餐的份数;Y 表示衬衫的件数;MRS 表示在该消费者实现关于这两件商品的效用最大化时,在均衡点上 有MRS xy =P x /P y即有 MRS =20/80=0.25它表明:在效用最大化的均衡点上,消费者关于一份肯德鸡快 餐对衬衫的边际替代率 MRS 为0.25。

2假设某消费者的均衡如图 1-9所示。

其中,横轴OX 1和纵轴0X 2,分别表示商品1和商品2的数量,线段AB 为消费者的预算线, 曲线U为消费者的无差异曲线,E 点为效用最大化的均衡点。

已知商 品1的价格R=2元。

在维持效用水平不变的前提下要放弃的衬衫消费数量。

消费者增加一份肯德鸡快餐时所需(1)求消费者的收入;(2)求商品的价格P2;⑶写出预算线的方程;(4) 求预算线的斜率;X1(5) 求E点的MRS12的值解:(1)图中的横截距表示消费者的收入全部购买商品1的数量为30单位,且已知P1=2元,所以,消费者的收入M=2元X 30=60。

(2)图中的纵截距表示消费者的收入全部购买商品2的数量为20单位,且由(1)已知收入M=60元,所以,商品2的价格P2斜率二—P1/P2二—2/3,得F2=M/20=3 元(3)由于预算线的一般形式为:P1X+PX2二M所以,由(1)、(2)可将预算线方程具体写为2X+3X=60。

(4)将(3)中的预算线方程进一步整理为X2=-2/3 X 1+20。

很清楚,预算线的斜率为—2/3。

(5)在消费者效用最大化的均衡点E上,有MRS二=MRS二P1/P2,即无差异曲线的斜率的绝对值即MR勞于预算线的斜率绝对值P1/P2。

因此,在MRS二P/P2 = 2/3。

3请画出以下各位消费者对两种商品(咖啡和热茶)的无差异曲线,同时请对(2)和(3)分别写出消费者B和消费者C的效用函数。

(1)消费者A 喜欢喝咖啡,但对喝热茶无所谓。

他总是喜欢有更多杯的咖啡,而从不在意有多少杯的热茶。

(2)消费者B 喜欢一杯咖啡和一杯热茶一起喝,他从来不喜欢单独只喝咖啡,或者只不喝热茶。

(3)消费者C认为,在任何情况下,1杯咖啡和2杯热茶是无差异的。

(4)消费者D喜欢喝热茶,但厌恶喝咖啡。

解答:(1)根据题意,对消费者A而言,热茶是中性商品,因此, 热茶的消费数量不会影响消费者A的效用水平。

消费者A的无差异曲线见图(2)根据题意,对消费者B 而言,咖啡和热茶是完全互补品,其效用函数是U=min{ X i、X2}。

消费者B的无差异曲线见图(3)根据题意,对消费者C而言,咖啡和热茶是完全替代品,其效用函数是U=2 X i+ X2。

消费者C的无差异曲线见图(4)根据题意,对消费者D而言,咖啡是厌恶品。

消费者D的无差异曲线见图4已知某消费者每年用于商品1 和的商品2的收入为540元,两商品的价格分别为P1 =20 元和P2=30 元,该消费者的效用函数为U 3X1X22,该消费者每年购买这两种商品的数量应各是多少?从中获得的总效用是多少?解:根据消费者的效用最大化的均衡条件:MU/MU2二P1/P2其中,由U 3X i X;可得:MU=dTU/dX =3X22MU=dTU/d* =6XX2于是,有:3X22/6X i X2 = 20/30 (1)整理得将(1)式代入预算约束条件20X+30X=540,得:X=9, X2=12因此,该消费者每年购买这两种商品的数量应该为:U=3XX22=38885、假设某商品市场上只有A、B两个消费者,他们的需求函数各自为Q:20 4P和Q:30 5P。

(1)列出这两个消费者的需求表和市场需求表;根据(1),画出这两个消费者的需求曲线和市场需求曲线解:(1)A消费者的需求表为:B消费者的需求表为:市场的需求表为:(2) A消费者的需求曲线为:市场的需求曲线为3 56、假定某消费者的效用函数为u x 8x 28,两商品的价格分别为P i ,P 2,消费者的收入为M 分别求出该消费者关于商品1和商品2的需求函数。

解答:根据消费者效用最大化的均衡条件:MUMIU 二P/P 2所以,该消费者关于两商品的需求函数为其中,由以知的效用函数35U X i 8x 8 可得:MU 1 dTU dx 1 3 5 58 81 8MU 2dTU dx 2335x 8x 8 —xix 2 8于是,有:3Xi 8 8 8 X2整理得3X25x i P iP 2即有X 2 5 p i x i(i )一( 1)式代入约束条件 P iX +BX z 二M 有:5 R X iPx i P 2 一 M3P 2解得3M x i8P i代入(i )式得X 25M 8P 253 35 88x 1 x 2 8P i P 23P 23M 8R 5M 8P 27、令某消费者的收入为 M 两商品的价格为P i , P 2。

假定该消 费者的无差异曲线是线性的,切斜率为-a 。

求:该消费者的最优商品组合。

解:由于无差异曲线是一条直线,所以该消费者的最优消费选择有三种情况,其中的第一、第二种情况属于边角解。

第一种情况:当 MRS>R/P 2时,即 a> P 1/P 2时,如图,效用最大的均衡点 E 的位置发生在横轴,它表示此时的最优 解是一个边角解,即 X i 二M/P , X 2=0。

也 就是说,消费者将全部的收入都购买商 品1,并由此达到最大的效用水平,该效 用水平在图中以实线表示的无差异曲线 标出。

显然,该效用水平高于在既定的预算线上其他任何一个商品组 合所能达到的效用水平,例如那些用虚线表示的无差异曲线的效用水 平。

X iX 2第二种情况:当 MRSVP/P 2时, a< P 1/P 2时,如图,效用最大的均衡点E 的位置发生在纵轴,它表示此时的最 优解是一个边角解,即X 2二M/R, X i =0 也就是说,消费者将全部的收入都购 买商品2,并由此达到最大的效用水 平,该效用水平在图中以实线表示的无差异曲线标出。

显然,该效用 水平高于在既定的预算线上其他任何一个商品组合所能达到的效用 水平,例如那些用虚线表示的无差异曲线的效用水平。

第三种情况:当 MRS 二P/P 2时,a= P 1/P 2时,如图,无差异曲线 与预算线重叠,效用最大化达到均衡点可以是预算线上的任何一点的 商品组合,即最优解为X1>0, X2>0, 且满足P1X1+P2X2=Mtt 时所达到的最大 效用水平在图中以实线表示的无差异曲 线标出。

显然,该效用水平高于在既定 的预算线上其他任何一条无差异曲线所 能达到的效用水平,例如那些用虚线表 示的无差异曲线的效用水平。

的消费量,M 为收入。

求:(1) 该消费者的需求函数;&假定某消费者的效用函数为U q 05 3M ,其中,q 为某商品Exl^)MJISL2<FI/P2(2)该消费者的反需求函数;⑶当p右,q =4时的消费者剩余。

解:(1)由题意可得,商品的边际效用为:U 10.5MUqq 2 货币的边际效用为U 3M于是,根据消费者均衡条件 MU/P =,有:10.5尹2P整理得需求函数为q=1/36p 3以p=1/12,q=4代入上式,则有消费者剩余:CS=1/39设某消费者的效用函数为柯布-道格拉斯类型的,即u商品x 和商品y 的价格格分别为 p x 和p y ,消费者的收入为M,1 求该消费者关于商品x 和商品y 的需求函数。

比例时,消费者对两种商品的需求关系维持不变。

3 证明当商品x 和y 的价格以及消费者的收入同时变动一个(2) (3) 由需求函数q=1/36p 2,可得反需求函数为:1 0.56q由反需求函数 CS 匕 0.5 dq 丄 46 12p -q 0.5,可得消费者剩余为:64丄 13 3(3)证明消费者效用函数中的参数和分别为商品x和商品y 的消费支出占消费者收入的份额。

解答:(1)由消费者的效用函数u,算得:uMU xQMU y —y消费者的预算约束方程为P x X P y Y(1)根据消费者效用最大化的均衡条件MU x P x(2)MU y P yP x X P y y M1x y P x得x y 1P yP x X P y y M解方程组(3),可得x M / p x (4)y M / P y (5)式(4)即为消费者关于商品x和商品y的需求函数。

(2)商品x和商品y的价格以及消费者的收入同时变动一个比例,相当于消费者的预算线变为P x X P y Y M(6)其中为一个非零常数此时消费者效用最大化的均衡条件变为1 (7)x y Px T X yP y P x X P y y M 由于0 ,故方程组(7)化为 1 X yP x X y P yP x X P y y M 显然,方程组(8)就是方程组(3),故其解就是式(4)和式(5) 这表明,消费者在这种情况下对两商品的需求关系维持不变。

(3)由消费者的需求函数(4)和(5),可得p X x/M( 9) P y y/M ( 1 0)关系(9)的右边正是商品x 的消费支出占消费者收入的份额。

关系(10)的右边正是商品y 的消费支出占消费者收入的份额。

故结 论被证实。

10基数效用者是求如何推导需求曲线的?(1)基数效用论者认为,商品得需求价格取决于商品得边际效用 某一单位得某种商品的边际效用越小,消费者愿意支付的价格就越低 由于边际效用递减规律,随着消费量的增加,消费者为购买这种商品 所愿意支付得最高价格即需求价格就会越来越低 •将每一消费量及其 相对价格在图上绘出来,就得到了消费曲线.且因为商品需求量与商 品价格成反方向变动,消费曲线是右下方倾斜的.(2)在只考虑一种商品的前提下,消费者实现效用最大化的均衡(8)条件:MU/P二。

由此均衡条件出发,可以计算出需求价格,并推导与理解(1)中的消费者的向右下方倾斜的需求曲线。

11用图说明序数效用论者对消费者均衡条件的分析,以及在此基础上对需求曲线的推导解:消费者均衡条件可达到的最高无差异曲线和预算线相切,即MRS二P1/P2需求曲线推导:从图上看出,在每一个均衡点上,都存在着价格与需求量之间一一对应关系,分别绘在图上,就是需求曲线X1=f (P1)12用图分析正常物品、低档物品和吉芬物品的替代效应和收入效应,并进一步说明这三类物品的需求曲线的特征。

解:要点如下:(1)当一种商品的价格发生变化时所引起的该商品需求量的变化可以分解为两个部分,它们分别是替代效应和收入效应。

相关文档
最新文档