利用导数研究函数的性质

合集下载

导数大题20 种主要题型讲解

导数大题20 种主要题型讲解

答案详解:本题主要考查导数在研究函数中的应用。

(1)求出比较其与的大小,得到的单调性表,于是得到的极值。

(2)将代入到中,并求得当时,此时恒成立,即在单调递增,同理可以得到在上为增函数,则原不等式可化为在上恒成立,令,对其求导得知若为减函数时其导数恒小于,便可得到的取值范围。

(3)若存在,使得假设成立,也即在上不是单调增或单调减,故,对求导得到其极小值点为,由于解得此时,此时需证明当,使得即可,此时可取,发现成立,故的取值范围为。

答案详解(Ⅰ),由是的极值点得,所以。

于是,定义域为,,函数在上单调递增,且。

因此,当时,;当时,。

所以,在上单调递减,在上单调递增。

(Ⅱ)当,时,,故只需要证明当时,。

当时,函数在单调递增,又,,故在有唯一实根,且。

当时,;当时,;从而当时,取得最小值。

由得:,,故。

综上:当时,。

解析:本题主要考查函数的求导和函数的单调性的判断。

(Ⅰ)先对函数求导,得导函数,由题,则可得的值,当时,单调递增,求得的的取值范围即为单调增区间;当时,单调递减,求得的的取值范围即为单调减区间。

(Ⅱ)由分析知,只需证明当时,,此时通过分析函数单调性,求得即可得证。

例题5:函数。

(Ⅰ)讨论的导函数零点的个数;(Ⅱ)证明:当时,。

答案详解(Ⅰ)的定义域为,()。

当时,,没有零点;当时,因为单调递增,单调递增,所以在单调递增。

又,当满足且时,,故当时,存在唯一零点。

(Ⅱ)由(Ⅰ),可设在的唯一零点为,当时,;当时,。

故在单调递减,在单调递增,所以当时,取得最小值,最小值为。

由于,所以。

故当时,。

解析:本题主要考查导数的概念及其几何意义以及导数在函数研究中的应用。

(Ⅰ)求导得出的表达式,根据其表达式,对进行分类讨论。

当时,可知没有零点;当时,可知单调递增,且存在使得而,因此存在唯一零点。

(Ⅱ)由(Ⅰ),可设的最小值在时取到,最小值为。

写出的表达式,再运用均值不等式即可得出。

题型3:先构造,再赋值,证明和式或积式不等式例题:已知函数。

知识讲解_导数在函数性质中的应用——单调性

知识讲解_导数在函数性质中的应用——单调性

导数在函数性质中的应用——单调性编稿:张林娟审稿:孙永钊【学习目标】1. 知识与技能能用导数判断函数的单调性、求不超过三次的多项式函数的单调区间;掌握求函数单调区间的方法和步骤.2. 过程与方法通过利用导数研究函数的单调区间的过程,掌握利用导数研究函数性质的方法.总结求函数单调区间和极值的一般步骤,体会其中的算法思想,认识到导数在研究函数性质中的应用.3. 情感、态度与价值观通过用导数方法研究函数性质,认识到不同数学知识之间的内在联系,以及导数的应用价值.【要点梳理】要点一:函数的单调性与导数的关系我们知道,如果函数()f x在这一区间具有单调性.f x在某个区间是增函数或减函数,那么就说()已知函数2=-+的图象如图所示,f x x x()43由函数的单调性易知,当2f x是增函数.现在我们看看各个单f x是减函数;当2x<时,()x>时,()调区间内任意一点的切线情况:考虑到曲线()f x在改点的导数值,从图象可以看到:y f x=的在某点处切线的斜率就是函数()在区间(-∞,2)内,任意一点的切线的斜率为负,即'()240f x x =<时,()f x 为减函数.在区间(2,+∞)内,任意一点的切线的斜率为正,即'()240f x x =>时,()f x 为增函数.导数的符号与函数的单调性:一般地,设函数()y f x =在某个区间内有导数,则在这个区间上,(1)若()0f x '>,则()f x 在这个区间上为增函数;(2)若()0f x '<,则()f x 在这个区间上为减函数;(3)若恒有()0f x '=,则()f x 在这一区间上为常函数.反之,若()f x 在某区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);若()f x 在某区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0).要点诠释:①导函数的正负决定了原函数的增减;②在区间(a ,b )内,'()0f x >(或()0f x '<)是()f x 在区间(a ,b )内单调递增(或减)的充分不必要条件.注意:只有当在某区间上有有限个点使'()0f x =时,()0f x '≥(或()0f x '≤)≡()f x 在该区间内是单调递增(或减).例如:32()'()30'(0)0,'()0(0)f x x f x x f f x x =⇒=≥=>≠,,而()f x 在R 上递增.③当在某区间内恒有()0f x '=,这个函数()y f x =在这个区间上才为常数函数.要点二:利用导数研究函数的单调性利用导数判断函数单调性的基本方法:设函数()y f x =在区间(a ,b )内可导,(1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数;(2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数;(3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数.利用导数求函数()f x 单调区间的基本步骤(1)确定函数()f x 的定义域;(2)求导数'()f x ;(3)在函数()f x 的定义域内解不等式'()0f x >或'()0f x <;(4)确定()f x 的单调区间.或者:令'()0f x =,求出它在定义域内的一切实数根。

第21讲 利用导数研究函数的单调性(解析版)

第21讲 利用导数研究函数的单调性(解析版)

第21讲 利用导数研究函数的单调性【基础知识回顾】1. 利用导数研究函数的单调性在某个区间(a ,b)内,如果f′(x)≥0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递增;如果f′(x)≤0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递减.2. 判定函数单调性的一般步骤 (1)确定函数y =f(x)的定义域; (2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0或f′(x)<0; (4)根据(3)的结果确定函数的单调区间. 3. 已知函数单调性求参数的值或参数的范围 (1)函数y =f(x)在区间(a ,b)上单调递增,可转化为f ′(x)≥0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆增区间.函数y =f(x)在区间(a ,b)上单调递减,可转化为f′(x)≤0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆减区间.(2)函数y =f(x)的增区间是(a ,b),可转化为(a ,b)=增区间,也可转化为f′(x)>0的解集是(a ,b);函数y =f(x)的减区间是(a ,b),可转化为(a ,b)=减区间,也可转化为a ,b 是f′(x)=0的两根.1、.函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝⎛⎭⎫1e ,e B.⎝⎛⎭⎫0,1e C.⎝⎛⎭⎫-∞,1eD.⎝⎛⎭⎫1e ,+∞【答案】 B【解析】因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,解得0<x <1e,故f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 2、函数f(x)=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+32bx +c3的单调递增区间是( )第2题图A . (-∞,-2]B . ⎣⎡⎭⎫12,+∞ C . [)-2,3 D . ⎣⎡⎭⎫98,+∞【答案】D【解析】 由题图可知d =0. 不妨取a =1,∵f(x)=x 3+bx 2+cx ,∴f ′(x)=3x 2+2bx +c. 由图可知f′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-32,c =-18. ∴y =x 2-94x -6,y ′=2x -94. 当x >98时,y ′>0,∴y =x 2-94x -6的单调递增区间为[98,+∞).故选D .3、函数f (x )=ln x -ax (a >0)的单调递增区间为( ) A.⎝⎛⎭⎫0,1a B.⎝⎛⎭⎫1a ,+∞ C.⎝⎛⎭⎫-∞,1a D .(-∞,a )【答案】A【解析】 由f ′(x )=1x -a >0,x >0,得0<x <1a .∴f (x )的单调递增区间为⎝⎛⎭⎫0,1a . 4、若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 【答案】 (-∞,2ln 2-2)【解析】 ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解.设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得极大值也是最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2.考向一 求函数的单调区间例1、求下列函数的单调区间:(1)f(x)=x 3-12x 2-2x +3;(2)g(x)=x 2-2ln x.【解析】 (1)∵f′(x)=3x 2-x -2=(3x +2)(x -1),定义域为R ,∴当f ′(x )>0时,x ∈⎝⎛⎭⎫-∞,-23∪(1,+∞);当f ′(x )<0时,x ∈⎝⎛⎭⎫-23,1. ∴函数的单调增区间为⎝⎛⎭⎫-∞,-23和(1,+∞),单调减区间为⎝⎛⎭⎫-23,1. (2)g ′(x )=2x -2x =2(x +1)(x -1)x,定义域为(0,+∞),令g ′(x )=0,解得:x =1或x =-1(舍去),列表:x (0,1) 1 (1,+∞) g ′(x ) - 0+ g (x ) 减 极小值 增变式1、(1)下列函数中,在(0,+∞)内为增函数的是( ) A.f (x )=sin 2x B.f (x )=x e x C.f (x )=x 3-xD.f (x )=-x +ln x【答案】 B【解析】 由于x >0,对于A ,f ′(x )=2cos 2x ,f ′⎝⎛⎭⎫π3=-1<0,不符合题意; 对于B ,f ′(x )=(x +1)e x >0,符合题意;对于C ,f ′(x )=3x 2-1,f ′⎝⎛⎭⎫13=-23<0,不符合题意; 对于D ,f ′(x )=-1+1x ,f ′(2)=-12<0,不符合题意.(2)函数f (x )=2x 2-ln x 的单调递减区间是( ) A.⎝⎛⎭⎫-12,12 B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫12,+∞ 【答案】 C【解析】 ∵函数f (x )=2x 2-ln x ,∴f ′(x )=4x -1x =4x 2-1x=4⎝⎛⎭⎫x -12⎝⎛⎭⎫x +12x.由f ′(x )<0,解得0<x <12,∴函数的单调递减区间是⎝⎛⎭⎫0,12. (3).已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的递增区间是________. 【答案】 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.变式2、(1)函数f(x)=x 3-15x 2-33x +6的单调减区间为__ __.(2) 函数f(x)=1+x -sin x 在(0,2π)上的单调情况是__ __.(3)已知a<0,函数f(x)=x 3+ax 2-a 2x +2的单调递减区间是__ .【解析】(1)由f(x)=x 3-15x 2-33x +6得f ′(x)=3x 2-30x -33,令f′(x)<0,即3(x -11)(x +1)<0,解得-1<x<11,∴函数f(x)的单调减区间为(-1,11). (2) f′(x)=1-cos x>0在(0,2π)上恒成立,∴f(x)单调递增.(3)f′(x)=3x 2+2ax -a 2=(3x -a)(x +a),令f′(x)<0,得a3<x<-a ,∴减区间为⎝⎛⎭⎫a3,-a . 方法总结:1. 利用导数求函数f(x)的单调区间的一般步骤为:(1)确定函数f(x)的定义域;(2)求导函数f ′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间. 2. 利用导数求函数单调性,在对函数求导以后要对导函数进行整理并因式分解,方便后面求根和判断导函数的符号.考向二 给定区间求参数的范围例2、设函数()32132a f x x x bx c =-++,曲线()y f x =在点()()0,0f 处的切线方程为1y =. (1)求,bc 的值;(2)若0a >,求函数()f x 的单调区间;(3)设函数()()2g x f x x =+,且()g x 在区间(2,1)--内存在单调递减区间,求实数a 的取值范围.【解析】:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).变式1、已知g (x )=2x +ln x -ax .(1)若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围; (2)若g (x )在区间[1,2]上存在单调递增区间,求实数a 的取值范围.【解析】(1)g (x )=2x +ln x -ax (x >0),g ′(x )=2+1x +ax2(x >0).∵函数g (x )在[1,2]上单调递增, ∴g ′(x )≥0在[1,2]上恒成立, 即2+1x +ax 2≥0在[1,2]上恒成立,∴a ≥-2x 2-x 在[1,2]上恒成立, ∴a ≥(-2x 2-x )max ,x ∈[1,2]. 在[1,2]上,(-2x 2-x )max =-3, 所以a ≥-3.∴实数a 的取值范围是[-3,+∞). (2)g (x )在[1,2]上存在单调递增区间, 则g ′(x )>0在[1,2]上有解, 即a >-2x 2-x 在[1,2]上有解, ∴a >(-2x 2-x )min ,又(-2x 2-x )min =-10,∴a >-10.变式2、若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎡⎦⎤-1,13C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 【答案】 C【解析】 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1], 则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13方法总结: 1.明晰导数概念及其几何意义在解题中的应用,强化方程的思想,培养基本运算能力.2. 辨析区间上单调和区间上存在单调区间的本质区别和处理策略的不同,提升参变分离和构造函数等解决问题的方法和技巧,感悟数学解题背后的思维和内涵.考向三 函数单调区间的讨论例3、已知函数.当时,讨论的单调性; 【解析】函数的定义域为., 因为,所以, ①当,即时,由得或,由得, 所以在,上是增函数, 在上是减函数; ②当,即时,所以在上是增函数;③当,即时,由得或,由得,所以在,.上是增函数,在.上是减函 综上可知:当时在,上是单调递增,在上是单调递减; 当时,在.上是单调递增;当时在,上是单调递增,在上是单调递减. 变式1、讨论下列函数的单调性. (1)f (x )=x -a ln x ; (2)g (x )=13x 3+ax 2-3a 2x .【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上单调递增. ②当a >0时,x ∈(0,a )时,f ′(x )<0,()()11ln f x x m x m R x x ⎛⎫=+-+∈ ⎪⎝⎭1m ()f x ()f x (0,)+∞'21()1m m f x x x -=+-2221(1)[(1)]x mx m x x m x x -+----==1m 10m ->011m <-<12m <<()0f x '>1x >1x m <-()0f x '<11m x -<<()f x ()0,1m -()1,+∞()1,1m -11m -=2m =()0f x '≥()f x ()0,∞+11m ->2m >()0f x '>1x m >-1x <()0f x '<11x m <<-()f x ()0,1()1,m -+∞()1,1m -12m <<()f x ()0,1m -()1,+∞()1,1m -2m =()f x ()0,∞+2m >()f x ()0,1()1,m -+∞()1,1m -x ∈(a ,+∞)时,f ′(x )>0,∴f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. (2)g (x )的定义域为R ,g ′(x )=x 2+2ax -3a 2=(x +3a )(x -a ), 当a =0时,g ′(x )≥0, ∴g (x )在R 上单调递增. 当a >0时,x ∈(-∞,-3a )∪(a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(-3a ,a )时,g ′(x )<0,g (x )单调递减. 当a <0时,x ∈(-∞,a )∪(-3a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 变式2、已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.【解析】 由题知,f (x )的定义域是(0,+∞), f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2, g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增. ②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根, x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x )+-+f (x )单调递增 极大值 单调递减 极小值 单调递增此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.方法总结: 对含参函数的合理分类,关键是找到引起分类讨论的原因.2. 会对函数进行准确求导,求导以后进行整理并因式分解,其中能否因式分解、每个因式系数的正负、根的大小等都是引起分类讨论的原因.考向四 构造函数研究单调性例4、(1)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x(2)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)【答案】 (1)A (2)D【解析】(1)法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2,∴令x =0,则f (0)>0,故可排除B 、D ,不妨令f (x )=x 2+0.1,则已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不一定成立,故C 也是错误的,故选A.(2)∵f (x )是定义域为{x |x ≠0}的偶函数, ∴f (-x )=f (x ).对任意正实数x 满足xf ′(x )>-2f (x ), ∴xf ′(x )+2f (x )>0. ∵g (x )=x 2f (x ),∴g (x )也是偶函数,当x ∈(0,+∞)时,g ′(x )=2xf (x )+x 2f ′(x )>0. ∵g (x )在(0,+∞)上单调递增, ∴g (x )在(-∞,0)递减. 若g (x )<g (1),则|x |<1(x ≠0), 解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1). 变式1、已知定义在上的函数的导函数为,且,,则下列判断中正确的是( )A .B .C .D . 【答案】CD 【解析】令,,则, 因为, 所以在上恒成立, 因此函数在上单调递减, 因此,即,即,故A 错;又,所以,所以在上恒成立, 0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<6624f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()()cos f x g x x =0,2x π⎡⎫∈⎪⎢⎣⎭2()cos ()sin ()cos f x x f x x g x x '+'=()cos ()sin 0f x x f x x '+<2()cos ()sin ()0cos f x x f x x g x x '+'=<0,2π⎡⎫⎪⎢⎣⎭()()cos f x g x x =0,2π⎡⎫⎪⎢⎣⎭64g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭64cos cos64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>664f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()00f =(0)(0)0cos0f g ==()()0cos f x g x x =≤0,2π⎡⎫⎪⎢⎣⎭因为,所以,故B 错; 又,所以,即,故C 正确;又,所以,即,故D 正确;故选:CD.变式2、设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 【答案】 (-∞,-1)∪(0,1)【解析】 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0. 则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上单减,在(-∞,0)上单增.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0. 综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).变式3、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________. 【答案】 (-∞,-3)∪(0,3) 【解析】 f ′(x )g (x )+f (x )g ′(x )>0⇔ [f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增. 又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).ln0,32ππ⎡⎫∈⎪⎢⎣⎭ln 03f π⎛⎫< ⎪⎝⎭63g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭63cos cos 63f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43cos cos43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).方法总结:(1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x );(2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); (4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f xg x(g (x )≠0);(5)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (6)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f xx(x ≠0).1、函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .2、设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.3、(2021·深圳市龙岗区龙城高级中学高三月考)已知函数()ln f x x =,()g x x =,则当120x x >>时( ) A .1122|()()||()()|f x g x f x g x -<-|B .1122|()()||()()|f x g x f x g x ->-C .1221|()()||()()|f x g x f x g x -<- D .1221|()()||()()|f x g x f x g x ->-【答案】C【解析】令()ln h x x x =-,则()111xh x x x-'=-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∈+∞时,()0h x '<,()h x 单调递减, 则()()110h x h ≤=-<,则()h x 在()0,1单调递减,在()1,+∞单调递增,∴()1h x 和()2h x 的大小不确定,故AB 错误;由()0h x <可知221ln x x x <<,即()()210f x g x -<, 令1221|()()||()()|W f x g x f x g x =---, 则1221|()()|()()W f x g x f x g x =-+-,当()()12f x g x ≥时,[][]12211122()()()()()()()()0W f x g x f x g x f x g x f x g x =-+-=-+-<; 当()()12f x g x <,[][]21212211()()()()()()()()W g x f x f x g x f x g x f x g x =-+-=+-+,()()ln y f x g x x x =+=+单调递增,0W ∴<, 综上,1221|()()||()()|f x g x f x g x -<-,故C 正确,D 错误.故选:C.4、(2021·广东高三月考)已知函数()ln f x x ax =+在函数()22g x x x b =-+的递增区间上也单调递增,则实数a 的取值范围是( ) A .(],1-∞- B .[)0,+∞C .(][),10,-∞-+∞ D .(]1,0-【答案】B【解析】因为()g x 的单调递增区间为[)1,+∞, 则由题意()f x 在[)1,+∞递增, 而()1axf x x+'=, 所以当0a ≥时,()0f x '>在 [)1,+∞恒成立,()f x 在区间[)1,+∞单调递增,符合题意; 当0a <时,由()10ax f x x +'=>,解得10x a<<- ()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,不合题意.综上,0a ≥. 故选:B5、(2021·广东高三月考)若对任意的1x ,()2,x m ∈+∞,且12x x <,都有122121ln ln 2x x x x x x -<-,则m 的最小值是( )(注: 2.71828e =⋅⋅⋅为自然对数的底数) A .1eB .eC .1D .3e【答案】A【解析】由题意知210x x >>,可得210x x ->, 则122121ln ln 2x x x x x x -<-等价于()122121ln ln 2x x x x x x -<-,即121212ln 2ln 2x x x x x x +<+,所以()()1221ln 2ln 2x x x x +<+, 所以2121ln 2ln 2x x x x ++<, 令()ln 2x f x x+=,可得21f x f x ,又由21x x m >>,所以()f x 在(),m +∞上是减函数, 所以()2ln 10x f x x--'=≤,解得1x e ≥,则1m e ≥,即m 的最小值为1e . 故选:A.6、(2021·深圳市第七高级中学高三月考)已知定义在R 上的函数()f x 满足()()()()0,6f x f x f x f x +-=+=-,且对[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[]9,6--单调递增C .3x =是函数()f x 的对称轴D .函数()f x 的最小正周期是12【答案】BCD【解析】由定义域为R , ()()0f x f x +-=,即()()f x f x -=-,则函数为奇函数,故A 错误;因为()()6f x f x +=-,而()()f x f x -=-,所以()()6f x f x +=-,所以函数的对称轴为6032x +==,故C 选项正确; 因为()()6f x f x +=-,所以()()()126f x f x f x +=-+=,所以()f x 的最小正周期是12,故D 选项正确;因为[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+, 则()()()()12120x x f x f x --<,所以[]3,0x ∈-时,()f x 为减函数. 因为函数为奇函数,所以[]0,3x ∈时,()f x 为减函数,又因为函数()f x 关于3x =对称,所以[]3,6x ∈时,()f x 为增函数.因为()f x 的最小正周期是12,所以[]9,6x ∈--的单调性与[]3,6x ∈时的单调性相同. 故,[]9,6x ∈--时,()f x 单调递增,故B 选项正确. 故选:BCD. 7、()3211232f x x x ax =-++,若()f x 在2,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______ 【答案】19a >- 【解析】:()'22fx x x a =-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()'0f x ≥,即()212a x x ≥-,只需()2min12a x x ⎡⎤≥-⎢⎥⎣⎦,而()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-。

利用导数研究函数的性质

利用导数研究函数的性质

点击对应数字即可跳转到对应题目
1
2
3
4
5
链教材·夯基固本 激活思维
3.(人 A 选必二 P91 例 5)函数 f(x)=13x3-4x+4 的极大值为__2_38__,极小值为__-__43___.
【解析】 因为 f(x)=13x3-4x+4,所以 f′(x)=x2-4=(x+2)(x-2).令 f′(x)=0,解 得 x=-2 或 x=2. 当 x∈(-∞,-2)时,f′(x)>0,当 x∈(-2,2)时,f′(x)<0,当 x∈(2,+∞)时, f′(x)>0,因此,当 x=-2 时,f(x)有极大值,并且极大值为 f(-2)=238;当 x=2 时,f(x)有极小值,并且极小值为 f(2)=-43.
1 (1)已知f(x)=3x2+6x-6ex+5,则函数f(x)的单调递减区间为
A.(1,+∞)
B.(ln3,+∞)
C.(-∞,ln3)
D.(-∞,+∞)
( D)
【解析】 由题可知f(x)的定义域为R,且f′(x)=6x+6-6ex=6(x+1-ex). 令 g(x) = x + 1 - ex , 则 g′(x) = 1 - ex , x ∈ R . 当 x ∈ ( - ∞ , 0) 时 , g′(x) > 0 ; 当 x∈(0,+∞)时,g′(x)<0,所以g(x)在(-∞,0)上单调递增,在(0,+∞)上单调 递减,则g(x)的最大值为g(0)=0,故g(x)≤0恒成立,故f′(x)≤0在R上恒成立,所 以f(x)在R上单调递减,即函数f(x)的单调递减区间为(-∞,+∞).
利用导数研究函数的性质
链教材·夯基固本
链教材·夯基固本 激活思维
1.若函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,

2015届高考数学一轮总复习 3-2利用导数研究函数的性质

2015届高考数学一轮总复习 3-2利用导数研究函数的性质

2015届高考数学一轮总复习 3-2利用导数研究函数的性质基础巩固强化一、选择题1.(文)(2012·陕西文,9)设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 [答案] D[解析] 由f ′(x )=-2x 2+1x =1x (1-2x )=0可得x =2.当0<x <2时,f ′(x )<0,f (x )单调递减,当x >2时 f ′(x )>0,f (x )单调递增.所以x =2为极小值点. (理)(2012·陕西理,7)设函数f (x )=x e x ,则( ) A .x =1为f (x )的极大值点 B .x =1为f (x )的极小值点 C .x =-1为f (x )的极大值点 D .x =-1为f (x )的极小值点 [答案] D[解析] 本题考查了导数的应用—求函数的极值. f ′(x )=e x +x e x ,令f ′(x )=0, ∴e x +x e x =0,∴x =-1,当x ∈(-∞,-1)时,f ′(x )=e x +x e x <0,x ∈(-1,+∞)时,f ′(x )=e x +x e x >0,∴x =-1为极小值点,故选D.[点评] 求函数的极值要讨论在各区间内导函数值的符号,同时要注意函数的定义域. 2.(2013·贵州四校期末)已知函数f (x )=x 3-2x 2-4x -7,其导函数为f ′(x ).则以下四个命题: ①f (x )的单调减区间是(23,2);②f (x )的极小值是-15;③当a >2时,对任意的x >2且x ≠a ,恒有f (x )>f (a )+f ′(a )(x -a ); ④函数f (x )有且只有一个零点. 其中真命题的个数为( ) A .1个 B .2个 C .3个D .4个[答案] C[解析] f ′(x )=3x 2-4x -4=(3x +2)(x -2),可得f (x )在(-∞,-23)上为增函数,在(-23,2)上为减函数,在(2,+∞)上为增函数,故①错误;f (x )极小值=f (2)=-15,故②正确;在(2,+∞)上,f (x )为“下凸”函数,又a >2,x ≠a ,当x >a 时,有f (x )-f (a )x -a >f ′(a )恒成立;当x <a 时,有f (x )-f (a )x -a <f ′(a )恒成立,故恒有f (x )>f (a )+f ′(a )(x -a ),故③正确;f (x )极大值=f (-23)<0,故函数f (x )只有一个零点,④正确.真命题为②③④,故选C.3.(文)(2013·郑州第一次质量预测)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .2B .-1C .1D .-2[答案] C[解析] ∵直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),且y =x 3+ax +b 的导数y ′=3x 2+a ,∴⎩⎪⎨⎪⎧3=k ×1+13=13+a ×1+b k =3×12+a,解得a =-1,b =3,∴2a +b =1.(理)(2013·昆明调研)若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2[答案] C[解析] 依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,于是有f ′(0)=g ′(0),即-a sin0=2×0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1,选C.4.(2012·洛阳统考)若函数f (x )=2x 3-9x 2+12x -a 恰好有两个不同零点,则a 可能为( ) A .4 B .6 C .7 D .8 [答案] A[解析] f ′(x )=6x 2-18x +12=6(x -1)(x -2),由f ′(x )>0得x <1或x >2,由f ′(x )<0得1<x <2,所以函数f (x )在(-∞,1),(2,+∞)上单调递增,在(1,2)上单调递减,从而可知f (x )的极大值和极小值分别为f (1)、f (2),欲使函数f (x )恰好有两个不同的零点,则需使f (1)=0或f (2)=0,解得a =5或a =4,而选项中只给出了一个值4,所以选A.5.(文)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在(a,b)内的极大值点有()A.1个B.2个C.3个D.4个[答案] B[解析]由导函数的图象知,f(x)在(a,b)内变化情况为增→减→增→减,故有两个极大值点.(理)(2012·重庆理,8)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如下图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)[答案] D[解析]当x<-2时,1-x>3,则f′(x)>0;当-2<x<1时,0<1-x<3,则f′(x)<0;∴函数f(x)有极大值f(-2),当1<x<2时,-1<1-x<0,则f′(x)<0;x>2时,1-x<-1,则f′(x)>0,∴函数f(x)有极小值f(2),故选D.6.(文)已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为()A.427,0 B .0,427C .-427,0D .0,-427[答案] A[解析] f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0得,⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0.解得⎩⎪⎨⎪⎧p =2,q =-1.∴f (x )=x 3-2x 2+x , 由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.(理)(2013·浙江理,8)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值 D .当k =2时,f (x )在x =1处取到极大值 [答案] C[解析] ①当k =1时,f (x )=(e x -1)(x -1),此时f ′(x )=e x (x -1)+(e x -1)=e x ·x -1,∴A 、B 项均错.②当k =2时,f (x )=(e x -1)(x -1)2此时f ′(x )=e x (x -1)2+(2x -2)(e x -1)=e x ·x 2-2x -e x +2=e x (x +1)(x -1)-2(x -1)=(x -1)[e x (x +1)-2],显然f ′(1)=0,x >1时f ′(x )>0,x <1时,在x =1附近x -1<0,e x (x +1)>2,∴f ′(x )<0,故f (x )在x =1处取得极小值.二、填空题7.(文)函数f (x )=x 3+3x 2-9x 的单调减区间为________. [答案] [-3,1][解析] f ′(x )=3x 2+6x -9,由f ′(x )≤0得-3≤x ≤1,∴f (x )的单调减区间为[-3,1]. (理)已知函数f (x )=mx 3+nx 2的图象在点(-1,2)处的切线恰好与直线3x +y =0平行,若f (x )在区间[t ,t +1]上单调递减,则实数t 的取值范围是________.[答案] [-2,-1][解析] 由题意知,点(-1,2)在函数f (x )的图象上,故-m +n =2① 又f ′(x )=3mx 2+2nx ,由条件知f ′(-1)=-3, 故3m -2n =-3②联立①②解得:m =1,n =3,即f (x )=x 3+3x 2, 令f ′(x )=3x 2+6x ≤0,解得-2≤x ≤0, 则[t ,t +1]⊆[-2,0],故t ≥-2且t +1≤0,所以t ∈[-2,-1].[点评] f (x )在区间[t ,t +1]上单调递减,故[t ,t +1]是f (x )的减区间的子集.8.已知函数f (x )=x 3-kx 在区间(-3,-1)上不单调,则实数k 的取值范围是________. [答案] 3<k <27[解析] f ′(x )=3x 2-k .由3x 2-k >0,得x 2>k3,若k ≤0,则f (x )显然在(-3,-1)上单调递增,∴k >0,∴x >k3或x <-k 3. 由3x 2-k <0得-k 3<x <k 3, ∴f (x )在⎝⎛⎭⎫-∞,-k 3上单调递增,在(-k 3,k3)上单调递减,在⎝⎛⎭⎫k 3,+∞上单调递增,由题设条件知-3<-k3<-1,∴3<k <27. 9.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值为3,那么此函数在[-2,2]上的最小值为________.[答案] -37[解析] f ′(x )=6x 2-12x ,由f ′(x )=0得x =0或x =2,当x <0或x >2时,f ′(x )>0,当0<x <2时,f ′(x )<0,∴f (x )在[-2,0]上单调增,在[0,2]上单调减, 由条件知f (0)=m =3,∴f (2)=-5,f (-2)=-37, ∴最小值为-37. 三、解答题10.(文)若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.[解析] 函数f (x )的导数f ′(x )=x 2-ax +a -1. 令f ′(x )=0,解得x =1,或x =a -1.当a -1≤1即a ≤2时,函数f (x )在(1,+∞)上为增函数,不合题意;当a -1>1即a >2时,函数f (x )在(-∞,1)上为增函数,在(1,a -1)上为减函数,在(a -1,+∞)上为增函数.依题意当x ∈(1,4)时,f ′(x )<0; 当x ∈(6,+∞)时,f ′(x )>0. 所以4≤a -1≤6,解得5≤a ≤7. 所以a 的取值范围为[5,7]. (理)已知f (x )=ax 3-2ax 2+b (a ≠0). (1)求出f (x )的极值;(2)若f (x )在区间[-2,1]上最大值是5,最小值是-11,求f (x )的解析式.[解析] (1)f ′(x )=3ax 2-4ax ,令f ′(x )=0⇒x =0或x =43.当a >0时,当x =43时,y 取得极小值b -3227a ,同理当a <0时,x =0时,y 取得极小值b , x =43时,y 取得极大值b -3227a . (2)当a >0时,f (x )在[-2,0)上单调递增,在(0,1]上单调递减, 所以f (x )max =f (0)=b =5. 又f (-2)=b -16a <f (1)=b -a , 所以b -16a =-11,a =1.当a <0时,f (x )在[-2,0)上单调递减,在(0,1]上单调递增, 所以f (x )min =f (0)=b =-11. 又f (-2)=b -16a >f (1)=b -a , 所以b -16a =5,a =-1.综上,f (x )=x 3-2x 2+5或f (x )=-x 3+2x 2-11.能力拓展提升一、选择题11.(文)已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3的极大值点坐标为(b ,c ),则ad 等于( )A .2B .1C .-1D .-2[答案] A[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc , 又(b ,c )为函数y =3x -x 3的极大值点, ∴c =3b -b 3,且0=3-3b 2,∴⎩⎪⎨⎪⎧ b =1,c =2,或⎩⎪⎨⎪⎧b =-1,c =-2.∴ad =2. (理)已知函数f (x )=ax 2-1的图象在点A (1,f (1))处的切线l 与直线8x -y +2=0平行,若数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和为S n ,则S 2010的值为( )A.20102011B.10052011C.40204021D.20104021[答案] D[解析] ∵f ′(x )=2ax ,∴f (x )在点A 处的切线斜率为f ′(1)=2a ,由条件知2a =8,∴a =4, ∴f (x )=4x 2-1, ∴1f (n )=14n 2-1=12n -1·12n +1=12⎝⎛⎭⎫12n -1-12n +1, ∴数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和S n =1f (1)+1f (2)+…+1f (n )=12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝⎛⎭⎫12n -1-12n +1=12⎛⎭⎫1-12n +1=n 2n +1,∴S 2010=20104021. 12.(文)函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( )A .{x |x >0}B .{x |x <0}C .{x |x <-1,或x >1}D .{x |x <-1,或0<x <1}[答案] A[解析] 构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )]-e x >e x-e x =0,所以g (x )=e x ·f (x )-e x 为R 上的增函数.又g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.(理)(2013·湖北理,10)已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( ) A .f (x 1)>0,f (x 2)>-12B .f (x 1)<0,f (x 2)<-12C .f (x 1)>0,f (x 2)<-12D .f (x 1)<0,f (x 2)>-12[答案] D[解析] 由题意知,函数f (x )=x (ln x -ax )=x ln x -ax 2有两个极值点, 即f ′(x )=ln x +1-2ax =0在区间(0,+∞)上有两个根.令h (x )=ln x +1-2ax ,则h ′(x )=1x -2a =-2ax +1x ,当a ≤0时h ′(x )>0,h (x )在区间(0,+∞)上递增,f ′(x )=0不可能有两个正根,∴a >0.由h ′(x )=0,可得x =12a ,从而可知h (x )在区间(0,12a )上递增,在区间(12a,+∞)上递减.因此需h (12a )=ln 12a +1-1=ln 12a >0,即12a >1时满足条件,故当0<a <12时,h (x )=0有两个根x 1,x 2,且x 1<12a<x 2.又h (1)=1-2a >0,∴x 1<1<12a <x 2,从而可知函数f (x )在区间(0,x 1)上递减,在区间(x 1,x 2)上递增,在区间(x 2,+∞)上递减.∴f (x 1)<f (1)=-a <0,f (x 2)>f (1)=-a >-12.故选D.二、填空题13.(文)(2013·天津一中月考)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b 的值为________.[答案] -7[解析] f ′(x )=3x 2+6ax +b ,若在x =-1处有极值0,则⎩⎪⎨⎪⎧f ′(-1)=3-6a +b =0,f (-1)=-1+3a -b +a 2=0, 解得⎩⎪⎨⎪⎧ a =2,b =9或⎩⎪⎨⎪⎧a =1,b =3,但当a =1,b =3时,f ′(x )=3(x +1)2≥0,不合题意, 故a -b =-7.(理)(2013·课标全国Ⅰ理,16)若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =-2对称,则f (x )的最大值为________.[答案] 16[解析] ∵函数f (x )的图象关于直线x =-2对称, ∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即⎩⎪⎨⎪⎧ b =-15(16-4a +b ),0=-8(9-3a +b ),解得⎩⎪⎨⎪⎧a =8,b =15.∴f (x )=-x 4-8x 3-14x 2+8x +15. 由f ′(x )=-4x 3-24x 2-28x +8=0, 得x 1=-2-5,x 2=-2,x 3=-2+ 5.易知,f (x )在(-∞,-2-5)上为增函数,在(-2-5,-2)上为减函数,在(-2,-2+5)上为增函数,在(-2+5,+∞)上为减函数.∴f (-2-5)=[1-(-2-5)2][(-2-5)2+8(-2-5)+15] =(-8-45)(8-45) =80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15] =-3(4-16+15)=-9.f (-2+5)=[1-(-2+5)2][(-2+5)2+8(-2+5)+15] =(-8+45)(8+45) =80-64=16. 故f (x )的最大值为16.14.(文)已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________.[答案] -13[解析] 求导得f ′(x )=-3x 2+2ax ,由函数f (x )在x =2处取得极值知f ′(2)=0,即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x ,易知f (x )在(-1,0)上单调递减,在(0,1)上单调递增,∴当m ∈[-1,1]时,f (m )min =f (0)=-4.又∵f ′(x )=-3x 2+6x 的图象开口向下,且对称轴为x =1,∴当n ∈[-1,1]时,f ′(n )min =f ′(-1)=-9.故f (m )+f ′(n )的最小值为-13.(理)(2013·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.[答案] -3e[解析] f ′(x )=1x +m x 2=x +mx2(x >0),当m >0时,f ′(x )>0,f (x )在区间[1,e]上为增函数, f (x )有最小值f (1)=-m =4, 得m =-4,与m >0矛盾.当m <0时,若-m <1即m >-1,f (x )min =f (1)=-m =4, 得m =-4,与m >-1矛盾;若-m ∈[1,e],即-e ≤m ≤-1,f (x )min =f (-m )=ln(-m )+1=4, 解得m =-e 3,与-e ≤m ≤-1矛盾;若-m >e ,即m <-e 时,f (x )min =f (e)=1-me =4,解得m =-3e ,符合题意.三、解答题15.(文)设函数f (x )=x 3-3ax +b (a ≠0).(1)若曲线y =f (x )在点(2,f (2))处与直线y =8相切,求a 、b 的值; (2)求函数f (x )的单调区间与极值点. [解析] (1)f ′(x )=3x 2-3a .因为曲线y =f (x )在点(2,f (2))处与直线y =8相切,所以⎩⎪⎨⎪⎧ f ′(2)=0,f (2)=8.即⎩⎪⎨⎪⎧12-3a =0,8-6a +b =8.解得a =4,b =24. (2)f ′(x )=3(x 2-a )(a ≠0).当a <0时,f ′(x )>0,函数f (x )在(-∞,+∞)上单调递增;此时函数f (x )没有极值点. 当a >0时,由f ′(x )=0得x =±a .当x ∈(-∞,-a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(-a ,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增.∴f (x )的单调增区间为(-∞,-a )和(a ,+∞),单调减区间为(-a ,a ). 故x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点. (理)(2013·昆明调研)设f (x )=ln x +ax (a ∈R 且a ≠0). (1)讨论函数f (x )的单调性;(2)若a =1,证明:x ∈[1,2]时,f (x )-3<1x成立.[解析] (1)函数f (x )的定义域为(0,+∞),f ′(x )=1x +a ,当a >0时,f ′(x )>0,∴函数f (x )在(0,+∞)上是增函数. 当a <0时,f ′(x )=ax +1x,由f ′(x )>0得0<x <-1a ;由f ′(x )<0得,x >-1a.∴函数f (x )在(0,-1a )上是增函数;在(-1a ,+∞)上是减函数.(2)当a =1时,f (x )=ln x +x , 要证x ∈[1,2]时,f (x )-3<1x成立,只需证x ln x +x 2-3x -1<0在x ∈[1,2]时恒成立. 令g (x )=x ln x +x 2-3x -1,则g ′(x )=ln x +2x -2, 设h (x )=ln x +2x -2,则h ′(x )=1x+2>0,∴h (x )在[1,2]上单调递增,∴g ′(1)≤g ′(x )≤g ′(2),即0≤g ′(x )≤ln2+2,∴g (x )在[1,2]上单调递增,∴g (x )≤g (2)=2ln2-3<0,∴当x ∈[1,2]时,x ln x +x 2-3x -1<0恒成立,即原命题得证.考纲要求1.了解函数单调性和导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次). 3.了解函数在某点取得极值的必要条件和充分条件.4.会用导数求函数的极大值、极小值,会用导数求闭区间上函数的最大(小)值(其中多项式函数一般不超过三次).补充说明1.抓住三个考点:用导数求函数的单调区间、极值与最值,明确两个条件:一是f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的充分条件.二是对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件;掌握利用导数讨论函数单调性、极(最)值的基本方法步骤.明确极值与最值的区别.牢记定义域的限制;防范错误的认为极值点就是最值点,导数为0的点就是极值点,f (x )单调递增⇔f ′(x )>0.2.求函数的极值、最值时,要严格按解题步骤规范条理的写出解答过程,养成列表的习惯,含参数时注意分类讨论,已知单调性求参数的值域或取值范围时,要注意其中隐含f ′(x )≥0(或f ′(x )≤0)恒成立.还要注意f (x )在区间A 上单调增(或减)与f (x )的单调增(或减)区间是A 的区别.3.易错警示[例]已知函数f (x )=ax 3+3x 2-x +1在R 上是减函数,求a 的取值范围. [错解] 求函数的导数f ′(x )=3ax 2+6x -1,当f ′(x )<0时,f (x )是减函数,则f ′(x )=3ax 2+6x -1<0(x ∈R ).故⎩⎪⎨⎪⎧a <0,Δ<0.解得a <-3.[错因分析] f ′(x )<0(x ∈(a ,b ))是f (x )在(a ,b )上单调递减的充分不必要条件,在解题过程中易误作是充要条件,如f (x )=-x 3在R 上递减,但f ′(x )=-3x 2≤0.[正确解答] 函数的导数f ′(x )=3ax 2+6x -1,∵f (x )是减函数,∴f ′(x )=3ax 2+6x -1≤0(x ∈R ).故⎩⎪⎨⎪⎧a <0,Δ≤0,解得a ≤-3.综上a 的取值范围是a ≤-3. 4.如何利用导数证明不等式导数作为一种研究数学知识的工具,在求函数单调性、最值等方面发挥了独特的作用,同样,我们也可以利用导数完成一些不等式的证明问题,其关键在于要构造好函数的形式,转化为研究函数的单调性、最值或值域问题,一般难度较大.[例] (2012·山东)已知函数f (x )=ln x +ke x (k 为常数,e =2.71828…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间;(3)设g (x )=(x 2+x )f ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2.[审题要点] (1)由已知,求导后利用方程f ′(1)=0即可求出k 的值;(2)讨论f ′(x )在(0,+∞)上的符号可得出函数f (x )的单调区间;(3)变换g (x )=x +1e x (1-x -x ln x ),适当构造函数,证明0<x +1e x <1,1-x -x ln x ≤1+e-2即可.[规范解答] (1)解:由f (x )=ln x +ke x, 得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞),由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1.(2)解:由(1)得f ′(x )=1x ex (1-x -x ln x ),x ∈(0,+∞),令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0. 又e x >0,所以当x ∈(0,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)证明:因为g (x )=(x 2+x )f ′(x ),所以g (x )=x +1e x (1-x -x ln x ),x ∈(0,+∞).因此,对任意x >0,g (x )<1+e-2等价于1-x -x ln x <e x x +1(1+e -2).由(2)知h (x )=1-x -x ln x ,x ∈(0,+∞),所以h ′(x )=-ln x -2=-(ln x -lne -2),x ∈(0,+∞).因此,当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减.所以h (x )的最大值为h (e -2)=1+e -2.故1-x -x ln x ≤1+e -2.设φ(x )=e x -(x +1),则φ′(x )=e x -1=e x -e 0,所以当x ∈(0,+∞)时,φ′(x )>0,φ(x )单调递增,φ(x )>φ(0)=0, 故当x ∈(0,+∞)时,φ(x )=e x -(x +1)>0, 即e x x +1>1. 所以1-x -x ln x ≤1+e -2<e x x +1(1+e -2).因此对任意x >0,g (x )<1+e -2.备选习题1.已知非零向量a 、b 满足|a |=3|b |,若函数f (x )=13x 3+|a |x 2+2a ·b x +1在R 上有极值,则〈a ,b 〉的取值范围是( )A .[0,π6]B .(0,π3]C .(π6,π2]D .(π6,π][答案] D[解析] 据题意知,f ′(x )=x 2+2|a |x +2a ·b ,若函数存在极值,必有(2|a |)2-4×2a ·b >0,整理可得|a |2>2a ·b ,故cos 〈a ,b 〉=a ·b |a |·|b |<|a |22|a |·|a |3=32,解得π6<〈a ,b 〉≤π.2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )[答案] D[解析] 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间上单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.3.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0.对任意正数a 、b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a )[答案] A[解析] ∵xf ′(x )+f (x )≤0,又f (x )≥0, ∴xf ′(x )≤-f (x )≤0.设y =f (x )x ,则y ′=x ·f ′(x )-f (x )x 2≤0,故y =f (x )x 为减函数或为常数函数.又a <b ,∴f (a )a ≥f (b )b ,∵a 、b >0,∴a ·f (b )≤b ·f (a ).[点评] 观察条件式xf ′(x )+f (x )≤0的特点,可见不等式左边是函数y =xf (x )的导函数,故可构造函数y =xf (x )或y =f (x )x通过取导数利用条件式来得到函数的单调性推得结论.4.(2013·山西诊断)设D 是函数y =f (x )定义域内的一个区间,若存在x 0∈D ,使f (x 0)=-x 0,则称x 0是f (x )的一个“次不动点”.若函数f (x )=ax 2-3x -a +52在区间[1,4]上存在次不动点,则实数a的取值范围是( )A .(-∞,0)B .(0,12)C .[12,+∞)D .(-∞,12][答案] D[解析] 设g (x )=f (x )+x ,依题意,存在x ∈[1,4],使g (x )=f (x )+x =ax 2-2x -a +52=0.当x =1时,g (1)=12≠0;当x ≠1时,由ax 2-2x -a +52=0得a =4x -52(x 2-1).记h (x )=4x -52(x 2-1)(1<x ≤4),则由h ′(x )=-2x 2+5x -2(x 2-1)2=0得x =2或x =12(舍去).当x ∈(1,2)时,h ′(x )>0;当x ∈(2,4)时,h ′(x )<0,即函数h (x )在(1,2)上是增函数,在(2,4)上是减函数,因此当x =2时,h (x )取得最大值,最大值是h (2)=12,故满足题意的实数a 的取值范围是(-∞,12],选D.5.(2013·安庆模拟)定义在R 上的函数f (x )满足(x +2)f ′(x )<0(其中f ′(x )是函数f (x )的导数),又a =f (log 123),b =f [(13)0.1],c =f (ln3),则a ,b ,c 的大小关系为______.(从大到小排列)[答案] a >b >c[解析] 因为-2=log 124<log 123<log 121=0,0<(13)0.1<(13)0=1,ln3>ln e =1,因而-2<log 123<(13)0.1<ln3.由(x +2)f ′(x )<0知,当x >-2时,f ′(x )<0,所以f (x )在(-2,+∞)上是减函数,从而f (log 123)>f [(13)0.1]>f (ln3),即a >b >c .6.(2012·湖南长郡中学一模)已知函数f (x )的导函数为f ′(x )=5+cos x ,x ∈(-1,1),且f (0)=0,如果f (1-x )+f (1-x 2)<0,则实数x 的取值范围为________.[答案] (1,2)[解析] ∵导函数是偶函数,∴原函数f (x )是奇函数,且定义域为(-1,1),又由导数值恒大于0,∴原函数在定义域上单调递增,∴所求不等式变形为f (1-x )<f (x 2-1),∴-1<1-x <x 2-1<1,解得1<x <2,∴实数x 的取值范围是(1,2).。

高考复习-利用导数研究函数的单调性及极值和最值

高考复习-利用导数研究函数的单调性及极值和最值

利用导数研究函数的单调性及极值和最值知识集结知识元利用导数研究函数的单调性问题知识讲解1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0的根;(4)用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0得x>﹣1,即f(x)>2x+4的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【解题方法点拨】若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件.例题精讲利用导数研究函数的单调性问题例1.函数f(x)=e x-3x+2的单调减区间为__________.例2.若函数y=-x3+ax在[1,+∞)上是单调函数,则a的最大值是___.例3.函数f(x)=sin x-x,x∈(0,)的单调递增区间是_______.利用导数研究函数的极值与最值问题知识讲解1.利用导数研究函数的极值【知识点的知识】1、极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f (x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f (x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.2、极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3、判别f(x0)是极大、极小值的方法:若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.4、求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x)在这个根处无极值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.2.利用导数研究函数的最值【利用导数求函数的最大值与最小值】1、函数的最大值和最小值观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.图中f(x1)与f(x3)是极小值,f (x2)是极大值.函数f(x)在[a,b]上的最大值是f(b),最小值是f(x1).一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.说明:(1)在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值.如函数f(x)=在(0,+∞)内连续,但没有最大值与最小值;(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个2、用导数求函数的最值步骤:由上面函数f(x)的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.例题精讲利用导数研究函数的极值与最值问题例1.函数y=lnx-e x在[1,e]最大值为()A.1-e e B.C.-eD.例2.己知定义域为(1,+∞)的函数f(x)=e x+a-ax,若f(x)>0恒成立,则正实数a的取值范围为()A.(0,e2]B.(0,e2)C.[1,e2]D.(1,e2)例3.函数f(x)=x2-lnx的最小值为()A.1+ln2B.1-ln2C.D.当堂练习单选题练习1.定义在R上的函数f(x)的导函数为f'(x),且,若存在实数x使不等式f(x)≤m2-am-3对于a∈[0,2]恒成立,则实数m的取值范围为()A.(-∞,-2]∪[2,+∞)B.C.D.练习2.若函数f(x)与g(x)满足:存在实数t,使得f(t)=g'(t),则称函数g(x)为f(x)的“友导”函数.已知函数为函数f(x)=x2lnx+x的“友导”函数,则k的取值范围是()A.(-∞,1)B.(-∞,2]C.(1,+∞)D.[2,+∞)练习3.函数f(x)是定义在(0,+∞)上的可导函数,f'(x)为其导函数,若xf'(x)+f(x)=e x(x-2)且f(3)=0,则不等式f(x)<0的解集为()A.(0,2)B.(0,3)C.(2,3)D.(3,+∞)练习4.已知定义在(0,+∞)上的函数f(x)的导函数为f′(x),f(x)>0且f(e)=1,若xf′(x)lnx+f(x)>0对任意x∈(0,+∞)恒成立,则不等式<lnx的解集为()A.{x|0<x<1}B.{x|x>1}C.{x|x>e}D.{x|0<x<e}练习5.已知函数f(x)=x3-x2+ax-a存在极值点x0,且f(x1)=f(x0),其中x1≠x0,x1+2x0=()A.3B.2C.1D.0练习6.若函数f(x)=e x+axlnx(e为自然对数的底数)有两个极值点,则实数a的取值范围是()A.(-∞,-e)B.(-∞,-2e)C.(e,+∞)D.(2e,+∞)填空题练习1.已知函数f(x)=,若∃,使得f(f(x0))=x0,则m的取值范围是_________练习2.设函数f(x)=e x(2x-1)-2ax+2a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是_______.练习3.已知函数,若当x1,x2∈[1,3]时,都有f(x1)<2f(x2),则a的取值范围为______________.练习4.若函数f(x)=e-x(x2+ax-a)在R上单调递减,则实数a的值为____.练习5.已知函数,g(x)=|x-t|,t∈(0,+∞).若h(x)=min{f(x),g (x)}在[-1,3]上的最大值为2,则t的值为___.练习6.已知函数f(x)=x3-ax2在(-1,1)上没有最小值,则a的取值范围是_________.解答题练习1.'已知函数f(x)=e x-a(x+1),其中a∈R.(1)讨论f(x)的单调性;(2)若a>0时,函数f(x)恰有一个零点,求实数a的值.(3)已知数列{a n}满足a n=,其前n项和为S n,求证S n>ln(n+1)(其中n∈N).'练习2.'已知函数f(x)=(a∈R).(1)当a=1时,求f(x)的单调区间;(2)设点P(x1,y1),Q(x2,y2)是函数f(x)图象的不同两点,其中0<x1<1,x2>1,是否存在实数a,使得OP⊥OQ,且函数f(x)在点Q切线的斜率为f′(x1-),若存在,请求出a的范围;若不存在,请说明理由.'练习3.'已知函数f(x)=x2+ax-alnx(1)若函数f(x)在上递减,在上递增,求实数a的值.(2)若函数f(x)在定义域上不单调,求实数a的取值范围.(3)若方程x-lnx-m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.'练习4.'已知函数f(x)=xlnx-x2-ax+1,a>0,函数g(x)=f′(x).(1)若a=ln2,求g(x)的最大值;(2)证明:f(x)有且仅有一个零点.'练习5.'已知函数f(x)=e x-ax-b.(其中e为自然对数的底数)(Ⅰ)若f(x)≥0恒成立,求ab的最大值;(Ⅱ)设g(x)=lnx+1,若F(x)=g(x)-f(x)存在唯一的零点,且对满足条件的a,b不等式m(a-e+1)≥b恒成立,求实数m的取值集合.'。

高三数学二轮复习教学案一体化:利用导数研究函数的性质

高三数学二轮复习教学案一体化:利用导数研究函数的性质

专题二——利用导数研究函数的性质高考趋势导数作为进入高中考试范围的新内容,在考试中占比较大.常利用导数研究函数的性质,主要是利用导数求函数的单调区间、求函数的极值和最值,这些内容都是近年来高考的重点和难点,大多数试题以解答题的形式出现,通常是整个试卷的压轴题。

试题主要先判断或证明函数的单调区间,其次求函数的极值和最值,有时涉及用函数的单调性对不等式进行证明。

考点展示1.二次函数y f x =()的图象过原点且它的导函数y f x ='()的图象是如图所示的一条直线,则y f x =()图象的顶点在第 一 象限 2.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别 为(04)(20)(64),,,,,,则((0))f f = 2 ; 函数()f x 在1x =处的导数(1)f '= -2 .3.曲线324y x x =-+在点(13),处的切线的倾斜角为 45° 4.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a 15.设R a ∈,若函数ax e y x+=,R x ∈有大于零的极值点,则a 的取值范围1-<a6.已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为 2 . 7.已知函数3()128f x x x =-+在区间[]33-,上的最大值与最小值分别为M ,m ,则M m -=__32_ _ 8.过点P (2,8)作曲线3x y =的切线,则切线方程为_ 12x-y-16=0或3x-y+2=0 样题剖析例1、设函数323()(1)1,32a f x x x a x a =-+++其中为实数。

(Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值;(Ⅱ)已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。

10导数研究函数的性质

10导数研究函数的性质
1 0 导 数 研 究 函数 的性 质
/ 产 知识点扫描 。 。
1 .关 于 z的 函 数 f( 1 z ) 一 +3 z +3 — n的 极
+c x 。 ) , 所以本题就是要求 厂( - z ) ≤o 在( o , +c x 。 ) 上有
实数解.
值点 的个数有

时, g ( ) ≤O , 因此 当 x E E o , 1 ] 时, g ( z ) 为减 函数 , 从
而当x E[ o , 1 ] 时, g ( z ) E[ g ( 1 ) , g ( O ) 3 .
有解 , 从 而导致错误. 在研究 函数 的有关性 质时 , 一定 要注意优先考虑定义域. 例 2 将 函 数 y— l n x一 2的 图 象 按 向量 n 一
/( z ) ≤0有实数解 , 考 虑到 函数 的定义 域为 ( 0 ,
( 一1 , 2 ) 平移 得到函数 一, ( ) 的图象 , 求证: 当 >
平 移 得 到 函 数 一 ’ ( ) 一l n ( + 1 ) . 令 g( z) 一 ( z) 一 兰 ± 2 二 兰一
( + 2 ) 。
2 ] 单调递增 , 又 由于 厂 ( z ) 在[ 一2 , 一1 ] 上单调递减 , 因此 _ 厂 ( 2 ) 和厂 ( ~1 ) 分别是 _ 厂 ( z ) 在 区间[ 一2 , 2 ] 上 的最 大值和
因为 函数 的定义域 为( O , +c o ) , 则a X +2 z 一1 ≥O应
有x > O的解 .
3 . /( o ) 一0 是可导函数 一, ( z ) 在点z —z o 处
有极值 的 条件.
, , y = )
( 1 )当 a >O时 , =n 。 +2 一1 为开 口向上的抛
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于可导函数 f(x), x= x0是 f( x)的极值点,必须具备① f′ (x0)= 0,②在 x0 两侧, f′ (x) 的符号为异号.所以 f′ (x0)=0 只是 f(x)在 x0 处有极值的必要条件,但并不充分. 4.如果连续函数 f(x) 在区间 (a,b)内只有一个极值点,那么这个极值点就是最值点.在解决 实际问题中经常用到这一结论.
利用导数研究函数的性质
知识梳理
1. f′( x)>0 在( a, b)上成立是 f (x)在 (a, b)上单调递增的充分不必要条件. 2. f(x)在 (a, b)上是增函数的充要条件是 f′( x)≥ 0,且 f′ (x) =0 在有限个点处取到. 3.对于可导函数 f(x) ,f′( x0)= 0 并不是 f( x)在 x=x0 处有极值的充分条件
变式 2: 已知 f (x)= x3- ax2- 3x. (1)若 f (x)在 [2,+∞ )上是增函数,求实数 a 的取值范围; (2)若 x= 3 是 f(x)的极值点,求 f(x) 在[1 ,a ]上的最小值和最大值.
例 2: 设函数 f (x)= x(ex- 1)-12x2,求函数 f(x)的单调增区间.
变式 2: 若函数 f (x)= 3x+ln x 在区间 (m, m+ 2)上单调递减,则实数 m 的范围是 ________.
变式 3 :若函数 f(x)=1x3-1ax2+ (a- 1) ·x+ 1 在区间 (1,4)上是减函数,在区间 (6,+∞ )上是 32
增函数,则实数 a 的取值范围是 ________.
变式 4.函数 f ( x) 是定义在 R 上的奇函数, f (3) 0,且 x 0时, xf '( x) f ( x) ,则不等 式 f (x) 0的解集是 变式 5.函数 f (x 1) 是定义在 R 上的偶函数, f ( 2) 1 ,且 f ' (x) f (x) ,则不等式 f ( x) ex 的解集是
变式 4 : 已知函数
f(x) =ln
x-
1 2
ax2-
2
x(
a≠
0)
存在单调递减区间,则实数
a 的取值范围是
________ .
变式 5:已知函数 f (x)=- x3+ ax2- x- 1 在 (-∞, +∞ )上是单调函数, 则实数 a 的取值范围
是____________ . 变式 6:( 1) 已知函数 f(x)=- 12x2+ 4x-3ln x 在[ t, t+ 1]上不是单调函数,则 t 的取值范围 是 ________ . ( 2) 已知函数 f( x)= x3+ (1- a)x2- a(a+ 2)x+b(a, b∈ R).若函数 f(x)在区间 (- 1,1)上不单 调,则实数 a 的取值范围是 ________. 变式 7 : 已知函数 f(x)= x3+ bx2+ cx+ d 在区间 [- 1,2] 上是减函数,则 b+ c 的最大值为
变式 2:已知 f (x) 是定义在 R 上的偶函数,当 x 0 时 , f (x) xf' (x) 0, 且 f ( 4) 0 ,则不 等式
xf ( x) 0 的解集为 _______________. 变式 3:设 f(x)、g(x)分别是定义在 R 上的奇函数和偶函数 ,当 x< 0 时 , f (x) g( x) f ( x) g ( x) > 0.且 g(3)=0.则不等式 f(x)g(x)< 0 的解集是
题型一 利用导数求函数的单调区间 例 1. 已知函数 f( x)= 4x3+3tx2- 6t2x+ t- 1, x∈R ,其中 t∈ R .
(1)当 t =1 时,求曲线 y= f(x)在点 (0, f(0)) 处的切线方程; (2)当 t ≠0 时,求 f (x)的单调区间.
变式 1: 已知函数 f(x) =x3-ax2-3x. (1)若 f (x)在 [1,+∞ )上是增函数,求实数 a 的取值范围; (2)若 x= 3 是 f(x)的极值点,求 f(x) 的单调区间.
5.设 a 0,讨论函数 f ( x) ln x a(1 a) x2 2(1 a) x 的单调性.
题型二 已知单调区间求参数范围 例 1. 已知函数 f ( x) = ln x- x,则函数 f ( x) 的单调减区间是 __________. 变式 1: 已知函数 f(x)= lnx-ax,求函数 f(x)的单调区间 .
题型一 : 区分函数图像与导函数图像 例 1. 设 f′( x)是函数 f (x)的导函数, y= f′ (x)的图象如右图所示,则 是________. (填图象序号 )
f( x)的图象最有可能的
变式 1. 如图是 y=f(x)导数的图象,对于下列四个判断: ① f(x)在 [-2 , -1] 上是增函数; ② x=-1 是 f(x)的极小值点; ③ f(x)在 [-1,2] 上是增函数,在 [2,4] 上是减函数;
的图象如图所示,且 f(-2)=1 , f(3)=1 ,则不等式 f( x 2 -6)>1 的解集
为 ____________.
例 2.已知定义在 R 上 f (x) , f (1) 2 ,且 f ( x) 1,则 f ( x2 ) x 2 1 的解集是 ______
变式 1: 函数 f(x)的定义域为 R , f(- 1)= 2,对任意 x∈ R, f′ (x)>2,则 f( x)>2x+ 4 的解集 为 _______________________________ .
④ x=3 是 f(x) 的极小值点.
其中正确的判断是
.(填序号 )
变式 2.已知函数 y= f(x)在定义域 - 3,3 上可导,其图象如图, 记 y= f(x)的导函数 y= f ′(x), 2
则不等式 xf′ (x)≤ 0 的解集是 ________.
变式 3.已知函数 f(x) 的定义域为 R, f ′ (x) 为 f(x) 的导函数,函数 y=f ′ (x)
变式:2Biblioteka 1.已知函数 f (x) x
a 2 ln x a 0 ,讨论 f ( x) 的单调性
x
2.已知函数 f (x) a 1 ln x ax2 1,讨论 f ( x) 的单调性
1a
3.已知函数 f (x) ln x ax
1,讨论 f ( x) 的单调性
x
4. f ( x) a 1 x2 2ax 2ln x ,讨论 f ( x) 的单调性
相关文档
最新文档