方阵的相似变换
第6章 矩阵的相似变换

6 3 6 A= 6 3 6 −6 −6 −9
2
求特征值 A − λ E = − ( λ − 3 )( λ + 3 ) = 0
λ1 = λ2 = −3, λ3 = 3.
第2步 求线性无关的特征向量, 即求 ( A − λi E ) x = 0 的基础解系
λ1 = λ2 = −3,
⇔ Api = λi pi ( i = 1,L , n)
说明:如果A可对角化,它必有n个线性无关的特征向量, 就是P的n个列;反之,如果A有n个线性无关的特征向量,把它 拼成矩阵P(可逆),把上面过程逆过来即知A可对角化。
-19-
定理 n阶矩阵A可对角化的充要条件是A有n个线 性无关的特征向量。 推论 n 阶矩阵 A 如有 n 个不同的特征值,则它有 n 个线性无关的特征向量,从而 A 一定可对角化。
Ap = λ p
特征值 λ 的特征向量。 把(1)改写为
(1)
则称λ 为A的特征值, 非零向量p称为A的对应于(或属于)
( A− λE) p = 0
⇔ A− λE = 0
(2)
λ 是A的特征值 ⇔ λ 使得 ( A − λ E ) x = 0 有非零解
( A − λ E ) x = 0 的所有非零解向量都是对应于 λ 的特征向量.
µ2
的特征值 O µn
解: 特征多项式
µ1 − λ A− λE = µ2 − λ O
对角阵的特征值 就是对角线元素
µn − λ
= ( µ1 − λ )( µ2 − λ ) L ( µn − λ ) = ( −1)n ( λ − µ1 )( λ − µ2 ) L ( λ − µn )
x1 = − x3 同解方程组为 ,令 x3 = 1, 得基础解系 x2 = x3 −1 基础解系的个数与 p3 = 1 特征值重数相等 1
相似及相似对角化

p11 p12 L p21 p22 L
p1r1 p2r2
r1 个 r2 个
线性无关 线性无关
M M M MM M M
M
{m
r{ m 重
1pm41
4p4m22
L 4
4pm43rm
r{ m 个
线性无关 1 42 43
互异 和为n
共n个
共n个 合之仍线性无关
称为代数维数; 的维数称为的几何重数。
1、相似对角化条件
1、相似对角化条件
问题:方阵A 与对角阵相似的条件?
定义:
1
若n阶方阵A :
2
O
diag(1, 2,L
, n ),
n
则称A可对角化。
对角化条件:
n 阶方阵 A 与对角阵相似 A 有 n 个线性
无关的特征向量.
1、相似对角化条件
说明 (1)若 A~Λ diag(1, 2,L , n ),则A与Λ的特征值
2、实对称矩阵的特征值和特征向量 定理: 设实对称阵A的两个特征值1, 2互异,p1, p2
是对应特征向量,则 p1 p2. 即:实对称阵的不同特征值所对应的特征向量互相正交.
证毕
3、实对称矩阵正交相似于对角矩阵 定理:设A是n阶实对称阵,1, 2,L , n是A的特征值
则有正交矩阵 Q, 使
1
O
1
r1个
A ~ 对角阵Λ
2 O
2
r2个
O
m
O
m rm个
注
1、相似对角化条件
推论3 如果 n 阶方阵 A 可对角化,则 rank(A)=
A的非零特征值的个数。 证明 若 A 可以对角化,设与其相似的对角阵为 即存在可逆矩阵P,使得 P1AP 。
第七章-方阵的特征值与相似对角化

一、n 维向量的定义及运算一、n 维向量的定义及运算二、向量空间二、向量空间第一节方阵的特征值及其特征向量第二节相似矩阵第三节实对称阵的相似对角化一、方阵的特征值及其特征向量的概念一、方阵的特征值及其特征向量的概念二、方阵的特征值及其特征向量的计算二、方阵的特征值及其特征向量的计算三、方阵的特征值及其特征向量的性质三、方阵的特征值及其特征向量的性质对11=λ,解方程组0)1(=−x A E ,由⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−=−000110101211121112r A E , 所以A 的对应于特征值11=λ的全部特征向量为),0(111R k k k ka x ∈≠⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==得基础解系: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=111a .对22−=λ,解方程组0)2(=−−x A E ,由⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−−−−=−−0000001111111111112r A E 得基础解系: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=101,01121a a ,所以A 的对应于特征值22−=λ的全部特征向量为:,,(10101111212111R k k k k a k a k x ∈⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−+⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=+=且不同时为零)对21=λ,解方程组0)2(=−x A E ,由⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−=−0001101012111211122r A E得基础解系: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=111a .所以A 的对应于特征值21=λ的全部特征向量为 ),0(111R k k k ka x ∈≠⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==对132−==λλ,解方程组0)(=−−x A E , 由 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−−−−=−−000000111111111111r A E得基础解系: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=101,01121a a ,所以A 的对应于特征值132−==λλ的全部特征向量为:R k k k k a k a k x ∈⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−+⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=+=21212211,(101011且不同时为零)推论1、方阵A 可逆Ù|A|≠0ÙA 的特征值全不为零。
1、矩阵的特征值与特征向量及方阵的相似-2022年学习资料

线性代数-同理对λ 2=23=-1,求相应线性方程组12E--Ax=0的一个基础解系:--4x1-2x2-4 3=0,--2x1-x2-2x3=0,-求解得此方程组的一基础解系:-C2=
线性代数-于是A的属于λ 2=入3=-1的全部特征向量为-k2a2+k3a3,-k2,k3是不全为零的实数而A的全部特征向量为11;k22+k3a3,这-里k1≠0为实数k2,k3是不全为零的实数-①⊙O
线性代数-∴.2E-P-1APP-ax-=P-12:E-APP-1a-=P2:E-Aa=0,-即P1APP a=:P-a,-故P-1au:是P-1AP属于;的特征向量-①,⊙O
线性代数-五、求方降A的特征多项式-例5-设A是n阶方阵,其特征多项式为-f42=2E-A=”+an-12 -1+…+a12+ao,-求:1求AT的特征多项式-2当A非奇异时,求A1的特征多项式-解1f2=2E-A 2E-AY-=2E-A=∫42,-·.A与AT有相同的特征多项式
线性代数-9和似拒降-定义设A,B都是n阶矩阵,若有可逆矩阵P,使-P-AP=B,-则称B是A的相似矩阵, 说矩阵A与B相似,-对A进行运算P-1AP称为对A进行相似变换,-可逆矩阵P称为把A变成B的相似变换矩阵。 矩阵之间的相似具有1自反性;2对称性;-3传递性.
线性代数-10-有芙和似拒降的性质-1喏A与B相似,则A与B的特征多项式-相同,从而A与B的特征值亦相同. 2若A与对角矩阵-λ 2-Λ =-n-相似,则1,元2,…,2m是A的n个特征值,
线性代数-三、特狃值与特狃向量的求法-第一步-计算A的特征多项式;-第二步-求出特征多项式的全部根,即得A 全部-特征值;-第三步将每一个特征值代入相应的线性方程组,-求出基础解系,即得该特征值的特征向量.
利用相似变换将方阵对角化.

( A) = a0 An a1 An-1 an-1 A an E
= a0 P Bn P-1 a1 P Bn-1 P-1 an-1 PB P-1 an PE P-1
= P(a0 Bn a1 Bn-1 an-1 B an E) P-1
1
P -1 AP = =
Hale Waihona Puke n其中 i为A的特征值, f ( i) = 0. 由A = P P-1,有
f
( A)
=
Pf
() P-1
=
P
f
(1)
= PO P-1 = O.
P-1
f ( n)
机动 目录 上页 下页 返回 结束
= P(B) P-1.
机动 目录 上页 下页 返回 结束
特别地,若可逆矩阵 P 使P-1 A P=为对角矩阵,
则 Ak = P k P-1, ( A) = P () P-1.
对于对角矩阵 ,有
k 1
k
=
k 2
,
k n
(
)
1
--2xx11--24xx2224xx33
=0 =0
2x1 4x2 - 4x3 = 0
2. P -1A1 A2 P = P -1 A1P P -1 A2 P .
3. 若A与B相似,则Am与Bm相似m为正整数.
机动 目录 上页 下页 返回 结束
4. P -1 k1 A1 k2 A2 P = k1P -1 A1P k2 P -1 A2 P
矩阵的相似变换及其应用

矩阵的相似变换及其应用矩阵是线性代数中的重要概念之一,它被广泛应用于物理、工程、计算机科学等领域。
在矩阵中,相似变换是一种常见的操作,它可以将一个矩阵转化为另一个相似的矩阵,从而方便求解问题。
一、什么是相似变换相似变换指的是将一个矩阵A通过一个线性变换P变为另一个矩阵B的过程。
这种变换需要满足两个条件:一是变换矩阵P可逆;二是A和B具有相同的特征值。
具体来说,假设A和B都是n阶方阵,它们的特征值为λ1,λ2,…,λn。
若存在一个可逆矩阵P,使得P-1AP=B,则称A与B相似,这种变换叫做相似变换。
这个定义显然比较抽象,下面我们用一个例子来说明相似变换的具体含义。
假设有如下矩阵:A = [1 23 4]我们可以求出它的特征值和特征向量:λ1 = -0.3723,v1 = [-0.8246, 0.5658]Tλ2 = 5.3723,v2 = [-0.4159, -0.9090]T将特征向量组成的矩阵P=[v1, v2],则有:P = [-0.8246 -0.41590.5658 -0.9090]由于特征向量的性质,我们有:P-1AP = Λ = [-0.3723 00 5.3723]其中Λ是由特征值构成的对角矩阵。
这就是相似变换的应用,我们可以通过这种变换将一个矩阵A转化为一个对角矩阵Λ,从而更方便地求解问题。
二、相似变换的特性相似变换有一些重要的特性,这些特性可以帮助我们更深入地理解它的应用。
首先,相似变换是可传递的。
也就是说,如果矩阵A与B相似,B与C相似,那么A与C也相似。
这个特性可以通过变换矩阵的乘积来证明,即P-1AP=Λ,Q-1BQ=Λ,则有:(PQ)-1A(PQ) = Q-1P-1APQ = Q-1ΛQ = Λ'其中Λ'是由特征值构成的对角矩阵,证明了A与C相似。
其次,相似变换保留了矩阵的秩和行列式。
具体来说,如果矩阵A与B相似,则它们的秩和行列式相等。
这个特性可以通过排列特征值的乘积来证明,即有:|A| = λ1 * λ2 * … * λn|B| = μ1 * μ2 * … * μn由于A与B相似,则它们的特征值相同,因此有μ1 * μ2 * … * μn = λ1 * λ2 * … * λn,从而有|A| = |B|。
1、矩阵的特征值与特征向量及方阵的相似

A)x 0的一个基础解系:
4 x1 2 x2 4 x3 0,
2
x1
x2
2
x3
0,
4 x1 2 x2 4 x3 0,
求解得此方程组的一个基础解系:
2
1 0 1
,
1
2 2.
0
于是A的属于 2 3 1的全部特征向量为 k2 2 k3 3,
k 2 , k 3是不全为零的实数.
三、特征值与特征向量的求法
第一步 计算 A 的特征多项式;
第二步 求出特征多项式的全部根,即得 A 的全部 特征值; 第三步 将每一个特征值代入相应的线性方程组, 求出基础解系,即得该特征值的特征向量.
例3
计算3阶实矩阵A
3 2
2 0
4 2
的 计算A 的特征多项式
的一个基础解系.
5 x1 2 x2 4 x3 0, 2 x1 8 x2 2 x3 0, 4 x1 2 x2 5 x3 0,
化简求得此方程组的一个基础解系
2
1 1.
2
属于 1 8的全部特征向量为k1 1(k1 0为实
数).
同理对 2 3 1,求相应线性方程组( 2 E
3 2 4
f ( ) E A 2 2
4 2 3
( 8)( 1)2.
第二步 求出特征多项式f ( )的全部根,即A
的全部特征值.
令f ( ) 0,解之得1 8, 2 3 1,为A的
全部特征值.
第三步 求出 A 的全部特征向量
对1 8,求相应线性方程组(1 E A)x 0
第五章 矩阵的特征值和特征向量
一、主 要 内 容 1、矩阵的特征值与特征向量及 方阵的相似
6 方阵的特征值和特征向量
线性代数第六章 矩阵的相似变换

第六章 矩阵的相似变换本章主要讨论方阵的特征值和特征向量、方阵的相似变换和对角化等问题.第一节 方阵的特征值和特征向量一、特征值与特征向量定义1 设A 是n 阶方阵,如果存在数λ和n 维非零向量X 使关系式λ=AX X (6.1)成立,则称数λ为方阵A 的特征值;非零列向量X 称为A 对应于特征值λ的特征向量.将式(6.1)改写成()λ−=A E X 0, (6.2) 将(6.2)看成关于X 的齐次线性方程组,它有非零解当且仅当其系数行列式满足 0λ−=A E , (6.3)即1112121222120λλλ−−=−n nn n nn a a a a a a a a a , (6.4)这是以λ为未知数的一元n 次方程,称为A 的特征方程,其左端λ−A E 是λ的n 次多项式,记作()λf ,称为A 的特征多项式,特征方程的根就是A 的特征值.根据代数基本定理,在复数范围内,n 阶方阵A 有n 个特征值(重根按重数计算),记作12,,,λλλ n .求出特征值λi 后,将λi 代入齐次线性方程组(6.2)中,求解方程组()λ−=i A E X 0 (6.5) 的所有非零解向量,就是属于λi 的特征向量。
对不同的特征值逐个计算,可求得属于各特征值的全部特征向量.若非零向量X 是方阵A 的特征向量,则由(6.1)式可知,对任意实数0k ≠,有()()k k λ=A X X ,(6.6) 这表明k X 也是方阵A 的特征向量,因此属于同一特征值的特征向量有无穷多个;反之,不同特征值对应的特征向量必不相同,即一个特征向量只能属于一个特征值(证明留给读者作为练习).由齐次线性方程组解的性质容易证得如下定理.定理1 设λ是方阵A 的特征值,12,,,s p p p 是属于λ的特征向量,则12,,,s p p p 的任意非零线性组合仍是属于λ的特征向量.例1 求141130002−−=A 的特征值和特征向量. 解 A 的特征多项式2141()130(2)(1)002λλλλλλλ−−−=−=−=−−−f A E ,所以A 的特征值为12λ=,231λλ==. 对于12λ=,解齐次方程组(2)−=A E X 0.由3411012110011000000−−−=→−A E ,得基础解系 1111−=p ,所以111(0)≠k k p 是对应于12λ=的全部特征向量.对于231λλ==,解齐次方程组()−=A E X 0.由 241120120001001000−−−=→A E ,得基础解系 2210−=p ,所以222(0)≠k k p 是对应于231λλ==的全部特征向量. 例2 求204121103−−=A 的特征值和特征向量.解 A 的特征多项式2204()121(1)(2)13λλλλλλλ−−−=−=−=−+−−f A E ,所以A 的特征值为11λ=−,232λλ==. 对于11λ=−,解齐次方程组()+=A E X 0.由104104131011104000−−+=→−A E ,得基础解系 1411−=p ,所以111(0)≠k k p 是对应于11λ=−的全部特征向量.对于232λλ==,解齐次方程组(2)−=A E X 0.由 4041012101000101000−−−=→A E ,得基础解系 2010=p ,3101− = p ,所以2233+k k p p (2k ,3k 不同时为0)是对应于232λλ==的全部特征向量.二、特征值和特征向量的性质定理2* 设12,,,λλλ n 是n 阶方阵()=ij a A 的n 个特征值,则有(1)11n n i ii i i a λ==∑∑; (2)1ni i λ==∏A .其中1niii a=∑是A 的主对角元之和,称为方阵A 的迹,记作tr()A .证明 见附录六例3 设7414744y x −= −−A 的特征值为123λλ==,312λ=,求,x y 的值. 解 由定理2可得123123tr()7718331212108x x y λλλλλλ=++=++=+− A A 解之得4,1x y ==−.定理3 设λ是方阵A 的特征值,p 是A 的属于λ的任一特征向量,则有: (1)k R ∀∈,k λ是k A 的特征值,p 是k A 的属于k λ的特征向量;(2)对任意非负整数k ,k λ是k A 的特征值,p 是k A 的属于k λ的特征向量; (3)若()ϕA 是A 的m (m 为任意非负整数)次多项式,即01()m m a a a ϕ=+++A E A A ,则()ϕλ是()ϕA 的特征值,p 是()ϕA 的属于()ϕλ的特征向量;(4)若A 可逆,则0λ≠,且1λ是1−A 的特征值,p 是1−A 的属于1λ的特征向量;(5)若A 可逆,则λA是*A 的特征值,p 是*A 的属于λA的特征向量;(6)λ也是T A 的特征值.证明 (1)由λ=Ap p ,有k k λ=Ap p 成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
f
(1)
PO P1 O.
P
1
f ( n)
三、利用相似变换将方阵对角化
对 n 阶方阵 A ,若可找到可逆矩阵P ,使 P 1 AP 为对角阵,这就称为把方阵A对角化 . 定理2 n阶矩阵A与对角矩阵相似(即A能对角化) 的充分必要条件是A有n个线性无关的特征向量.
证明 假设存在可逆阵P,使P 1 AP 为对角阵,
P(a0 Bn a1 Bn1 an1 B an E) P1
P(B) P1.
特别地,若可逆矩阵P使 P1 AP 为对角矩阵,
则 Ak P k P1, ( A) P () P1.
对于对角矩阵,有
k 1
k
k 2
,
k n
利用上 述结论可以
(1)
()
(1)
,
(1)
很方便地计
方阵的相似变换
林冬梅
一、相似矩阵与相似变换的概念
定义1 设A, B都是n阶矩阵,若有可逆矩阵P,使 P1 AP B,
则称B是A的相似矩阵,或说矩阵A与B相似.对A进 行运算P1 AP称为对A进行相似变换,可逆矩阵P 称为把A变成B的相似变换矩阵.
二、相似矩阵与相似变换的性质
1. 等价关系 (1)反身性 A与A本身相似.
解之得基础解系
2
0
1 0 , 2 1.
1
1
同理, 对3 7,由A E x 0, 求得基础解系 3 1,2,2T
201
ห้องสมุดไป่ตู้
由于
0 1 2 0,
112
所以 1,2 ,3线性无关.
即A有3个线性无关的特征向量,因而A可对角
化.
2 1 2
(2) A 5 3 3
1 0 2
(1) A 2 2 4 (2)A 5 3 3
2 4 2
1 0 2
解
1 2
2
(1)由 A E 2 2 4
2
4 2
22 7 0
得 1 2 2, 3 7.
将 1 2 2代入A 1E 0,得方程组
2xx1124xx2224xx33
0 0
2x1 4x2 4x3 0
解
4 6
A E 3 5
0
0 12 2
3 6 1
所以A的全部特征值为1 2 1, 3 2.
将1 2 1代入A E x 0得方程组
3 x1 6 x2 0 3 x1 6 x2 0
3 x1 6 x2 0
解之得基础解系
2
1 1 ,
0
0
2 0.
(2)对称性 若A与B相似,则B与A相似. (3)传递性 若A与B相似, B与C相似,
则A与C相似.
2. P 1A1 A2 P P 1 A1P P 1 A2 P .
3. 若A与B相似,则Am与Bm相似m为正整数.
4. P 1 k1 A1 k2 A2 P k1P 1 A1P k2 P 1 A2 P
其中k1 , k2是任意常数. 定理1 若n阶矩阵A与B相似,则A与B的特征多项 式相同,从而A与B的特征值亦相同. 证明 A与B相似
可逆阵P,使得P 1 AP B
B E P1AP P1EP P1A EP
P1 A E P A E .
推论 若 n 阶方阵A与对角阵
1
2
1
将3 2代入A E x 0,得方程组的基础
解系
3 1,1,1T .
由于 1,2 ,3 线性无关. 所以 A 可对角化.
2 0 1
令
P
1
,
2
,
3
1
0
1
0 1 1
1 0 0
则有
P 1 AP
0
1
0.
0 0 2
注意
1 2 0
若令P
3 ,1 ,2
1
1
0
,
1 0 1
把 P 用其列向量表示为 P p1 , p2 , , pn .
由P1 AP ,得AP P,
1
即 A p1 , p2 , , pn p1 , p2 , , pn
2
n
1 p1 ,2 p2 , ,n pn .
A p1 , p2 , , pn Ap1 , Ap2 , , Apn 1 p1,p2 , ,pn
则有
P 1 AP
2 0
0 1
0 0 .
0 0 1
即矩阵 P 的列向量和对角矩阵中特征值的位置 要相互对应.
四、小结
1.相似矩阵 相似是矩阵之间的一种关系,它具有很多良好 的性质,除了课堂内介绍的以外,还有: (1)A与B相似,则det( A) det( B);
2 1
2
A E 5 3 3 13
1
0 2
所以A的特征值为1 2 3 1.
把 1代入A E x 0, 解之得基础解系
(1,1,1)T ,
故A 不能化为对角矩阵.
例2
设A
4 3
6 5
0 0
3 6 1
A能否对角化?若能对角 化,则求出可逆矩阵P,
使P 1 AP为对角阵.
算矩阵A 的
多项式 ( A).
定理 设f ( )是矩阵A的特征多项式,则f ( A) O.
证明 只证明A与对角矩阵相似的情形.
若A与对角矩阵相似, 则有可逆矩阵P , 使
P1 AP diag(1, ,n),
其中 i为A的特征值, f ( i) 0. 由A P P1,有
f
( A)
Pf () P1
n
相似,则1, 2 , , n即是A的n个特征值.
利用对角矩阵计算矩阵多项式
若A PB P1, 则
k个
Ak PB P1 PB P1 PB P1PB P1 P Bk P1.
A的多项式
( A) a0 An a1 An1 an1 A an E
a0 P Bn P1 a1 P Bn1 P1 an1 PB P1 an PE P1
于是有 Api i pi i 1,2, , n.
可见 i 是A的特征值,而P的列向量 pi 就是 A的对应于特征值i的特征向量.
反 之,由 于A恰 好 有n个 特 征 值, 并 可 对 应 地 求 得n个特征向量, 这n个特征向量即可构成矩阵P , 使AP P.
又由于P可逆,所以p1, p2 , , pn线性无关.
命题得证.
推论 如果 n 阶矩阵 A 的 n个特征值互不相等, 则 A与对角阵相似.
说明 如果 A的特征方程有重根,此时不一定有 n个线性无关的特征向量,从而矩阵 A不一定能 对角化,但如果能找到 n个线性无关的特征向量, A 还是能对角化.
例1 判断下列实矩阵能否化为对角阵?
1 2 2
2 1 2