高频感应电源集肤效应与穿透深度

高频感应电源集肤效应与穿透深度
高频感应电源集肤效应与穿透深度

高频感应电源集肤效应与穿透深度

一、集肤效应

等截面的导电体通过直流电流时, 导体截面中的电流分布是均匀的, 电流密度是相等的。

当等截面的导电体通过高频交变电流时, 导体截面上的电流分布将出现不均匀状态, 电流只在导体表面层流过, 表层的电流密度最大, 导体深层电流密度较小, 这种高频交变电流的趋表现象, 则被称为电流的集肤效应 。

当导体通过交变电流时,导体表面出现电流挤聚现象,电流密度很大,而导体深处几乎不流过电流 。 这种由导体本身电流产生的磁场,使导体电流在表面集中流动的现象,被称为集肤效应。在高频感应用时,由于电流的集肤效应特性, 使导体有效截面积得不到充分利用 。 在产品设计中, 应根据不同的工作频率, 合理地选用载流导体的尺寸, 或采用多根导体并联,既满足载电流强度的要求,又提高.导体的有数利用率。

二、穿透深度

高频交变电流通过导体时,由于集肤效应的影响.电流只在导体表面展通过,表面层的深度与导体的性质和电流频率的高低有关,通常将此表面展的深度或厚度称之为穿透深度,用符号?表示。

穿透深度的定义是:交流正弦电流通过导体时,电流密度从导体表面向导体中心处逐渐衰减,当导体某一处深度的电流密度为其表面电流密度的e

1

时,该深度就定义为电流的穿透深度?。

穿透深度?由下式确定:

()cm f μ

πρ

=

? (1-1) r μμμο=

式中f ——交变电源频率,Hz

ομ——真空磁导率,ομ=4π*10-9(H/cm); r μ——相对磁导率;

ρ——导体的电阻率,Ω.cm 。

式1-2中可进一步简化为:

)(5035

cm f

r μρ

=? (1-2) 从式(2-17)可知,穿透深度4与导体电阻率lo 的平方根成正比,与电流频率f 及导体的相对磁导率μr 的平方根成反比。电流频率越高, 穿透深度越小,集肤效应越明显。另外导体通过的电流频率相同,电流波形不同,穿透深度不同, 正弦波电流的穿透深度比方波电流的穿透深度大。 在同频率条件下, 正弦波电流穿透深度大约是方波电流穿透深度的 1. 3

倍 。 铜导体在正弦波和方波同频率下的穿透深度及相关参数见表2-1。

2-1 铜导体在正弦波和方波同频率下的穿透深度及相关参数

注:1.表中d/为导线的几何厚度(线径)与穿透深度之比,称为等效导体厚度系数,反

映导体使用程度,d/?越大,说明导体实际的利用率越低。

2.K 为高频感应电流下导体呈现的交流阻抗R HF 与直流电阻R DC 之比,称为高频电流电阻增加系数,随着电流频率的提高而增大。

电阻是表征导体物质对电流呈现阻力或衡量导体传导能力的物理量,在直流状态下,导体的电阻表示为

R DC =R=S

L

ρ

(1-3) 式中ρ——导体的电阻率,Ω.cm

S ——导体的截面积,cm 2

L ——导体的长度,cm 。

对于特定的导体,即电阻率、长度、截面积一定时,直流电阻R DC 在恒定温度下是不变的,而在交变电流作用下,由于集肤效应、圆形效应、邻近效应的影响,导体的电阻.R HF 增大,增加的倍数K=要器。从表2-1可以看出,同一规格的导体,频率越高,增加的倍数K 越大;不同规格的导体,电阻增加的系数K 是不同的,在相同频率下,线径粗的比线径细的电阻增加的系数K 大。电阻大意味着在电流强度一定的条件下,耗损大,发热厉害,使感应加热电源的热效率下降,感应器的温升高。还可看出,同频率下正弦波比方波穿透深度要大,有利于提高效率。

本文摘至《现代高频感应加热电源工程设计与应用》

高频电源技术要求(精)

高频电源技术要求 1、输入电源:三相三线制,电压380V,50Hz。 2、变换器形式:全桥串并联混合谐振。 3、谐振频率:30kHz~50kHz。 4、变换器效率:≥0.92。 5、功率因数:在额定输出电压、电流条件下大于0.9。 6、高频电源结构特性:整机一体化。高频控制柜和变压器采用上下结构方式,以便于变压器检修、吊装换油等。 7、高频电源设备必须确保密闭,防护等级IP55,必须加装大功率工业空调,确保控制柜内主辅电及控制器须与外界空气完全隔绝,防水、防尘,防盐雾。、 8、为确保功率器件(IGBT、整流桥)可靠散热,散热器必须采用热管散热器。 9、设备具有纯直流供电、间歇供电两种供电方式,间歇供电比任意可调。 10、输出直流电压调节范围:0~100%的最大输出电压值或起晕电压~100%的最大输出电压值。 11、输出直流电流调节范围:0~100%额定值。 12、控制系统:采用16位单片机控制,具有与上位机通讯、远程控制功能。 13、设备具有自动和手动两种运行方式。 14、设备具有高低压一体化断电振打接口,能自动接收来自低压振打系统的振打信号,并自动响应,实现复合式功率控制振打,明显改善振打清灰效果。 15、设火花检测控制功能灵敏可靠。闪络特性参数可根据需要设定。 16、设备设置启动、停止按钮,设置“本地/远控”转换开关,将“本地/远控”开关置于本地位置时,本地启停高频电源,将“本地/远控”开关置于远控位置时,可在上位机操作界面上启停控制高频电源。 17、设备应设置运行、报警、停机指示灯。 18、设备应设置母线电压表、一次电流表、二次电压表、二次电流表,以方便直观地监视设备的重要参数。 19、设备能向上位机传送运行的母线电压、电流、二次电压、二次电流、火花率、设备启、停状态、变压器油温、IGBT温度超限等设备故障信号。 20、设备具有重载、轻载保护功能。设备重载、轻载时,设备的二次电流、二次

集肤效应

线圈的集肤效应详解Post By:2011-4-28 10:44:00 载流导线要产生磁场。首先研究单根导线磁场。载流导线总是两条线,假设电流的回流线相距非常远,回流线磁场不会对单根载流导线的磁场产生影响。这样单根导线电流产生的磁场如图6.1(a)所示。如果流过导线的电流是直流或低频电流I,在导线内和导线的周围将产生磁场B,磁场从导体中心向径向方向扩展开来。在导体中心点,磁场包围的电流为零,磁场也为零;由中心点向径向外延伸时,包围的电流逐渐加大,磁场也加强,当达到导体表面时,包围了全部电流,磁场也最强(H=I/πd-d为导线直径)。在导体外面,包围的电流不变,离开导线中心越远,磁场也越弱。 取图6.1的沿导线长度的横截面,低频电流在整个截面上均匀分布。当导体通过高频电流i时,变化的电流就要在导体内和导体外产生变化的磁场(图6.2中1-2-3和4-5-6)垂直于电流方向。根据电磁感应定律,高频磁场在导体内沿长度方向的两个平面

L和N产生感应电势。此感应电势在导体内整个长度方向产生的涡流(a-b-c-a和d-e-f-d)阻止磁通的变化。可以看到涡流的a-b和e-f边与主电流O-A方向一致,而b-c边和d-e边与O-A相反。这样主电流和涡流之和在导线表面加强,越向导线中心越弱,电流趋向于导体表面。这就是集肤效应。 这种现象这样来等效,如果取此载流导线一个单位长度,由导线中心到外径径向分成若干同心小筒(图6.3(a)),当这些径向分割足够小时,认为通过这些筒截面An 的磁感应是均匀的,对于n单元截面通过的磁通为 Bn,An-分别为n单元的磁感应和n单元的截面积。此磁通是n单圆筒包围的全部电流所产生的。根据电感定义,n单元单位长度电感: 表面外的全部电感用Lx表示。筒状导体单位长度的电阻为 这样可将导体内由导体中心到表面的磁电关系等效为一个L、R的倒L形串联

什么叫趋肤效应

什么叫趋肤效应?趋肤效应的定义 对于每个电气参数,必须考虑其数值有效时的频率范围。传输线的串联电阻也不例外。与其他参数一样,它也是频率的函数。图4.10画出了RG-58/U和等效串联电阻与频率的函数曲线。图中采用对数坐标轴。图4.10以相同的坐标轴绘出了感抗WL的曲线。 当频率低于W=R/L时,电阻超过感抗,电缆表现为一个RC传输线。当频率高于W=R/L时,电缆是一个低损耗传输线。 当频率高于0.1MHZ时,串联电阻开始增大。这导致更多的衰减,但相位保持线性。这种电阻的增加称为趋肤效应(SKIN EFFECT)。 传播因数的实部和虚部((R+JWL)(JWC))1/2在图4.11中绘出,损耗单位为标培,相位单位为RAD(弧度)。1奈培等于8.69DB的损耗。图中显示了RC区域、固定衰减区域和趋肤效应区域。如图所示,相对于RC区域和趋肤效应区域,低损耗区域非常窄。 是什么导致了趋肤效应,它与导体外表层有什么关系呢? 1、趋肤效应的机理 在低频时,电流在导体内部的分布密度是均匀的。从导线的截面图看,中心和边缘区域电流的流量是相同的。 在高频时,导线表面的电流密度变大,而中心区域几乎没有电流流过。电流分布的变化如图4.12所示,低频时电流均匀地填满整个导线,高频时电流只从接近导线表面的地方流过。 为了形象地证明高频条件下电流的分布,首先假设导线纵向切成多层同心的长管,就像树桩上的年轮。 自然对称的形状可以阻止电流在环间流动,所以必须无误差地切割,所有电流绝对平行于导线的中心轴。 现在导线被切成许多环,我们可以分别考虑每个环的电感。靠近中心的环,像长而薄的管道,比外部的环有更大的电感。我们知道,在高频条件下,电流将从电感更低的通路流过。因此,高频条件下可以预计从外环通路流过的电流比内环更多。实际上正是如此。在高频条件下,绝大多数的电流聚集在靠近导体的外表面。

表面淬火工艺

淬火.退火.正火工艺 ◆表面淬火 ? 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 ? 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 ? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 ? 感应表面淬火后的性能 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3 个单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ? 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。

高频感应加热电源工作原理

高频感应加热电源工作原理【大比特导读】高频感应加热电源在工作原理方面,也与普通的加热电源有 着很大不同,本文将会通过对其工作原理的叙述,为大家解读高频感应加热电源加热快、效率高的秘密所在。 感应加热电源的研发在最近几年呈现出专业化和快速的趋势,高频感应加热电源凭借着加热速度快、加热均匀等优势,被广泛的应用在工业及生活领域。高频感应加热电源在工作原理方面,也与普通的加热电源有着很大不同,本文将会通过对其工作原理的叙述,为大家解读高频感应加热电源加热快、效率高的秘密所在。 高频感应加热电源与普通的感应加热模块一样,也是采用了导体磁束加热的模式。用交流电流流向被卷曲成环状的导体,这种导体通常情况下会采用铜管这种材料,由此产生磁束。将金属放置其中,磁束就会贯通金属体,在与磁束自缴的方向产生涡电流,也就是大家所熟悉的旋转电流,于是感应电流在涡电流的影响下产生发热,用这样的加热方式就是感应加热。由此,对金属等被加热物体在无需直接接触的状态下就能获得加热效果。 此时,窝电流将会在线圈接近的物体上集中,感应加热表现出在物体的表面上较强里边较弱的特点,用这样的原理来对被加热体的必要的地方集中加热,达到瞬间加热的效果,从而提高生产效率和工作量等。 当然了,使用高频感应加热电源进行加热的成功与否,直接取决于感应线圈设置是否合理,以及加热体的大小、形状、间距等等。感应线圈是要做到均匀加热、加热效果好,并且要有强度和准确度。感应线圈是一般用一圈或数圈的铜管来做,一般采用水冷的方式对线圈进行冷却。 结语: 高频感应加热电源的感应线圈是高效加热的关键所在,而无需直接触碰就可以快速加热 的优势,也让这个感应加热电源的家族新成员迅速获得了生产商的认可。

高频感应加热表面淬火实验报告

竭诚为您提供优质文档/双击可除高频感应加热表面淬火实验报告 篇一:高频感应加热表面淬火-验证 高频感应加热表面淬火 一、实验目的 1、了解感应加热的原理; 2、了解电流透入深度与材料电阻率及电流频率之间的关系; 3、了解淬硬层深度的测定方法; 4、掌握高频感应加热淬火的方法。 二、实验原理 1.电磁感应 当感应线圈通以交流电时,在感应线圈的内部和周围同时产生与电流频率相同的交变磁场,将工件置于高频感应线圈内,受电流交变磁场的作用,在工件内相应地产生感应电流,这种感应电流在金属工件内自行闭合,称为涡流。其感应电动势瞬时值为: d?e??K d?

式中,K-比例系数;ф-工件上感应电流回路包围面积上的总磁通;dф/dτ-磁通量变化率;负号表示感应电动势方向与磁通量变化率方向相反。 工件中感应出来的涡流方向,在每一瞬时和感应线圈中的电流方向相反。涡流强度If取决于感应电动势(e)及工件涡流回路的电抗(Z),而电抗Z由电阻R和感抗(xL)组成,则涡流强度: eeIf?? Z 2 R2?xL 2.表面效应 涡流强度If随高频电磁场强度由工件表面向内层逐渐减小而相应减小的规律称为表面效应或集肤效应。离表面x 处的涡流强度: x? Ix?I0?e 式中,I0-表面最大的涡流强度;x-到工件表面的距离;Δ-与工件材料物理性质有关的系数。 所以,当x=0时,Ix=I0 当x>0时,Ix<I0 1

?0.368(:高频感应加热表面淬火实验报告)I0e 工程规定,当涡流强度从表面向内层降低到表面最大涡流强度的36.8%(即1 I0?)时,由该处到表面的距离Δ称为电流透入深度。e 在感应加热实践中,钢中电流透入深度的计算常常使用下列简化公式: 20 在20℃时:?20?(mm) f500 在800℃时:?20?(mm) f ? 当x=Δ时,Ix?I0? 式中,f-感应线圈交流电频率。 3.淬硬层深度 工件经感应加热淬火后的金相组织与加热温度沿截面 分布有关,一般可分为淬硬层、过渡层及心部组织三部分。还与钢的化学成分、淬火规范、工件尺寸等因素有关;如果加热层较深,在淬硬层中存在马氏体+贝氏体或马氏体+贝氏体+屈氏体+少量铁素体混合组织。此外,奥氏体化不均匀,淬火后还可以观察到高碳马氏体和低碳马氏体混合组织。 工件经感应淬火后可以用金相法、硬度法或酸蚀发测定

基于KA3525的高频感应加热电源的设计

基于KA3525的高频感应加热电源的设计 【摘要】本文根据电流型PWM控制芯片KA3525的特点,并利用三星单片机S3F9454的辅助控制功能,设计了一种高频感应加热电源电路,并可实现输出功率可调。本文详细介绍了它的功率调整电路、主电路、控制电路等,并描述了它们的实现原理与方法。 【关键词】KA3525;三星单片机S3F9454;PWM;感应加热电源 0.引言 在当今工业生产中,很多地方都要用到中小功率的感应加热电源,例如对工件进行淬火、熔炼贵金属等。这类电源大多为并联谐振型电源,由电流源直接供电,通过直流侧的控制电路实现功率调节,即通过调节整流晶闸管的移相触发角来实现功率调节。这类电源在制作时需要消耗大量材料,入端功率因数低,包含比较大的平波电抗器,对电网也有较大的谐波干扰,效率低。因此,这类电源如今越来越不符合人们对具有高品质的感应加热电源的要求。本文就这一问题,设计出了一种容易实现、高品质的中小功率感应加热电源。 本文结合KA3525和三星单片机S3F9454的特点,研制出了一种基于KA3525并利用单片机辅助控制的高频感应加热电源。对高频感应加热电源的工作原理作了详细分析,并对它的功率调整电路、主电路、控制电路等作了主要阐述。 1.感应加热电源原理及总体结构 首先通过不控整流电路,将220V的交流电转换为脉动直流,再经过电容滤波得到平直的直流电压,然后通过高速V-MOS功率场效应管组成的桥式逆变电路,得到高频方波交流电压,利用变压器隔离实现阻抗匹配,将高频高压电变为低压大电流,从而对金属进行加热。 系统主要由七个部分组成: 不控整流电路:本文采用不控整流将220V的交流电变为不可调的直流电。 滤波电路:逆变谐振一般采用电容滤波,这里为减小体积,采用了电感,为防止电流冲击破坏电路,特在电路中设置了延迟环节。 桥式逆变电路:本文装置频率较高,必须采用高速V-MOS场效应管;由于单管电流容量受到限制,而场效应管具有易并联的特点,因此在满足耐压的前提下,采用多管并联方式来满足输出功率的要求。 高频变压器隔离:串联谐振一般Q值较大,谐振时,电压可达千伏以上,

高频感应电源集肤效应与穿透深度

高频感应电源集肤效应与穿透深度 一、集肤效应 等截面的导电体通过直流电流时, 导体截面中的电流分布是均匀的, 电流密度是相等的。 当等截面的导电体通过高频交变电流时, 导体截面上的电流分布将出现不均匀状态, 电流只在导体表面层流过, 表层的电流密度最大, 导体深层电流密度较小, 这种高频交变电流的趋表现象, 则被称为电流的集肤效应 。 当导体通过交变电流时,导体表面出现电流挤聚现象,电流密度很大,而导体深处几乎不流过电流 。 这种由导体本身电流产生的磁场,使导体电流在表面集中流动的现象,被称为集肤效应。在高频感应用时,由于电流的集肤效应特性, 使导体有效截面积得不到充分利用 。 在产品设计中, 应根据不同的工作频率, 合理地选用载流导体的尺寸, 或采用多根导体并联,既满足载电流强度的要求,又提高.导体的有数利用率。 二、穿透深度 高频交变电流通过导体时,由于集肤效应的影响.电流只在导体表面展通过,表面层的深度与导体的性质和电流频率的高低有关,通常将此表面展的深度或厚度称之为穿透深度,用符号?表示。 穿透深度的定义是:交流正弦电流通过导体时,电流密度从导体表面向导体中心处逐渐衰减,当导体某一处深度的电流密度为其表面电流密度的e 1 时,该深度就定义为电流的穿透深度?。 穿透深度?由下式确定: ()cm f μ πρ = ? (1-1) r μμμο= 式中f ——交变电源频率,Hz ομ——真空磁导率,ομ=4π*10-9(H/cm); r μ——相对磁导率; ρ——导体的电阻率,Ω.cm 。 式1-2中可进一步简化为: )(5035 cm f r μρ =? (1-2) 从式(2-17)可知,穿透深度4与导体电阻率lo 的平方根成正比,与电流频率f 及导体的相对磁导率μr 的平方根成反比。电流频率越高, 穿透深度越小,集肤效应越明显。另外导体通过的电流频率相同,电流波形不同,穿透深度不同, 正弦波电流的穿透深度比方波电流的穿透深度大。 在同频率条件下, 正弦波电流穿透深度大约是方波电流穿透深度的 1. 3

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

感应加热电源的控制与驱动电路

感应加热电源的控制与驱动电路 感应加热电源中电力电子控制电路的构成,显现出多样化组成方式,其控制方案主要是根据感应电源调功方式、加热负载特性要求等不同,控制电路的结构会有所不同。 感应加热电源的功率控制调节方式总体上可分为直流侧调功和逆变侧调功两种。直流侧调功又分为三相全控整流器调功和直流斩波器调压调功。逆变侧调功的控制电路方案根据加热工艺特性要求,可以采用的控制方式更灵活, 常用的有调频功(PFM )、移相调功(PSM)、脉宽调制恒频调功(PWM )、脉冲密度调制调功(PDM )、调宽调制加调频调功(PWM+PFM )、脉宽调制加脉冲密度调制调功(PWM+PDM )等各种调功方式。 下面就感应加热电源控制电路的基本组成和原则作简单叙述,其具体内容将在相关章节中介绍。 (1)控制方式根据感应加热电源负载特性不同,调功方法不同,通常可采用电压反馈控制、电流反馈控制。 1)采用电压控制,其目的是保证输出直流母线电压恒定,也就是说加在感应加热绕组的端电压恒定。控制采样可以取自直流母线电压或逆变器电感绕组或谐振补偿电容上的电压。取样一般采用隔离式电压传感器(TV),经道算、比较处理,控制品闸管的导通角或逆变器开关管PWM 驱动脉冲的相移或脉宽,达到改变直流输出到逆变器直流母线上的电压或改变逆变器输出电压的平均值(或有效值),最终因闭环负反馈的作用维持输出电压恒定。输人电压的波动,对加热电源的输出功率也就是对工件的加热温度产生较大影响,将直接影响到加热工件的产品工艺质量要求。 加热电源的输出功率为P =u 2/Z,在负载不变的条件下,功率P 与电压组或谐振补偿电容上的电压。u 的平方成正比。也就是说,加热温度与电压的平方成正比。如果电压不稳定,加热温度就不均匀,对于毛坯工件加热、淬火要求温度稳定性较高的场合,必须要有自动稳压功能,否则产品质單得不到保证。 2)采用电流控制,其目的是保证输出直流或高频输出电流恒定。控制采样可取自直流母线电流或逆变器感应加热绕组中的电流。取样一般采用隔离式电流传感器感(TA ),电流反馈信号控制的对象同电压控制,目的是达到输出电流的变化,也就是输出功率P 的变化、加热温度的 变化。这是因为P=IU u z u z u =?? ? ??=2,因此可以看出,电压U 或负载阻抗Z 的变化,会引起电流I 的变化,即功率或加热温度的变化。 3)采用功率控制,其目的是为了保证感应加热电源的恒功率输出。采样信号同时取样电压和电流信号,经乘法器处理后,经PI 调节器输出与功率给定相比较,控制晶闸管的导通角或逆变器驱动脉冲信号的宽度、相移,或采用动态阻抗匹配法控制电源侧的等效阻抗与负载相等,达到功率的恒定,保证加热温度在给定的功率下恒定,满足工件加热工艺特性和质量要求。 (2)采用直流侧调月i 调功方案的感应加热电源,其控制电路需要有锁相频率自动跟踪系统。无.论是逆变器采用脉宽调制(PwM)控制技本调功,还是采用移相(PSM)调功等,如果逆变侧不进行频率自动照際,会出现两大问题:①逆变器的开关功率器件不能很好地工作在软开关状态,开关器件承受的电压和电流应力大,除了危及器件安全外,开关损耗也增大;②因为逆变器工作频率与谐振电路的固有谐振频率不相等,逆变器回路或者说开关器件中流过较大的无功电流,而且功率因数下降,达不到最大功率输出,逆变器的效率降。频率跟踪的目的是保证逆变器的开关频

高频开关电源设计与应用

电源网讯传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。 功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。使电源的工作特性就像一个电阻一样,而不在是容性的。 目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。DCM模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。C CM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MO S管。这种类型的控制方式,在小功率PFC电路中非常常见。 今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。 要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例: 已知参数: 交流电源的频率fac——50Hz 最低交流电压有效值Umin——85Vac 最高交流电压有效值Umax——265Vac 输出直流电压Udc——400VDC 输出功率Pout——600W 最差状况下满载效率η——92% 开关频率fs——65KHz 输出电压纹波峰峰值Voutp-p——10V 那么我们可以进行如下计算: 1,输出电流Iout=Pout/Udc=600/400=1.5A 2,最大输入功率Pin=Pout/η=600/0.92=652W 3,输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A 4,那么输入电流有效值峰值为Iinrmsmax*1.414=10.85A 5,高频纹波电流取输入电流峰值的20%,那么Ihf=0.2*Iinrmsmax=0.2*10.85=2.17A 6,那么输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A 7,那么升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH 8,输出电容最小值为:Cmin=Iout/(3.14*2*fac*Voutp-p)=1.5/(3.14*2*50*10)=477.7uF,实际电路中还要考虑hold up时间,所以电容容量可能需要重新按照hold up的时间要求来重新计算。实际的电路中,我用了1320uF,4只330uF的并联。 有了电感量、有了输入电流,我们就可以设计升压电感了! PFC电路的升压电感的磁芯,我们可以有多种选择:磁粉芯、铁氧体磁芯、开了气隙的非晶/微晶合金磁芯。这几种磁芯是各有优缺点,听我一一道来。

热处理--表面淬火技术

我所关注的表面工程领域——表面淬火技术 一、表面淬火技术的原理和分类 采用特定热源将钢铁材料表面快速加热到Ac3(对亚共析钢)或者Ac1(对过共析钢)之上,然后使其快速冷却并发生马氏体相变,形成表面强化层的工艺过程,就称为表面淬火技术。实际上,不仅仅是钢铁,凡是能通过整体强化的金属材料,原则上都可以进行表面淬火。需要注意的是,表面淬火只对工件的表面或部分表面进行热处理,所以只改变表层的组织,使其表面硬度、耐磨性和疲劳强度均高。而心部或其它部分的组织仍保留原来的低硬度、高塑性和高韧性的性能,这样工件截面上由于组织不同性能也就不同。表面淬火便于实现机械化、自动化,质量稳定,变形小,热处理周期短,费用少,成本低,还可用碳钢代替一些合金钢。 对于表面淬火的使用材料,原则上,碳的质量分数在0.35%--1.20%的中、高碳钢及基体相当于中碳钢的普通灰铸铁、球墨铸铁、可锻铸铁、合金铸铁均可以实现表面淬火,但中碳钢与球墨铸铁是最适宜于表面淬火的材料。 根据加热方法不同,表面淬火可分为感应加热(高频、中频、工频)表面淬火、火焰加热表面淬火、激光加热表面淬火、电子束表面淬火、接触电阻加热表面淬火、电解液加热表面淬火等。工业上应用最多的为感应加热、火焰加热、激光加热表面淬火。这里我主要介绍了感应加热、激光加热表面淬火技术,以及感应加热表面淬火国内外的发展现状及趋势。 二、感应加热表面淬火 感应加热表面淬火法是采用一定方法使工件表面产生一定频率的感应电流,将零件表面迅速加热,然后迅速淬火冷却的一种热处理操作方法。生产中把工件放入由空心铜管绕成的感应线圈中,当感应线圈通以交流电时,便会在工件内部感应产生频率相同、方向相反的感应电流。感应电流在工件内自成回路,故称为“涡流”。涡流在工件截面上的分布是不均匀的,表面电流密度最大,心部电流密度几乎为零,这种现象称为集肤效应。由于钢本身具有电阻,因而集中于工件表面的涡流,几秒种可使工件表面温度升至800~1000℃,而心部温度仍接近室温,在随即喷水(合金钢浸油)快速冷却后,就达到了表面淬火的目的。 根据输出加热电流频率的不同可将感应加热表面淬火分为高频感应加热淬

趋肤效应 集肤效应

趋肤效应_集肤效应 交变电流通过导线时,电流在导线横截面上的分布是不均匀的,导体表面的电流密度大于中心的密度,且交变电流的频率越高,这种趋势越明显,该现象称为趋 肤效应(skin effiect),趋肤效应也称集肤效应。 趋肤效应(skin effect),在“GB/T2900.1-2008电工术语基本术语”中定义如下: 由于导体中交流电流的作用,靠近导体表面处的电流密度大于导体内部电流 密度的现象。 注1:随着电流频率的提高,趋肤效应使导体的电阻增大,电感减小; 注2:在更一般的情况下,任何随时间变化的电流都产生趋肤效应。 一、趋肤效应原理 趋肤效应实际上是涡流的体现,涡流是电磁感应的一种体现方式,但是,某些文献简单的认为,由于电流流过导体时,导体中心处的磁感应强度大,因电磁感应产生的感应电动势大,根据楞次定理,感应电动势将阻碍电流的变化,这种说法是错误的。 以截面为圆形的长直导线为例,其磁场分布如下图1所示。 图1、截面积为圆形的长直导线内部磁场分布图 根据安培环路定理,磁场强度H沿闭合回路的线积分等于闭合回路包含的电流的代数和,与闭合回路之外的电流无关。均匀材质的导体中,磁感应强度B

与磁场强度成正比,选闭合回路为图中所述的各条磁力线,可知,越靠近导体中心,磁力线包围的电流越小,在导体轴线上,磁感应强度为零。 实际上,趋肤效应是涡流效应的结果,如图2所示: 图2、涡流与趋肤效应 如图,电流I流过导体,在I的垂直平面形成交变磁场,交变磁场在导体内部产生感应电动势,感应电动势在导体内部形成涡流电流i,涡流i的方向在导体内部总与电流I的变化趋势相反,阻碍I变化,涡流i的方向在导体表面总与I的变化趋势相同,加强I变化。在导体内部,等效电阻变大,而导体表面的等效电阻变小,交变电流趋于在导体表面流动,形成趋肤效应。 趋肤效应使导线通过交变电流的有效截面积减小了,导线的电阻增大了。 趋肤效应下导体的等效电阻变化了,这个等效电阻,称为交流电阻,交流电阻与电流的频率有关,频率越高,交流电阻越大。 二、趋肤深度 定义从表面到电流密度下降到表面电流密度的0.368(即1/e)的厚度为趋肤深度或穿透深度Δ 式中: μ-导线材料的磁导率; ρ-材料的电阻率; k-材料电导率(或电阻率)温度系数; 可见趋肤深度与频率的开方成反比,与电阻率的开方成正比。下表是20℃时铜的的趋肤深度表。

高频淬火原理与应用

高频淬火原理及应用 线圈通以高频电流,产生高频磁场,在铁磁性材料中产生感生电流,由于趋肤效应,感生电流聚积于材料的表面产生热,达到相变温度。激冷达到淬火目的。 感应加热与其它加热炉传导、对流或辐射使工件到达加热温度相比,它具有完全不同的加热原理。其基本原理是:把加热材料(即工件)置于通有交流电流的线圈内,由于交变磁场的作用工件内部会产生感应电势,在感生电势的作用下工件内会产生涡流,依靠这些涡流的能量达到加热目的。 通过热高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000ºC,而心部温度升高很小

词语解释 感应加热频率的选择:根据热处理及加热深度的要求选择频率,频率越高加热的深度越浅。 一、高频(10KHZ以上)加热的深度为0.5-2.5mm, 一般用于中小型零件的加热,如小模数齿轮及中小轴类零件等。 二、中频(1~10KHZ)加热深度为2-10mm,一般用于直径大的轴类和大中模数的齿轮加热。 三、工频(50HZ)加热淬硬层深度为10-20mm,一般用于较大尺寸零件的透热,大直径零件(直径300mm以上,如轧辊等)的表面淬火。 感应加热淬火表层淬硬层的深度,取决于交流电的频率,一般是频率高加热深度浅,淬硬层深度也就浅。频率f与加热深度δ的关系,有如下经验公式:δ=20/√f(20°C);δ=500/√f(800°C)。 式中:f为频率,单位为Hz;δ为加热深度,单位为毫米(mm)。 感应加热表面淬火具有表面质量好,脆性小,淬火表面不易氧化脱碳,变形小等优点,所以感应加热设备在金属表面热处理中得到了广泛应用。 感应加热设备是产生特定频率感应电流,进行感应加热及表面淬火处理的设备。

感应加热电源常见问题解读

感应加热电源常见问题解读 在感应加热电源的设备调试和日常使用过程中,工程师常常需要临时解决其出现的突发情况,这就需要工程师结合感应加热电源的设计方案和理论知识,及时进行处理。在今天的文章中,我们为大家总结了三种在平时比较常遇到的问题并进行解读,下面就让我们一起来看看这些问题都有哪些吧。 常见问题一:感应加热电源的烟气问题应该怎么处理比较稳妥? 对于感应加热电源来说,想要正确处理其烟气问题,我们可以从两个方面来入手,即通常所说的烟气净化或设置烟气捕集装置。先来看烟气净化方式,想要实现对感应加热设备的烟气净化,只有靠除尘器来实现,而除尘器选择的优劣直接影响到除尘系统的捕集效果、除尘电耗以及整个系统能否长期稳定、可靠运行、除尘器的形式繁多,各有利弊。关键在于如何扬长避短,与系统工艺及粉尘组成相适应以获得最佳效果。而设置烟气捕集装置则相对来说繁琐一些,其设置的内容主要包括回转式伞顶吸罩、低阻、大流量管道+调温电动蝶阀、 离线气管式脉冲除尘器、锅炉引风机等。这两种方法的选择,需要工程师依据实际情况进行判断。 常见问题二:感应加热电源在开机工作时有哪些问题需要特别注意一下? 通常情况下,在感应加热电源的工作过程中,有三类问题需要我们特别注意,分别是水资源短缺、电压过高和电气接地阴极电容设置。先来看水资源短缺问题,在长期使用感应加热设备的过程中,可能会出现因冷却水管水垢或阻塞电容而引起的电力电容器过热和燃烧问题,因此,我们应特别注意在水流量的排放情况,一旦发现排放不正常,则应该使用适当的措施。电气接地阴极电容也是需要特别注意的,电绝缘电容一旦发生损坏,很容易造成故障,因此需要工程师及时排查问题,及时处理故障的电容柜绝缘点。电压过高的情况也同样需

感应加热表面淬火常见缺陷分析及预防方法

感应加热表面淬火常见缺陷分析及预防方法 硬度不足火软点、软带 1.淬火件含碳量过低应预先化验材料化学成分,保证淬火件ωc>0.4% 2.表面氧化、脱碳严重淬火前要清理零件表面的油污、斑迹和氧化皮 3. 加热温度太低或加热时间太短正确调整电参数和感应器与工件件相对运动速度,以提高加热温度和延长保温时间。可以返淬,但淬前应进行感应加热退火。 4.零件旋转速度和零件(感应器)移动速度不协调而形成软带调整零件转速和零件(或感应器)移动速度。 5.感应圈高度不够火感应器中有氧化皮适当增加感应圈高度,经常清理感应器。 6.汇流条之间距离太大调整汇流条之间距离为1-3mm。 7.淬火介质中优杂质或乳化剂老化更滑淬火介质。 8.冷却水压力太低锅冷却不及时增加水压,加大冷却水流量,加热后及时喷水冷却。 9.零件在感应器中的位置偏心或零件弯曲严重调整零件和感应器的相对位置,使个边间隙相等;如是零件弯曲严重,淬火钱应进行校直处理。 淬硬层深不足 1.频率过高导致涡流透入深度过浅调整电参数,降低感应加热频率。 2.连续淬火加热时零件与感应器之间相对运动速度过快采用预热-加热淬火。 3.加热时间过短可以返淬,但返淬前应金属感应加热退火。 淬硬层剥落 产生的原因是表面淬硬层硬度梯度太大,或硬化层太浅,表面马氏体组织导致体积膨胀等。应对措施是正确调整电参数,采用预热-加热淬火,加深过渡层深度。

淬火开裂 1.钢中碳和锰的含量偏高可在试淬试调整工艺参数,也可调整淬火介质, 2.钢中夹杂物多、呈网状或成分有偏析或含有有害元素多检查非金属夹杂物含量和分布状况,毛坯需要反复锻造。 3.倾角处或键槽等尖角处加热时出现瞬时高温而淬裂中尖角倒圆,淬火前用石棉绳火金属棒料堵塞沟槽、空洞。 4.冷却速度过大而且不均匀降低水压,减少喷水量,缩短喷水时间。 5. 淬火介质选择不当更具工艺要求选择合适的淬火介质。 6.回火不及时或回火不足淬火后应及时回火,淬火与回火之间的停留时间,对于碳钢或铸件不应超过4h,合金钢不应超过0.5h。回火不足时应延长回火时间。 7.材料淬透性偏高可以选用冷却速度慢的淬火介质。 8.返修件未经退火火正火返修件必须经过退火、正火后,才能再次感应加热淬火。 齿轮淬火畸变 1.圆柱齿轮内孔一般缩小0.01-0.05mm,外径不变或缩小0.01-0.03mm。应对方法是:在满足淬硬层要求前提下,采用较大的比功率,缩短加热时间;端面加盖,防止内孔过早冷却;齿坯加盖后,先进行一次高频正火,然后加工内孔和铣齿。 2. 对于内外径之比小于1.5的薄壁齿轮,内孔和外径优胀大的趋势,双联齿轮呈喇叭口。只有合理设计,正确安排工艺路线。 频率和深度成反比。 影响因素有: 1.基体组织情况:越均匀的组织得到的深度越深。 2.保温时间:保温时间长对增加深度。但是不要太长,记住,感应淬火尽量不要采用传导加热。

高频高压电源的调试

符号(ZDK ),开始时,自 动调宽电位器顺时针开到 最大。在保护点范围内,逐 渐开大内调宽电位器并逐 渐关小自动调宽电位器,直 至, 调宽电位器最大,自动 调宽电位器小到一定程度, 以达到额定电流为度。 符号(TK )正时针 宽度大 (总电流大)反时针宽度 小(总电流小)当电流过 大,电路保护时,关机, 将宽度电位器略微调小, 开机。配合自动调宽电位 器,自动调宽电位器逐渐 关小,宽度电位器逐渐开 大,直至最大(不超过额 定电流) 三龙臭氧电源调试 连接好的三龙臭氧电源经过细心调 试可以发挥它的最大潜能,做到长 期稳定的工作 1先认识四只电位器 频率调整电位器: 紧靠加密盒, 宽度微调电位器: 为1k_1.5k/1w 转柄电位器固定在 符号⑴,正时针频率高, 反时针频率低,总电流 为最大值时,频率为最 佳点,此时,声音最小。 如果总电流超过额定 值,用ZDK 调到额定自 值。 机壳面板上,调整电路时,首先把他 正时针开到最大值。 调宽电位器: 为10k 实芯电位器,离高压包较近。 固定在电路板上。 宽度调整电位器: 为4.7k 实芯电位器。固定在电路板 故障保护电位器:为200欧姆实芯电位 器。固定在电路板上。

将自动调宽电位器(ZDK)和挂长 勺手动电位器正时针调到最大,调宽 1器(TK)反时针调到最小。 开启电源,此时,电流表指示应远 小于电路工作正常值。细心听取,应该 有发生器工作时所固有的沙沙声或高压包的 轻微叫声。否则,应检查电路连接。检查电 路连接时应首先关掉电源。 2调整过程: A试运行。检查电路连接确实无误,在 交流输入端,一定要串联匹配的电流 交流电流表一定 要用磁电式 水路连接完好,并且水路中应有水在流动,确保 调试过程中功率管散热良好。 B正常工作电流的调整。宽度电位器 (TK 4.7k )徐徐开大,当电流达到额定植 的一半时(2.5kw,5kw,10kw 则应该在额定 值的1 /3时)调整频率,方法是:不论正时 针或是反时针调整频率电位器,使电流增至最 大,暂时锁定频率电位器。 再徐徐开大宽度电位器(TK 4.7k )使 电流表指针达到额定值,调节频率电位器 (f),不论正时针或反时针,使电流值达到最 大,超过额定植用自动限宽电位器(ZDK)拉 回到额定值。如果是2.5Kw,5kw,10kw 应该 分三次调整频率,第二次应该在额定电流的2 /3 处进行。 调整频率的目的是在寻找负载回路的谐振 符号(BH )开始反时针放到最小 值,逐渐开大调宽电位器,使岀现 保护。正时针调大线的保护电位 器30度角,重启。 再调大宽度,再调大保护3电位 度角,再重启。直至保护点为额定 电流值的1.2倍。

《统计》概念最终小范围概念及计算公式

统计概念.简答最终小范围 一、集中趋势离散趋势的描述统计(概念、特点及应用条件?)☆☆☆ 1、集中趋势:反映一组数据的平均水平的指标。 (1)算术均数:应用条件:①正态分布的数据;②对称分布的数据。 (2)几何均数:适用条件:对于变量值呈倍数关系或呈对数正态分布。 (3)中位数:应用条件:①偏态分布②分布不明③有极端值④有开口的资料。特点:不受极端值影响。 (4)百分位数:应用条件:①描述一组资料在某百分位置上的水平;②用于确定正常值范围;③计算四分位数间距。 (5)众数:一组观察值中出现次数最多的那个数值,可以没有也可以不止一个。 2、离散趋势:反映一组数据离散或分散的水平的指标。(1)极差:全距=最大值-最小值。①优点:计算简单方便,应用广范,容易理解。②缺点:只反映两端数据最大最小值的差别,易受极端值的影响,不能反映组内其他变量离散情况。 (2)四分位数间距:Q=P75-P25。①优点:不受极端值影响,比极差R稳定。②缺点:计算繁琐、不易理解、只反映中间50%的数据的两端的差值(3)方差:特点:①充分反映了每一个数据与平均数的差别;②S2指标很稳定;③S2应用广泛;④S2计算比较麻烦;⑤S2单位是原单位的平方,在实际应用时不太方便。(4)标准差:标准差是方差的开平方。意义与方差相同。特点:标准差的单位与原数据的单位相同。 (5)变异系数:应用条件:①用于比较不同单位数据的离散度。②用于比较均数相差很大时的离散度。特点:①无量纲的指标;②反映指标的稳定性;③一般CV不大于20~25%。 二、分析医学科研资料的基本思想及方法☆☆☆ 基本思路:根据研究目的及科研资料的性质和特点,选择正确的分析及检验方法,处理医学资料。 具体分析方法及步骤: (一)先将医学资料分类,根据资料类型选择相应的分析及检验方法; (二)具体步骤: 1.计量资料: (1)data为正态分布,方差齐性; ①t检验法(n<100):单样本t 检验;两样本t检验;配对样本t检验。②μ检验法:单样本μ检验;两样本μ检验(n>100)。③F 检验法:用于多样本均数比较。包括:单因素方差分析;双因素方差分析;拉丁方设计方差分析;析因设计方差分析;交叉设计方差分析;正交设计方差分析。④协方差分析:用于具有协变量的资料进行方差分析。⑤直线相关与回归分析:主要用于2个变量的分析(x与y)。⑥t′检验:也称为校正t 检验:数据为正态分布,但方差不齐。(2)数据为非正态分布或方差不齐:主要用非参数检验。 ①Wilcoxon符号秩检验:用于配对计量data。②Wilcoxon秩和检验:用于两样本比较。③Kruskal-wallis检验:也称为H 检验。用于单因素多样本比较。④Friedman检验:也称为M检验。用于双因素多样本比较。⑤秩相关(也称为等级相关):用于非正态数据,进行相关分析。 2.分类变量(资料): (1)二项分布及Poisson分布:用于处理二项分类资料及稀有事件模型资料。 (2)齐性的x2检验:①四格表x2 检验:两个率(构成比)的检验;②配对x2检验:用于配对计数data的检验;③行×列表x2 检验:多个率(构成比)的检验。 (3)独立性的x2 检验:分析2个变量间有无关联性相关性分析。 (4)秩检验(有序分类data 或等级data):①Wilcoxon两样本法:用于两样本等级data 检验。②Kruskal-wallis检验:用于多个样本等级data检验。t (5)Ridit分析:专门用于两样本或多样本等级data的比较。 (6)Kappa分析:用于临床诊断的一致性检验,可以是四格表或行×列表。 3.圆形分布数据:用圆形分布法分析和处理各种符合图形分布的数据。 4.其他各种分析方法: (1)随访data的生存分析: 主要有kaplan-Meier法及寿命 表法。 (2)多因素分析:①多元线 性回归;②多元线性相关;③ logistic回归;④Cox比例风险 回归;⑤判别分析;⑥聚类分 析;⑦主成份分析;⑧因子分 析;⑨其他分析方法等。 三、统计软件的特点☆☆☆ 1、SAS: ①世界著名的一流统计软件; ②适合于专业统计人员使用; ③功能极为强大、全面;④SAS 占用空间大;⑤运算速度极 快;⑥可以读入多种格式数 据;⑦编程方式极为灵活但对 话框方式的界面不太友好。 2、SPSS: ①适合于中级、初级科研人员 使用;②适合于专业及非专业 统计人员使用; ③界面友好;④占用空间比 SAS小;⑤统计方法:是公认 的、经典的统计方法;⑥SPSS 也可以编程,但不如SAS功能 强大;⑦SPSS也是世界著名 统计软件。 3、PEMS: ①在国内医学界及卫生统计 界是权威性统计软件;②全中 文界面,界面友好,使用方便; ③内容包含有常用的统计分 析方法,包括:基本统计方法, 高级统计方法;④既可以处理 原始数据进行统计分析,也可 以分析经过整理的数据进行 统计分析;⑤非常适合于专业 及非专业统计人员使用,也适 合临床医生使用。 4、stata: ①非常小巧,约20-30M;②国 际常用的统计软件;③功能强 大,全面;④主要依靠编程→ 进行统计分析。极具灵活性。 四、调查研究(普查、抽样调 查、典型调查的特点☆☆☆) 1、普查特点:☆☆☆ ①理论上只有普查才能取得 总体参数,没有抽样误差,但 往往非抽样误差较大。②普查 一般都是用于了解总体某一 特定“时点”的情况。③病程 较短的疾病,不适合作时点普 查。 2、抽样调查特点:☆☆☆ ①节省人力、财力和时间,可 获得较为深入细致和准确的 资料。②许多医学问题只能作 抽样调查。③可用于检查普查 的质量。④实际工作中应用最 多。 3、典型调查特点:☆☆☆ ①典型常是同类事物特征的 集中表现,抓住典型,有利于 对事物特征作深入的了解。② 典型调查可与普查结合,分别 从广度和深度说明问题。③典 型调查不遵循随机抽样的原 则,不能用于估计总体参数, 但在一定条件下,根据专业知 识,选定一般典型可对总体特 征作经验推论。 【附】 调查研究概念:指是研究过程 中没有任何干预措施的条件 下,客观地观察和记录研究对 象的现状及其相关特征。 调查研究特点:①研究的对象 及其相关因素是客观存在的; ②不能用随机化分组来平衡 混杂因素对调查结果的影响。 调查研究类型: 1)普查:又称为全面调查, 就是将组成总体的所有观察 单位全部加以调查。 2)抽样调查:指总体中随机 抽取一定数量的观察单位组 成样本,然后用样本信息推断 总体特征。 3)典型调查:亦称案例调查, 即在对事物作全面分析的基 础上,有目的地选定典型的 人,典型的单位进行调查。 五、析因设计与正交设计(特 点,符号的意义☆☆☆) 1、析因设计概念: 是一种多因素的交叉分组设 计。它不仅可检验每个因素各 水平间的差异,而且可检验各 因素间的交互作用。 (1)析因设计特点:☆☆☆ ①可分析多个因素多个水平 的试验效应,可以分析各因素 的独立作用及其各级交互作 用;②节省样本含量,试验效 率高;③设计时较为复杂,计 算较为繁琐。 (2)析因实验的意义:☆☆☆ 最简单的析因设计☆2x2,意 义:试验中有2个因素,每个 因素各有2个水平。☆2x2x2 意义:试验中3个因素,每个 因素各有2个水平。☆2x2x3x2 析因实验的意义:试验中有4 个因素,第1、2、4个因素有 2个水平;第3个因素有3个 水平。 (3)交互作用类型模板: ①独立作用:A、B、C、D, 是四个因素各自的单独作用。 ②一级交互作用:A×B,A× C,A×D,B×C,B×D,C ×D,是任意两个因素的共同 作用。 ③二级交互作用:A×B×C, A×B×D,A×C×D,B×C ×D,是任意三个因素的共同 作用。 ④三级交互作用:A×B×C ×D,是四个因素的共同作用。 ☆2x2x3x2类型实例: ①独立作用:2、2、3、2,是 四个因素各自的单独作用。② 一级交互作用:2×2,2×3, 2×2,2×3,2×2,3×2,是 任意两个因素的共同作用。③ 二级交互作用:2×2×3,2× 2×2,2×3×2,2×3×2,是 任意三个因素的共同作用。④ 三级交互作用:2×2×3×2, 是四个因素的共同作用。 2、正交试验设计概念: 是一种高效的多因素试验的 设计方法。它利用一套规格化 的正交表,合理地安排实验, 通过对实验结果进行分析,获 得有用的信息。 (1)正交试验设计特点:☆☆☆ ①可分析三个及三个以上因 素的作用及其交互作用。②用 最少的试验次数获得更多的 信息。③可用方差分析处理 正交设计的测量数据,但计算 十分繁琐。 (2)正交试验设计意义: ①L N(m K)的意义:☆☆☆ L N(m K)表示正交表有N行K 列,每一列由1,2,….,m 个整数组成。L N(m K)安排试 验,N表示试验次数,k 表示 最多可安排的因素个数,m表 示各因素的水平数。 ②L8(27) 意义:表示要求做8 次试验,允许最多安排7个“2” 水平的处理因素。 ③L16(42X29) 意义:表示要求 做16次试验,允许最多安排2 个“4”水平处理因素,9个“2” 水平处理因素。 六、概念:圆形分布、生存分 析、截尾值、重复测量。☆☆ ☆ 1、圆形分布:凡是具有周期 性和循环性的资料为圆形资 料,是用圆形分布法分析和处 理各种符合图形分布的数据。 2、生存分析:是将事件发生 的结果和随访时间两个因素 结合在一起进行分析的一种 统计分析方法,它能充分利用 所得到的研究信息,更加准确 地评价和比较随访资料。 3、截尾值:也称终检值,删 失数据,不完全数据,指在随 访过程中,由于某种原因未能 观察到病人的明确结果(终止 事件),所以不知道该病人的 确切生存t,它提供的生存t 的信息是不完整的。 4、重复测量:最常见的情况 是前后测量设计,当重复测量 次数m≥3时,称重复测量设 计或重复测量数据,它不能同 期观察实验结果,本质上比较 的是前后差别,假定测量时间 对观测结果没有影响。 七、实验设计的基本要素和基 本原则: (1)实验设计基本要素: ①受试对象:研究人员所要观 察的客体,即处理因素作用的 对象;②处理因素:-研究人 员施加于受试对象并能产生 一定实验效应的因素;③实验 效应:-处理因素施加于受试 对象并经过一段时间,受试对 象产生的各种反应及表现。 (2)实验设计基本原则: ①随机化的原则:-指总体中 每个个体都有均等的机会被 抽取,或被分配到实验组及对 照组中去;②对照化的原则: -是指在实验研究中使受试 对象的处理因素和非处理因 素的实验效应的差异有一个 科学的对比;③重复的原则: -重复有2层含义:样本含量 的大小和实验重复次数的多 少;④均衡的原则:-指对照 组除处理因素与实验组不同 外,其他各种条件及因素基本 一致。 05年简答题选以上没有的 1、解释名词:生存率、主效 应、交互作用 ②生存率:又称累积生存率或 生存函数,表示具有协变量x 的观察对象,其生存时间T大 于时间t的概率,常用S (t.x) =P 表示。 ③主效应:是指某一因素各水 平间的平均差别。 ④交互作用:当某因素的各个 单独效应随另一因素变化而 变化时,称这两个因素间存在 交互作用。 2、简述参数统计及非参数统 计的特点。各有哪些常见的对 应统计方法? (1)参数统计特点: ①推断两个或多个总体参数 是否相等。②总体分布为已知 的数学形式,对其总体参数作 假设检验。③两个或多个正态 总体方差齐性,计量资料满足 参数检验条件的假设检验。④ 受总体分布的限制,假设检验 的结果对总体分布的形状敏 感。 (2)参数统计方法: ①t检验(单个样本t 检验、 配对样本t 检验、两独立样本 t 检验。);②F检验(单因素 方差分析、双因素方差分析、 拉丁方设计方差分析、析因设 计方差分析、交叉设计方差分 析、正交设计方差分析。);③ u检验(样本率与总体率比较 的u检验、两样本率比较的u 检验);④x2检验(四个表资料 x2检验、配对四个表资料x2检 验、行x列表x2检验、);⑤二 项分布与泊松分布 (3)非参数检验特点: 优点:①适用范围广;②不受 总体分布的限制;③可处理等 级资料;④用于小样本时,效 率高。缺点:如果数据是正态 分布,方差齐性,用非参数 test,则效率降低,是参数检验 的75%左右。 (4)非参检验的方法: ①配对设计资料的秩和检验; ②两样本比较的秩和检验。③ 完全随机设计多样本比较的 秩和检验④多个样本间两两 比较的秩检验。⑤随机区组设 计资料的秩和检验。⑥随机区 组设计资料的两两比较的秩 和检验。⑦秩相关(也称为等 级相关)。 3、简要写出多元线性回归分 析的主要步骤。 ①根据样本数据求得模型参 数β1β1…βm的估计值, b1b2….b m,从而得到表示应变 量x与自变量x1x2…x m数量关 系的表达式 Y=b0+b1x1+b2x2+…b m x _ m ②对回归方程及各自变量做 假设检验,并对方程的拟合效 果及各自变量的作用大小作 出评价。 4、简述logistic回归应用的注 意事项。 ①变量的取值形式。对同一资 料的分析,变量采用不同的取 值形式,参数的含义,量值及 符号都可能发生变化。②样品 含量:logistic回归的所有统计 推断都是建立在大样本基础 上,因此要求有足够的样本含 量。③模型评价:对模型评价 一般包括两部分,一是对模型 中的每个自变量进行检验;二 是对所有建立的回归方程作 拟合优度检验。 5、写出logistic回归,cox回 归的模型结构及相应回归系 数的实际意义。 ①logistic回归模型: P=1/{1+exp[-(β0+β1χ1+β2 χ2+……+βmβm)]} ②logistic系数的实际意义: 回归系数βj(j=1,2,….m)表示 自变量X j gi改变一个单位时 logitP的改变量,它与衡量危 险因素作用大小的比数比例 即优势比有一个对应的关系。 对比某一危险因素两个不同 暴露水平Xj=c1与Xj=c0的发 病情况,其优势比的自然对数 为lnORj=logitP1- logitP0即 ORj=exp[βj(c1-c0)], 试中P1和P0分别表示在Xj取 值为c1及c0时的发病概率, ORj称作多变量调整后的优势 比,表示扣除了其他自变量影 响后危险因素的作用。特殊 地,若果Xj赋值为暴露(=1) 非暴露(=0),则暴露组与费 暴露组发病的优势比为 ORj=exp(βj),当βj=0时, ORj=1,说明因素Xj对疾病发 生不起作用;当βj>0时, ORj>1,说明因素Xj是一个危 险因子;当βj<0时,ORj<1, 说明因素Xj是一个保护因子。 ③cox回归模型: h(tx)/h0(t)=exp(β1χ1+β2χ 2+……+ βmβm) ④cox系数的实际意义: βj与风险函数h(tx)关系:β j >0,则Xj取值越大时,h(tx) 的值越大,表示病人死亡的风 险越大;βj=0,则Xj取值对 h(tx)没有影响;βj<0,则Xj取 值越大时,h(tx)的值越小,表示 病人死亡的风险越小。 【统计计算题涉及公式集】 1、x2检验, 基本公式 ()2 2A T x T - =∑ 理论频数 n n R C T RC n = ④ () C i n i j ij SS- ∑ ∑ = x 2 组间 ⑤V组间=κ-1 ⑥ SS SS SS组间 总 组内- = ⑦V 组内 = N-κ ⑧ ν组间 组间 组间 SS MS= ⑨ ν组内 组内 组内 SS MS= ⑩ MS MS F 组内 组间 值= 4、μ检验 ①样本均数与总体均数比较 ) (, 0已知时 σ n u x u - = ) (,0较大时 n n s u x u - = 95%正常值 () , X u S X u S a a -+ S= 95%可信区间 , u s u s a a X X ?? -+ ? ?? , x s= ②μ检验.两样本均数比较 n1>50且n2>50 n S n S x x u 2 2 2 1 2 1 2 1 + - = , 1 1 1 x X n ∑ =2 2 2 x X n ∑ = ③μ检验.样本率与总体率比 较 u ④μ检验.两样本率比较 Pc为两样本合并率 u , 5、t检验(n<50) (1)t检验.样本与总体均数比较 n S u x t - = x X n ∑ = S= (2)t检验.配对资料 ① 21 d x x =- ② d d n ∑ = ③S d ④ d t= (3)t检验.两样本均数比较 ①两样本均数差值的标准误 12 X X σ - ② 12 X X σ - 的样本估计值 12 S X X - ③ 2 c S为两样本合并方差 ()() 22 12 22 12 12 2 12 x x x x n n S c ∑∑ -+- ∑∑ = ④已知S1和S2用下式 ()() 22 11 12 12 2 2 12 n n S S S c n n -+- = +- ⑤n1=n2并已知S1和S2 12 S X X - ⑥在H0:u1=u2即u1-u2=0时, 12 12 X X t S X X - = - 12 2 n n ν=+- 1 1 1 x X n ∑ =2 2 2 x X n ∑ = 1 / 1

相关文档
最新文档