信息论与编码理论-第3章信道容量-习题解答
信息论与编码理论-第3章信道容量-习题解答

信息论与编码理论-第3章信道容量-习题解答-071102(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第3章 信道容量习题解答3-1 设二进制对称信道的转移概率矩阵为2/31/31/32/3⎡⎤⎢⎥⎣⎦解: (1) 若12()3/4,()1/4P a P a ==,求(),(),(|),(|)H X H Y H X Y H Y X 和(;)I X Y 。
i i 2i=13311H(X)=p(a )log p(a )log()log()0.8113(/)4444bit -=-⨯-=∑符号111121*********j j j=132117p(b )=p(a )p(b |a )+p(a )p(b |a )=43431231125p(b )=p(a )p(b |a )+p(a )p(b |a )=4343127755H(Y)=p(b )log(b )=log()log()0.9799(/)12121212bit ⨯+⨯=⨯+⨯=---=∑符号22i j j i j i j i ,H(Y|X)=p(a ,b )logp(b |a )p(b |a )logp(b |a )2211log()log()0.9183(/)3333i jjbit -=-=-⨯-⨯=∑∑符号I(X;Y)=H(Y)H(Y|X)=0.97990.91830.0616(/)bit --=符号 H(X|Y)=H(X)I(X;Y)=0.81130.06160.7497(/bit --=符号)(2)求该信道的信道容量及其达到信道容量时的输入概率分布。
二进制对称信息的信道容量H(P)=-plog(p)-(1-p)log(1-p)1122C =1-H(P)=1+log()+log()=0.0817(bit/)3333符 BSC 信道达到信道容量时,输入为等概率分布,即:{,} 注意单位3-2 求下列三个信道的信道容量及其最佳的输入概率分布。
信息论与编码(第3版)第3章部分习题答案

3.1设信源()12345670.20.190.180.170.150.10.01X a a a a a a a P X ⎛⎫⎧⎫=⎨⎬ ⎪⎩⎭⎝⎭ (1) 求信源熵()H X (2) 编二进制香农码(3) 计算平均码长及编码效率。
答:(1)根据信源熵公式()()()()21log 2.6087bit/symbol i i i H X p a p a ==−=∑(2)利用到3个关键公式:①根据()()()100,0i a i k k p a p a p a −===∑计算累加概率;②根据()()*22log 1log ,i i i i p a k p a k N −≤<−∈计算码长;③根据()a i p a 不断地乘m 取整(m 表示编码的进制),依次得到的i k 个整数就是i a 对应的码字根据①②③可得香农编码为(3)平均码长公式为()13.14i i i K p a k ===∑单符号信源L =1,以及二进制m =2, 根据信息率公式()2log bit/symbol m KR K L==编码效率()83.08%H X Rη==3.2对习题3.1的信源编二进制费诺码,计算其编码效率答:将概率从大到小排列,且进制m=2,因此,分成2组(每一组概率必须满足最接近相等)。
根据平均码长公式为()12.74i iiK p a k===∑单符号信源L=1,以及二进制m=2, 根据信息率公式()2log bit/symbolmKR KL==编码效率(信源熵看题3.1)()95.21%H XRη==3.3对习题3.1的信源编二进制赫夫曼码,计算平均码长和编码效率答:将n个信源符号的概率从大到小排列,且进制m=2。
从m个最小概率的“0”各自分配一个“0”和“1”,将其合成1个新的符号,与其余剩余的符号组成具有n-1个符号的新信源。
排列规则和继续分配码元的规则如上,直到分配完所有信源符号。
必须保证两点:(1)当合成后的信源符号与剩余的信源符号概率相等时,将合并后的新符号放在靠前的位置来分配码元【注:“0”位表示在前,“1”表示在后】,这样码长方差更小;(2)读取码字时是从后向前读取,确保码字是即时码。
第三章 信道与信道容量 习题解答

,
,求
,
,
和
;
(2) 求该信道的信道容量及其达到信道容量时的输入概率分布。
解:
(1)先写出
:
根据公式
计算联合概率:
信宿端符号分布概率:
根据公式
计算:
3
求各熵: 信源熵:
比特/消息
信宿熵:
比特/消息
可疑度:
平均互信息量: 噪声熵: (2)二元对称离散信道的信道容量:
比特/消息 比特/消息
比特/秒
信源等概分布时(
解:设下标 1为原状况,下标 2为改变后状况。由
可得:
,
倍
如果功率节省一半则
倍 ,为 了 使 功 率 节 省 一 半 又 不 损 失 信 息 量 I,根 据
,可以: (1) 加大信道带宽 W,用带宽换取信噪比
,
,
7
缺点是对设备要求高。 (2) 加大传输时间 T,用传输时间换取信噪比,同理可得:
缺点是传输速度降低了。
噪声熵:
(5)平均互信息量:
2.有一个生产 A、B、C、D四种消息的信源其出现的概率相等,通过某一通信系统传输时,B和 C无误,A 以 1/4概率传为 A,以 1/4概率误传为 B、C、D,而 D以 1/2概率正确传输,以 1/2概率误传为 C,
(1)试求其可疑度?(2)收到的信号中哪一个最可靠?(3)散布度为多少? 解:(1)
,
将各数据代入: 解得:
如果
则
将各数据代入: 解得:
14.在理想系统中,若信道带宽与消息带宽的比为 10,当接收机输入端功率信噪比分别为 0.1和 10时,试
比较输出端功率信噪比的改善程度,并说明
与
之间是否存在阀值效应。
第三章 信道与信道容量 习题解答

6
由于二元信源,等概率分布,信道对称,满足山农的理想观察者原理的三个假设条件,因此计算疑义度: 比特/消息
接收熵速率:
比特/秒
而系统要求的传信率为:
比特/秒,大于 1289比特/秒,故 10秒内无法无失真传递完。
11.已知一个平均功率受限的连续信号,通过带宽
的高斯白噪声信道,试求
(1) 若信噪比为 10,信道容量为多少?
(2) 若要保持信道容量不变,信噪比降为 5,信道带宽应为多少?
(3) 若要保持信道容量不变,信道带宽降为 0.5MHz,信号的功率信噪比应为多少?
(4) 其中有什么规律可总结?
解:根据香农公式:
(1) 信噪比为 10倍,信道容量: (2) 信噪比为 5倍,信道带宽:
比特/秒
(3) 信道带宽为 0.5MHz,信号的功率信噪比:
(2)信源熵速率: 接收熵速率: (3)一消息共有 4000个二元符号,该消息的信息量: 无失真地传递完该消息所需的时间:
10.有一个二元对称信道,其信道矩阵为
,设该信源以 1500符号/秒的速度传输输入符号。现
有一消息序列共有 14000个二元符号,并设其符号等概分布,问从信息传输的角度来考虑,10秒钟内能否 将这消息序列无失真地传递完? 解:根据信道转移矩阵画出下图:
当
时,根据
,
得:
作业:1、3(2)、6、7(1)、8、9或 10、11、13、15、16(1)
mW/Hz、限频 、限输入
9
解:设将电阻按阻值分类看成概率空间 X:
,
按功耗分类看成概率空间 Y:
已知:
,
通过计算
, ,
,
得
通过测量阻值获得的关于瓦数的平均信息量:
信息论与编码习题与答案第三章

(1)若P(0)= 3/4,P(1)= 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y);
(2)求该信道的信道容量及其达到信道容量时的输入概率分布;
解:1)
(2)
其最佳输入分布为
3.3在有扰离散信道上传输符号0和1,在传输过程中每100个符号发生一个错误,已知P(0)=P(1)=1/2,信源每秒内发出1000个符号,求此信道的信道容量。
解:由题意可知该二元信道的转移概率矩阵为: 为一个BSC信道所以由BSC信道的信道容量计算公式得到:
3-6设有扰离散信道的传输情况分别如图3-17所示。求出该信道的信道容量。
解:信道转移概率矩阵为P= 该信道为离散对称信道DMC
3-7发送端有三种等概率符号 , ,接收端收到三种符号 ,信道转移概率矩阵为
(7) bit/symbol
H(X/Y)=
i
bit/symbol
3-10一个平均功率受限制的连续信道,其通频带为1MHZ,信道上存在白色高斯噪声。
(1)已知信道上的信号与噪声的平均功率比值为10,求该信道的信道容量;
(2)信道上的信号与噪声的平均功率比值降至5,要达到相同的信道容量,信道通频带应为多大?
=
bit/symbol
(3)当接收为 ,发为 时正确,如果发的是 则为错误,各自的概率为:
则错误概率为:
(4)
从接收端看平均错误概率为
(5)从发送端看的平均错误概率为:
(6)能看出此信道不好。原因是信源等概率分布,从转移信道来看正确发送的概率x1→y1的概率0.5有一半失真;x2→y2的概率0.3有严重失真;x3→y3的概率0完全失真。
(1)接收端收到一个符号后得到的信息量H(Y);
《信息论与编码》习题解答-第三章

第三章 信道容量-习题答案3.1 设二元对称信道的传递矩阵为⎥⎦⎤⎢⎣⎡3/23/13/13/2 (1) 若P(0) = 3/4, P(1) = 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y); (2) 求该信道的信道容量及其达到信道容量时的输入概率分布;解: 1)symbolbit Y X H X H Y X I symbol bit X Y H Y H X H Y X H X Y H Y H Y X H X H Y X I symbol bit y p Y H x y p x p x y p x p y x p y x p y p x y p x p x y p x p y x p y x p y p symbolbit x y p x y p x p X Y H symbolbit x p X H jj iji j i j i i i / 062.0749.0811.0)/()();(/ 749.0918.0980.0811.0)/()()()/()/()()/()();(/ 980.0)4167.0log 4167.05833.0log 5833.0()()(4167.032413143)/()()/()()()()(5833.031413243)/()()/()()()()(/ 918.0 10log )32lg 324131lg 314131lg 314332lg 3243( )/(log )/()()/(/ 811.0)41log 4143log 43()()(222221212221221211112111222=-==-==+-=+-=-=-==⨯+⨯-=-==⨯+⨯=+=+==⨯+⨯=+=+==⨯⨯+⨯+⨯+⨯-=-==⨯+⨯-=-=∑∑∑∑2)21)(/ 082.010log )32lg 3231lg 31(2log log );(max 222==⨯++=-==i mi x p symbolbit H m Y X I C3.2 解:(1)αα-==1)(,)(21x p x p⎥⎦⎤⎢⎣⎡=4/14/12/102/12/1P ,⎥⎦⎤⎢⎣⎡---=4/)1(4/)1(2/)1(02/12/1)(αααααj i y x P 4/)1()(,4/14/)(,2/1)(321αα-=+==y p y p y p接收端的不确定度:))1(41log()1(41)4141log()4141()2log(21)(αααα---++-=Y H)1log(41)1log(4123αααα---++-= (2))4log()1(41)4log()1(41)2log()1(210)2log(21)2log(21)|(ααααα-+-+-+++=X Y H α2123-= (3))|()();(X Y H Y H Y X I -=);(max )()(Y X C i x p =α,0)(=ααC d d,得到5/3=α 161.0)5/3();max(===C Y X C 3.3∑==⨯++=+=21919.001.0log 01.099.0log 99.02log log )log(j ij ij p p m C0.919*1000=919bit/s 3.4⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=εεεε-10-10001ij p2/1)()(0)(321===a p a p a p 0)(1=b p2/12/1)1(2/100)|()(),()(222=⨯+-⨯+⨯===∑∑εεi ii ii a b p a p b a p b p2/1-12/12/100)|()(),()(333=⨯+⨯+⨯===∑∑)(εεi ii ii a b p a p b a p b p)()|(log)|();(j i j ji j i b p a b p a b p Y a I ∑=0);(1=Y a Iεεεε2log )1(2log )1(0)()|(log)|();(222+--+==∑j j jj b p a b p a b p Y a I )1(2log )1(2log 0)()|(log)|();(333εεεε--++==∑j j jj b p a b p a b p Y a I当0=ε,1=C 当2/1=ε,0=C 3.5两个信道均为准对称DMC 信道设输入符号概率αα-==1)(,)(21a p a p , (1) 对于第一种信道的联合概率的矩阵为:⎥⎦⎤⎢⎣⎡---------)1(2)1)(1()1)((2)()1(αεαεαεεααεαεp p p p⎥⎦⎤⎢⎣⎡---)()1(εαεp p 3.6⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/1002/12/12/10002/12/10002/12/1P 121log 2121log 214log log )log(41=++=+=∑=ij j ij p p m C3.7解:(1)从已知条件可知:3,2,1,3/1)(==i x p i ,且转移概率⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0109101103103525110321)|(i j x y p ,则联合概率⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==010330110110115215110161)()|(i i j ij x p x y p p ,因为:),()(∑=ij i j y x p y p ,可计算得到31)(1=y p ,21)(2=y p ,61)(3=y p499.16log 612log 213log 31)(=++=Y H(2)175.1910log 10310log 301310log 101310log10125log 1525log 151310log 1012log 61)|(log )()|(=+++++++=-=∑iji j j i x y p y x p X Y H (3)当接收为2y ,发送为2x 时正确,如果发送为1x 和3x 为错误,各自的概率为: 5/1)|(21=y x p ,5/1)|(22=y x p ,5/3)|(23=y x p 它的错误概率为:5/4)|()|(2321=+=y x p y x p p e(4)从接收端看到的平均错误概率为:===∑∑≠≠ji ij ji j i j e p y x p y p p )|()(收733.010/115/110/310/130/115/2=+++++(5)从发送端看到的平均错误概率为:===∑∑≠≠ji ij ji i j i e p x y p x p p )|()(发733.010/115/110/310/130/115/2=+++++(6)此信道不好,因为信源等概率分布,从转移信道来看,正确发送的概率11y x >-为0.5,有一半失真;22y x >-为0.3,严重失真;33y x >-为0,完全失真。
第三章 信道容量-习题答案

3.1 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡4.06.0)(21x x X P X通过一干扰信道,接收符号为Y = { y1, y2 },信道转移矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡43416165,求: (1) 信源X 中事件x 1和事件x 2分别包含的自信息量;(2) 收到消息y j (j=1,2)后,获得的关于x i (i=1,2)的信息量; (3) 信源X 和信宿Y 的信息熵;(4) 信道疑义度H(X/Y)和噪声熵H(Y/X); (5) 接收到信息Y 后获得的平均互信息量。
解: 1)bitx p x I bit x p x I 322.14.0log)(log)( 737.06.0log )(log )(22222121=-=-==-=-=2)bity p x y p y x I bit y p x y p y x I bit y p x y p y x I bity p x y p y x I x y p x p x y p x p y p x y p x p x y p x p y p 907.04.04/3log)()/(log);( 263.16.04/1log)()/(log );( 263.14.06/1log )()/(log );( 474.06.06/5log )()/(log );(4.0434.0616.0)/()()/()()(6.0414.0656.0)/()()/()()(222222221212122212221211121122212122121111===-===-=======⨯+⨯=+==⨯+⨯=+=3)symbolbit y p y p Y H symbolbit x p x p X H jj j ii i / 971.010log )4.0log 4.06.0log 6.0()(log )()(/ 971.010log )4.0log 4.06.0log 6.0()(log )()(22=+-=-==+-=-=∑∑4)symbolbit Y H X Y H X H Y X H Y X H Y H X Y H X H symbolbit x y p x y p x p X Y H iji j i j i / 715.0971.0715.0971.0 )()/()()/()/()()/()(/ 715.0 10log )43log434.041log414.061log616.065log656.0( )/(log )/()()/(2=-+=-+=∴+=+=⨯⨯+⨯+⨯+⨯-=-=∑∑5)symbol bit Y X H X H Y X I / 256.0715.0971.0)/()();(=-=-=3.2 设二元对称信道的传递矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32313132 (1) 若P(0) = 3/4, P(1) = 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y); (2) 求该信道的信道容量及其达到信道容量时的输入概率分布;解: 1)symbolbit Y X H X H Y X I symbol bit X Y H Y H X H Y X H X Y H Y H Y X H X H Y X I symbolbit y p Y H x y p x p x y p x p y x p y x p y p x y p x p x y p x p y x p y x p y p symbolbit x y p x y p x p X Y H symbolbit x p X H jj iji j i j i ii / 062.0749.0811.0)/()();(/ 749.0918.0980.0811.0)/()()()/()/()()/()();(/ 980.0)4167.0log4167.05833.0log5833.0()()(4167.032413143)/()()/()()()()(5833.031413243)/()()/()()()()(/ 918.0 10log )32lg 324131lg 314131lg 314332lg 3243()/(log )/()()/(/ 811.0)41log4143log43()()(222221212221221211112111222=-==-==+-=+-=-=-==⨯+⨯-=-==⨯+⨯=+=+==⨯+⨯=+=+==⨯⨯+⨯+⨯+⨯-=-==⨯+⨯-=-=∑∑∑∑2)21)(/ 082.010log)32lg 3231lg 31(2loglog );(max 222==⨯++=-==i mi x p symbolbit H m Y X I C3.3 设有一批电阻,按阻值分70%是2K Ω,30%是5 K Ω;按瓦分64%是0.125W ,其余是0.25W 。
信息论与编码技术第三章课后习题答案

Chap3 思考题与习题 参考答案3.1 设有一个信源,它产生0、1 序列的消息。
它在任意时间而且不论以前发生过什么符号,均按P(0)=0.4,P(1)=0.6 的概率发出符号。
(1) 试问这个信源是否平稳的? (2) 试计算H(X 2),H(X 3/X 1X 2)及H ∞。
(3) 试计算H(X 4),并写出X 4 信源中可能有的所有符号。
解:(1)根据题意,此信源在任何时刻发出的符号概率都是相同的,均按p(0)=0.4,p(1)=0.6,即信源发出符号的概率分布与时间平移无关,而且信源发出的序列之间也是彼此无信赖的。
所以这信源是平稳信源。
(2)23123121()2()2(0.4log 0.40.6log 0.6) 1.942(/)(|)()()log ()(0.4log 0.40.6log 0.6)0.971(/)lim (|)()0.971(/)i i iN N N N H X H X bit symbols H X X X H X p x p x bit symbol H H X X X X H X bit symbol ∞−→∞==−×+===−=−+====∑" (3)4()4()4(0.4log 0.40.6log 0.6) 3.884(/)H X H X bit symbols ==−×+=4X 的所有符号:0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 11113.2 在一个二进制的信道中,信源消息集X={0,1}且p(1)=p(0),信宿的消息集Y={0,1},信道传输概率(10)1/p y x ===4,(01)1/p y x ===8。
求:(1) 在接收端收到y=0后,所提供的关于传输消息x 的平均条件互信息I(X ;y=0); (2) 该情况下所能提供的平均互信息量I(X ;Y)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 信道容量习题解答3-1 设二进制对称信道的转移概率矩阵为2/31/31/32/3⎡⎤⎢⎥⎣⎦解: (1) 若12()3/4,()1/4P a P a ==,求(),(),(|),(|)H X H Y H X Y H Y X 和(;)I X Y 。
i i 2i=13311H(X)=p(a )log p(a )log()log()0.8113(/)4444bit -=-⨯-=∑符号111121*********j j j=132117p(b )=p(a )p(b |a )+p(a )p(b |a )=43431231125p(b )=p(a )p(b |a )+p(a )p(b |a )=4343127755H(Y)=p(b )log(b )=log()log()0.9799(/)12121212bit ⨯+⨯=⨯+⨯=---=∑符号 22i j j i j i j i ,H(Y|X)=p(a ,b )logp(b |a )p(b |a )logp(b |a )2211log()log()0.9183(/)3333i jjbit -=-=-⨯-⨯=∑∑符号I(X;Y)=H(Y)H(Y|X)=0.97990.91830.0616(/)bit --=符号 H(X|Y)=H(X)I(X;Y)=0.81130.06160.7497(/bit --=符号)(2)求该信道的信道容量及其达到信道容量时的输入概率分布。
二进制对称信息的信道容量H(P)=-plog(p)-(1-p)log(1-p)1122C =1-H(P)=1+log()+log()=0.0817(bit/)3333符BSC 信道达到信道容量时,输入为等概率分布,即:{0.5,0.5} 注意单位3-2 求下列三个信道的信道容量及其最佳的输入概率分布。
1b 2b 3b 3a 2a 1a Y X 1b 2b 3a 2a 1a Y X 1b 2b 2a 1a Y X 3b 11111110.70.3第一种:无噪无损信道,其概率转移矩阵为: 1 0 0P=0 1 00 0 1⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦信道容量:()max (;)P X CI X Y bit/符号()()()()max{(;)}max{()(|)}(|)0max{(;)}max{()}p x p x p x p x C I X Y H X H X Y H X Y C I X Y H X ==-∴=∴==离散无记忆信道(DMC)只有输入为等概率分布时才能达到信道容量,C=log3=1.5850 bit/符号输入最佳概率分布如下:111,,333⎧⎫⎨⎬⎩⎭第二种:无噪有损信道,其概率转移矩阵为: 1 0P=0 10 1⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,离散输入信道, ()()()()max{(;)}max{()(|)}(|)0max{(;)}max{()}p x p x p x p x C I X Y H Y H Y X H Y X C I X Y H Y ==-∴=∴==H(Y)输出为等概率分布时可达到最大值,此值就是信道容量 此时最佳输入概率:123p(a )+p(a )=0.5,p(a )=0.5 信道容量:C=log(2)=1 bit/符号第三种:有噪无损信道,由图可知:()()()()max{(;)}max{()(|)}(|)0max{(;)}max{()}p x p x p x p x C I X Y H X H X Y H X Y C I X Y H X ==-∴=∴==输入为等概率分布时可达到信道容量,此时信道容量p(x)C=max{H(X)}=log(2)=1 bit/符号 输入最佳概率分布:11,22⎧⎫⎨⎬⎩⎭3-3 设4元删除信道的输入量{1,2,3,4}X ∈,输出量{1,2,3,4,}Y E ∈,转移概率为(|)1(|)1-ε 0 0 0 ε0 1-ε 0 0 ε P=0 0 1-ε 0 ε0 0 0 1-ε ε1-ε 0 0 0 ε0 1-ε 0 0 ε p1= p2=0 0 1-ε 0 ε0 0 0 1-ε εP Y i X i P Y E X i εε===-===⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中1,2,3,4i = 1)该信道是对称DMC 信道吗? 2)计算该信道的信道容量;3)比较该信道与两个独立并联的二元删除信道的信道容量。
(1)本通信过程的转移概率分布如下所示:1-ε 0 0 0 ε0 1-ε 0 0 ε P=0 0 1-ε 0 ε0 0 0 1-ε ε⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 可以分解为两个矩阵: 1-ε 0 0 0 ε0 1-ε 0 0 ε p1= p2=0 0 1-ε 0 ε0 0 0 1-ε ε⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦可以看出该信道不是对称DMC 信道,它是准对称DMC 信道。
(2)该信道的信道容量为:(直接套用准对称信道计算公式)2log (|)log (|)log log (4)(1,)(1)log(1)log(4)2(1)log(1)log()(1)log(1)log(4)12log()22(/)4j k j k s sjsC n p b a p b a N M H bit εεεεεεεεεεεεεεεε=+-=------=+--+----=+=-∑∑符号 (3)两个独立并联的二元删除信道其转移概率如下:1-ε ε 00 ε 1-ε⎡⎤⎢⎥⎣⎦可以写成:1-ε 0 ε 0 1-ε ε ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦与的形式 独立并联的二元信道的信道容量为两个信道容量的和。
其信道容量为:1(1-ε,ε )(1-ε)log(1-ε)εlog(2ε)=1-εC H =--- bit/符号 两个独立并联和删除信道的信道容量=2C=22-ε bit/符号 本信道的信道容量与两个并联删除信道信道容量相等。
3-4 设BSC 信道的转移概率矩阵为112211Q εεεε-⎡⎤=⎢⎥-⎣⎦1)写出信息熵()H Y 和条件熵(|)H Y X 的关于1()H ε和2()H ε表达式,其中()log (1)log(1)H εεεεε=----。
2)根据()H ε的变化曲线,定性分析信道的容道容量,并说明当12εε=的信道容量。
解:(1)设输入信号的概率颁布是{p,1-p}111121212()()(|)()(|)(1)(1)p b p a p b a p a p b a p p =⨯+⨯=⨯-ε+-⨯ε212122212()()(|)()(|)(1)(1)p b p a p b a p a p b a p p =⨯+⨯=⨯ε+-⨯-ε11221212121212()()log ()()log ()[(1)(1)]log[(1)(1)][(1)(1)]log[(1)(1)][(1)(1)]H Y p b p b p b p b p p p p p p p p H p p =--=-⨯-ε+-⨯ε⨯-ε+-⨯ε-⨯ε+-⨯-ε⨯ε+-⨯-ε=⋅-ε+-⋅ε2,1111222212(|)()(|)log (|)[(1)log(1)1log()](1)[(1)log(1)log()]()(1)()i j i j i i j H Y X p a p b a p b a p p p H p H ==-=-⨯-ε-ε+εε---ε-ε+εε=⋅ε+-⋅ε∑(2)()H ε的变化曲线,是一个上凸函数,当输入等概率分布时达到信道容量。
()()1212()max{(;)}max{()(|)}max{[(1)(1)]()(1)()}p x p x p x C I X Y H Y H Y X H p p p H p H ==-=⨯-ε+-⨯ε-⨯ε+-⨯ε由于函数H (ε)是一个凸函数,有一个性质:1212((1))()(1)()f f f θ⋅α+-θ⋅α≥θ⋅α+-θ⋅α可知:C ≥0假设12εε==ε时此信道是一个二元对称信道,转移概率分布为:11Q ε-εε⎡⎤=⎢⎥ε-⎣⎦ 信道容量:121-log -(1-)log(1-)1-()C H εεεεεεεε====3-5 求下列两个信道的容量,并加以比较。
1-p-εp-ε2εp-ε1-p-ε2ε⎡⎤⎢⎥⎣⎦ 120102p p p p εεεεεε---⎡⎤⎢⎥---⎣⎦第一个:可以写成:1-p-ε p-εp-ε 1-p-ε⎡⎤⎢⎥⎣⎦与2ε2ε⎡⎤⎢⎥⎣⎦11(1-p-ε,p-ε,2ε)(12ε)log(12ε)2εlog(4ε)C H =----- bit/符号第二个:120102p p p p εεεεεε---⎡⎤⎢⎥---⎣⎦⎡⎤⎢⎥⎣⎦1-p-ε p-εp-ε 1-p-ε与2ε 00 2ε⎡⎤⎢⎥⎣⎦两个对称形式21(1-p-ε,p-ε,2ε,0)(12ε)log(12ε)2εlog(2ε)C H =-----bit/符号122ε<0C C -=-所以:信道一的信道容量大于信道二的信道容量,信道容量的不增性。
3-6设信道前向转移概率矩阵为1000101Q p p p p ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦1)求信道容量和最佳输入概率分布的一般表达式;2)当0p =和1/2p =时,信道容量分别为多少?并针对计算结果做出说明。
(1)此信道为非对称信道,设输入概率分布为:{}123123p ,p , p p +p + p 1=输出概率分布为:{}123123q ,q , q q +q + q 1=[]1111121231312312212122232312323331max (;)max[()(|)]()()(|)()(|)()(|)100()()(|)()(|)()(|)0(1)(1)()()C I X Y H Y H Y X q p b p a p b a p a p b a p a p b a p p p p q p b p a p b a p a p b a p a p b a p p p p p p p p pq p b p a ==-==⨯+⨯+⨯=⨯+⨯+⨯===⨯+⨯+⨯=⨯+⨯-+⨯=⨯-+⨯==⨯3123233312323(|)()(|)()(|)0(1)(1)p b a p a p b a p a p b a p p p p p p p p p +⨯+⨯=⨯+⨯+⨯-=⨯+⨯-3,1122332323(|)()(|)log (|)1log1(1)log(1)log log (1)log(1)()(1)log(1)()log i j i j i i j H Y X p x p y x p y x p p p p p p p p p p p p p p p p p p p p p==-=-⨯⨯-⨯---⨯⨯-⨯-⨯--=-+---+∑[]12323max (;)max[()(|)]max[(,,)(,1)(,1)]C I X Y H Y H Y X H q q q p H p p p H p p ==-=----把C 对P 1,P 2,P 3 分别求导:123δC δC δC =0 =0 =0δp δp δp ,可得: 232323233232log(1)(1)log[(1)]log[(1)](,1)0log(1)(1)log[(1)]log[(1)](,1)0p p p p p p p p p p p p H p p p p p p p p p p p p p p H p p -----+-+---=⎧⎨-----+-+---=⎩可得: P 2 = P 3 22log(12)log (,1)0p p H p p ----= 可以解得:23(,1)122H P P p p -==+最佳输入概率分布的表达式为:(,1-)(,1-)(,1-)2111,,222222H P P H P P H P P ⎧⎫-⎨⎬+++⎩⎭设(,1)22H P P N -+=则123()21 p =1 p =p =N Nmax{()(|)}22212(1)log(1)log ()p x C H Y H Y X H p N N N N N-=-=-----(2)p=0时,100010001Q ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦是一个对称信道,当输入等概率分布时可以达到信道容量,输入转移概率为111,,333⎧⎫⎨⎬⎩⎭N=3,所以2221(1)log(1)log 1.58503333C =----= bit/符号(3)p=1/2时,1001102211022Q ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,可得N=4, 1111111log log (,)12224222C H =---= bit/符号3-7设BSC 信道的前向转移概率矩阵为0.980.020.020.98Q ⎡⎤=⎢⎥⎣⎦设该信道以1500个二元符号/秒的速度传输输入符号,现在一消息序列共有14000个二元符号,并设在这消息中(0)(1)1/2P P ==,问从信息传输的角度来考虑,10秒钟内能否将这消息序列无失真地传输完。