2010-2012椭圆高考真题(含答案)
100题双曲线历年高考真题及解析

【答案】B
【解析】略
28.(2014·天津高考真题(理))已知双曲线 的一条渐近线平行于直线 : ,双曲线的一个焦点在直线 上,则双曲线的方程为
A. B.
C. D.
【答案】A
【解析】
试题分析:由已知得 在方程 中令 ,得 所求双曲线的方程为 ,故选A.
考点:1.双曲线的几何性质;2.双曲线方程的求法.
A. B.
C. D.
【答案】A
【详解】
圆心为 ,渐近线方程为 ,所以半径为 ,所以圆的方程是 ,即 ,选A.
15.(2007·辽宁高考真题(理))设 为双曲线 上的一点, 是该双曲线的两个焦点,若 ,则 的面积为()
A. B. C. D.
【答案】B
【解析】
试题分析:由已知可得 又
是直角三角形 ,故选B.
【解析】
试题分析:先根据双曲线得到其渐近线的方程,再利用圆心到渐近线的距离等于半径,就可求出 的值.
的渐近线方程是 ,即 ,又圆心是 ,所以由点到直线的距离公式可得 ,故选A.
考点:1、双曲线;2、双曲线的渐近线;3、直线与圆相切;4、点到直线的距离.
11.(2009·福建高考真题(文))若双曲线 的离心率为2,则 等于( )
解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),
即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣ ,则p=4,
解:渐近线y=± x.
准线x=± ,
求得A( ).B( ),
左焦点为在以AB为直径的圆内,
得出 ,
,
b<a,
c2<2a2
∴ ,
故选B.
点评:本题考查双曲线的准线、渐近线方程形式、考查园内的点满足的不等条件、注意双曲线离心率本身要大于1.
2012年江苏省高考数学一轮训练试题考点6:解析几何

2010-2011学年度第一学期江苏省南通市六所省重点高中联考试卷 数 学 Ⅰ试 题 2011.13、方程 x 2m + y 24-m = 1 的曲线是焦点在y 轴上的双曲线,则m 的取值范围是 ▲答案:0<m9、已知椭圆22221(0)y x a b a b+=>>的中心为O ,右焦点为F 、右顶点为A ,右准线与x 轴的交点为H ,则||||FA OH 的最大值为 ▲ 13、设M 1(0,0),M 2(1,0),以M 1为圆心,| M 1 M 2 | 为半径作圆交x 轴于点M 3 (不同于M 2),记作⊙M 1;以M 2为圆心,| M 2 M 3 | 为半径作圆交x 轴于点M 4 (不同于M 3),记作⊙M 2;……; 以M n 为圆心,| M n M n +1 | 为半径作圆交x 轴于点M n +2 (不同于M n +1),记作⊙M n ;…… 当n ∈N *时,过原点作倾斜角为30°的直线与⊙M n 交于A n ,B n .考察下列论断: 当n =1时,| A 1B 1 |=2;当n =2时,| A 2B 2 |15 当n =3时,| A 3B 3 |=23354213⨯+-当n =4时,| A 4B 4 |=34354213⨯--……由以上论断推测一个一般的结论:对于n ∈N *,| A n B n |= ▲17、(本题满分15分)已知圆:C 22(2)4x y ++=,相互垂直的两条直线1l 、2l 都过点(,0)A a . (Ⅰ)当2a =时,若圆心为(1,)M m 的圆和圆C 外切且与直线1l 、2l 都相切,求圆M 的方程; (Ⅱ)当1a =-时,求1l 、2l 被圆C 所截得弦长之和的最大值,并求此时直线1l 的方程. 解:(Ⅰ)设圆M 的半径为r ,易知圆心),1(m M 到点)0,2(A 的距离为r 2,∴⎪⎩⎪⎨⎧+=++=+-222222)2()21(2)21(r m r m ……………………………………………………………4分 解得2=r 且7±=m ∴圆M 的方程为4)7()1(22=±+-y x …………………7分(Ⅱ)当1-=a 时,设圆C 的圆心为C ,1l 、2l 被圆C 所截得弦的中点分别为F E ,,弦长分别为21,d d ,因为四边形AECF 是矩形,所以1222==+AC CF CE ,即124242221=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-d d ,化简得 …………………………10分 从而1422222121=+⋅≤+d d d d ,等号成立1421==⇔d d ,1421==∴d d 时,142)(max 21=+∴d d ,即1l 、2l 被圆C 所截得弦长之和的最大值为142 …………………………………13分 此时141=d ,显然直线1l 的斜率存在,设直线1l 的方程为:)1(+=x k y ,则 22)214(41-=+k k ,1±=∴k , ∴直线1l 的方程为:01=+-y x 或01=++y x …………………………15分江苏省2010高考数学模拟题(压题卷)8.已知F 1、F 2分别是椭圆12222=+by a x ,)0(>>b a 的左、右焦点,以原点O 为圆心,OF 1为半径的圆与椭圆在y 轴左侧交于A 、B 两点,若△F 2AB 是等边三角形,则椭圆的离心率等于13-.三、解析几何题1.已知过点(1,0)A -的动直线l 与圆22:(3)4C x y +-=相交于,P Q 两点,M 是PQ 中点,l 与直线:360m x y ++=相交于N .(1)求证:当l 与m 垂直时,l 必过圆心C ; (2)当23PQ =l 的方程;(3)探索AM AN ∙是否与直线l 的倾斜角有关?若无关,请求出其值;若有关,请说明理由.解:(1)l 与m 垂直,且11,3,3m k k =-∴=故直线l 方程为3(1),y x =+即330.x y -+=圆心坐标(0,3)满足直线l 方程,∴当l 与m 垂直时,l 必过圆心C .(2)①当直线l 与x 轴垂直时,易知1x =-符合题意.②当直线l 与x 轴不垂直时,设直线l 的方程为(1),y k x =+即0kx y k -+=,23,431PQ CM =∴=-= ,则由2311k CM k -+==+,得43k =, ∴直线:4340.l x y -+=故直线l 的方程为1x =-或4340.x y -+=(3),().CM MN AM AN AC CM AN AC AN CM AN AC AN ⊥∴⋅=+⋅=⋅+⋅=⋅①当l 与x 轴垂直时,易得5(1,),3N -- 则5(0,),3AN =- 又(1,3)AC = ,5AM AN AC AN ∴⋅=⋅=-.②当l 的斜率存在时,设直线l 的方程为(1),y k x =+则由(1),360,y k x x y =+⎧⎨++=⎩得365(,),1313k k N k k ---++ 则55(,).1313kAN k k --=++ 515 5.1313k AM AN AC AN k k--∴⋅=⋅=+=-++综上所述,AM AN ⋅ 与直线l 的斜率无关,且5AM AN ⋅=-.2.已知A 、B 是椭圆2214x y +=的左、右顶点,直线(22)x t t =-<<交椭圆于M 、N 两点,经过A 、M 、N 的圆的圆心为1C ,经过B 、M 、N 的圆的圆心为2C . (1)求证12C C 为定值;(2)求圆1C 与圆2C 的面积之和的取值范围. 解:(1)由题设A (-2,0),B (2,0),由2214x t x y =⎧⎪⎨+=⎪⎩,,解出22(1),(,1)44t t M t N t ---. 设1122(,0),(,0)C x C x ,由22112()14t x t x +=-+-解出13(2)8t x -=.同理,2222()14tx x t -=-+-23(2)8t x += ,122132C C x x =-=(定值).(2)两圆半径分别为131028t x ++=及210328tx --=, 两圆面积和222(310)(103)(9100)6432S t t t ππ⎡⎤=++-=+⎣⎦, 所以S 的取值范围是257,84ππ⎡⎤⎢⎥⎣⎦.3.已知圆221:(1)16F x y ++=,定点2(1,0),F 动圆过点2F ,且与圆1F 相内切. (1)求点M 的轨迹C 的方程;(2)若过原点的直线l 与(1)中的曲线C 交于A ,B 两点,且1ABF ∆3, 求直线l 的方程. 解:(1)设圆M 的半径为r ,因为圆M 与圆1F 内切,所以2MF r =, 所以124MF MF =-,即124MF MF +=. 所以点M 的轨迹C 是以12,F F 为焦点的椭圆,设椭圆方程为22221(0)x y a b a b+=>>,其中24,1a c ==,所以2,3a b ==.所以曲线C 的方程22143x y +=. (2)因为直线l 过椭圆的中心,由椭圆的对称性可知,112ABF AOF S S ∆∆=. 因为132ABF S ∆=,所以134AOF S ∆=.不妨设点11(,)A x y 在x 轴上方,则1111324AOF S OF y ∆=⋅⋅=11332y x ==± 即:A 点的坐标为3(3,)或3(3,-, 所以直线l 的斜率为12±,故所求直线方程为20x y ±=.4.已知圆C 的圆心在抛物线22(0)x py p =>上运动,且圆C 过(0,)A p 点,若MN 为圆C 在x轴上截得的弦. (1)求弦长MN ; (2)设12,AM l AN l ==,求1221l l l l +的取值范围. 解:(1)设00(,)C x y ,则圆C 的方程为:22220000()()()x x y y x y p -+-=+-.[来源:学科网]令0y =,并由2002x py =,得2220020x x x x p -+-=,解得1020,,x x p x x p =-=+从而212MN x x p =-=, (2) 设MAN θ∠=,因为21211sin 22MAN S l l OA MN p θ∆=⋅⋅=⋅=,所以2122sin p l l θ=,因为l 12+l 22-2 l 1 l 2cos θ=4p 2 ,所以l 12+l 22=)tan 11(4cos sin 44222θθθ+=+p p p . 所以22212122211214(1)sin tan 2(sin cos )2245)2p l l l l l l l l pθθθθθ+++===+=+︒. 因为0090θ<≤,所以当且仅当45θ=︒时,原式有最大值2290θ=︒时,原式有最小值为2,从而1221l l l l +的取值范围为[2,22]. 2011届江苏省苏州市迎二模六校联考数学试题5.若双曲线经过点(3,2),且渐近线方程是y=±13x ,则这条双曲线的方程是答案:2219x y -= 10.若点P 是曲线y=x 2-ln x 上的任意一点,则点P 到直线y=x-2的最小距离为12. 若过点A (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围是答案:3312a a <-<<或18.(本小题满分16分)已知圆C 通过不同的三点P (m ,0)、Q (2,0)、R (0,1),且圆C 在点P 处的切线的斜率为1.(1)试求圆C 的方程;(2)若点A 、B 是圆C 上不同的两点,且满足→CP •→CA=→CP •→CB ,①试求直线AB 的斜率;②②若原点O 在以AB 为直径的圆的内部,试求直线AB 在y 轴上的截距的范围。
2010-2011学年度高二上学期12月份月考数学试卷2012

高二数学 2012.12一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知命题:,sin 1,p x R x ∀∈≤则p ⌝是A .,sin 1x R x ∃∈≥ B.,sin 1x R x ∀∈≥ C .,sin 1x R x ∃∈> D.,sin 1x R x ∀∈>2. 已知椭圆的中心在原点,焦点在x 轴上,且长轴长为12,离心率为13,则椭圆的方程是A.2144x+2128y=1 B.236x+220y=1 C.232x+236y=1 D.236x+232y=13. 命题“若a b >,则22ac bc > (,a b R ∈)”与它的逆命题、否命题、逆否命题中,真命题的个数为A. 4B.2C.0D.不确定 4.命题甲是“双曲线C 的方程为1ax 2222=-by ”,命题乙是“双曲线C 的渐近线方程为y=±ab x ”,那么甲是乙的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.抛物线24(0)y ax a =<的焦点坐标是 A.1(,0)4aB.1(0,)16aC.1(0,)16a-D.1(,0)16a6.已知点P 在抛物线2y =4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为 ( ) A .(41,-1) B .(41, 1) C .(1,2)D .(1,-2)7.在同一坐标系中,方程22221a x b y +=与20ax by +=(0)a b >>的曲线大致是8.22530x x --<的一个必要不充分条件是A.132x -<< B.102x -<< C.132x -<<D.16x -<<9.设双曲线221169xy-=的两焦点为12F F 、,A 为双曲线上的一点,且1172A F =,则2AF 的值是 A .812B .12C .332D .332或1210.已知(4,2)M 是直线l 被椭圆22436x y +=所截得的线段的中点,则直线l 的方程为A.280x y +-=B. 280x y ++=C. 280x y --=D. 280x y -+=11.设12,F F 为双曲线2214xy -=的两个焦点,点P 在双曲线上,且满足120PF PF ⋅=,则12F P F ∆的面积是A.1B.C. D.212.过椭圆22221x y ab+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F P F ∠=,则椭圆的离心率为A .2B .3C .12D .13第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4个小题,每小题4分,共16分. 13. 命题“如果直线a 垂直于平面α,则a 与平面α内任意直线都垂直”的逆否命题是 .14. 抛物线212y x =-上的一点P 和焦点的距离等于9,则点P 的坐标为 .15.椭圆的焦点是F 1(-3,0),F 2(3,0),P 为椭圆上一点,且21F F 是1PF 与2PF 的等差中项,则椭圆的方程为____________________.16、已知方程22194xykk +=--,对于下列命题:①若方程表示椭圆,则实数k 的取值范围为49k <<; ②若方程表示双曲线,则实数k 的取值范围为49k k <>或;③若方程表示椭圆,则椭圆的焦距为④若方程表示双曲线,则双曲线的焦距为其中正确的命题为 .(把所有正确命题的序号写到横线上)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本题13分)已知椭圆的一个焦点将长轴分成2:(-32,4),求椭圆的标准方程。
(新课标)高考数学备考试题库 第八章 第5节 椭圆 文(含解析)-人教版高三全册数学试题

2010~2014年高考真题备选题库第8章 平面解析几何第5节 椭圆1. (2014某某,5分)已知椭圆C :x 29 +y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则 |AN |+|BN |=________.解析:取MN 的中点G ,G 在椭圆C 上,因为点M 关于C 的焦点F 1,F 2的对称点分别为A ,B ,故有|GF 1|=12|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.答案:12.2.(2014某某,5分)在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:因为圆心(2,-1)到直线x +2y -3=0的距离d =|2-2-3|5=35,所以直线x+2y -3=0被圆截得的弦长为24-95=2555. 答案:25553. (2014某某,12分)圆 x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x + 3 交于A ,B 两点.若△PAB 的面积为2,求C 的标准方程.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线围成的三角形面积为S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).(2)设C 的标准方程为x 2a 2+y 2b2=1(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a 2+2b2=1,并由⎩⎪⎨⎪⎧x 2a 2+y 2b2=1,y =x +3,得b 2x 2+43x +6-2b 2=0,又x 1,x 2是方程的根,因此⎩⎪⎨⎪⎧x 1+x 2=-43b2,x 1x 2=6-2b 2b2.由y 1=x 1+3,y 2=x 2+3, 得|AB |=2|x 1-x 2|=2·48-24b 2+8b4b 2.由点P 到直线l 的距离为32及S △PAB =12×32×|AB |=2得b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6.从而所求C 的方程为x 26+y 23=1.4. (2014某某,5分)设椭圆 C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为 F 1,F 2,过F 2 作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴交于点D ,若AD ⊥F 1B ,则椭圆 C 的离心率等于________.解析:由题意知F 1(-c,0),F 2(c,0),其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x =c ,由椭圆的对称性可设它与椭圆的交点为A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝ ⎛⎭⎪⎫c ,-b 2a .因为AB 平行于y 轴,且|F 1O |=|OF 2|,所以|F 1D |=|DB |,即D 为线段F 1B 的中点,所以点D 的坐标为⎝⎛⎭⎪⎫0,-b 22a ,又AD ⊥F 1B ,所以k AD ·kF 1B =-1,即b 2a -⎝ ⎛⎭⎪⎫-b 22a c -0×-b 2a -0c --c=-1,整理得3b 2=2ac ,所以3(a 2-c 2)=2ac ,又e =c a,0<e <1,所以3e 2+2e -3=0,解得e =33(e =-3舍去). 答案:335(2013某某,5分)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 解析:本题主要考查椭圆的图像、方程、性质等知识,考查数形结合的数学思想方法,意在考查考生的抽象概括能力、运算求解能力.依题意,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),所以⎩⎪⎨⎪⎧c =1,c a =12,c 2=a 2-b 2,解得a 2=4,b 2=3.答案:D6(2013某某,14分)在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22. (1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P .设OP =t OE ,某某数t 的值.解:本题综合考查椭圆的方程、直线与椭圆的位置关系、平面向量的坐标运算等知识,考查方程思想、分类讨论思想、推理论证能力和运算求解能力.(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =22,2b =2,解得a =2,b =1,因此椭圆C 的方程为x 22+y 2=1.(2)(ⅰ)当A ,B 两点关于x 轴对称时,设直线AB 的方程为x =m ,由题意得-2<m <0或0<m < 2. 将x =m 代入椭圆方程x 22+y 2=1,得|y |=2-m22, 所以S △AOB =|m |2-m 22=64, 解得m 2=12或m 2=32.①又OP =t OE =12t (OA +OB )=12t (2m,0)=(mt,0),因为P 为椭圆C 上一点, 所以mt22=1.②由①②得t 2=4或t 2=43,又t >0,所以t =2或t =233.(ⅱ)当A ,B 两点关于x 轴不对称时, 设直线AB 的方程为y =kx +h , 将其代入椭圆的方程x 22+y 2=1,得(1+2k 2)x 2+4khx +2h 2-2=0. 设A (x 1,y 1),B (x 2,y 2). 由判别式Δ>0可得1+2k 2>h 2, 此时x 1+x 2=-4kh 1+2k 2,x 1x 2=2h 2-21+2k2,y 1+y 2=k (x 1+x 2)+2h =2h1+2k2, 所以|AB |=1+k2x 1+x 22-4x 1x 2=22·1+k 2· 1+2k 2-h21+2k2. 因为点O 到直线AB 的距离d =|h |1+k2,所以S△AOB=12·|AB |·d =12×221+k 2·1+2k 2-h21+2k2·|h |1+k2=2· 1+2k 2-h21+2k 2·|h |. 又S △AOB =64, 所以2· 1+2k 2-h 21+2k 2·|h |=64.③ 令n =1+2k 2,代入③整理得3n 2-16h 2n +16h 4=0, 解得n =4h 2或n =43h 2,即1+2k 2=4h 2或1+2k 2=43h 2.④又OP =t OE =12t (OA +OB )=12t (x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫-2kht 1+2k 2,ht 1+2k 2,因为P 为椭圆C 上一点,所以t 212⎝ ⎛⎭⎪⎫-2kh 1+2k 22+⎝ ⎛⎭⎪⎫h 1+2k 22=1,即h 2·t 21+2k2=1.⑤ 将④代入⑤得t 2=4或t 2=43.又t >0,所以t =2或t =233.经检验,符合题意.综合(ⅰ)(ⅱ)得t =2或t =233. 7(2013新课标全国Ⅱ,5分)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B.1323解析:本题主要考查椭圆离心率的计算,涉及椭圆的定义、方程与几何性质等知识,意在考查考生的运算求解能力.法一:由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|=3m ,故离心率e =c a =2c2a=|F 1F 2||PF 1|+|PF 2|=3m 2m +m =33.法二:由PF 2⊥F 1F 2可知P 点的横坐标为c ,将x =c 代入椭圆方程可解得y =±b 2a ,所以|PF 2|=b 2a .又由∠PF 1F 2=30°可得|F 1F 2|=3|PF 2|,故2c =3·b 2a,变形可得3(a 2-c 2)=2ac ,等式两边同除以a 2,得3(1-e 2)=2e ,解得e =33或e =-3(舍去). 答案:D8.(2013某某,5分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67解析:本题主要考查圆锥曲线的定义、离心率,解三角形等知识,意在考查考生对圆锥曲线的求解能力以及数据处理能力.由余弦定理得,|AF |=6,所以2a =6+8=14,又2c =10,所以e =1014=57.答案:B9.(2013某某,5分)从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24B.1222解析:本题主要考查椭圆的简单几何性质,意在考查曲线和方程这一解析几何的基本思想.由已知,点P (-c ,y )在椭圆上,代入椭圆方程,得P ⎝ ⎛⎭⎪⎫-c ,b 2a .∵AB ∥OP ,∴k AB =k OP ,即-b a =-b 2ac ,则b =c ,∴a 2=b 2+c 2=2c 2,则c a =22,即该椭圆的离心率是22.答案:C10.(2013某某,4分)椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析:本题主要考查椭圆的定义、图像和性质等基础知识,意在考查考生的数形结合能力、转化和化归能力、运算求解能力.直线y =3(x +c )过点F 1(-c,0),且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2.在Rt △MF 1F 2中,|MF 1|=c ,|MF 2|=3c ,所以该椭圆的离心率e =2c 2a =2c c +3c=3-1.答案:3-111.(2012某某,13分)如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.解:(1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(2)法一:a 2=4c 2,b 2=3c 2, 直线AB 的方程可为y =-3(x -c ).将其代入椭圆方程3x 2+4y 2=12c 2,得B (85c ,-335c ).所以|AB |=1+3·|85c -0|=165c .由S △AF 1B =12|AF 1|·|AB |sin ∠F 1AB =12a ·165c ·32=235a 2=403,解得a =10,b =5 3.法二:设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a .由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t . 再由余弦定理(3a -t )2=a 2+t 2-2at cos 60°可得,t =85a .由S △AF 1B =12a ·85a ·32=235a 2=403知,a =10,b =5 3.12.(2012新课标全国,5分)设F 1,F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.45解析:由题意可得|PF 2|=|F 1F 2|,所以2(32a -c )=2c ,所以3a =4c ,所以e =34.答案:C13.(2012某某,5分)椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14B.55C.12D.5-2 解析:依题意得|F 1F 2|2=|AF 1|·|F 1B |,即4c 2=(a -c )(a +c )=a 2-c 2,整理得5c 2=a 2,所以e =ca =55. 答案:B14.(2011某某,5分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13C .b 2=12D .b 2=2解析:对于直线与椭圆、圆的关系,如图所示,设直线AB 与椭圆C 1的一个交点为C (靠近A 的交点),则|OC |=a3,因tan ∠COx =2, ∴sin ∠COx =25,cos ∠COx =15, 则C 的坐标为(a 35,2a35),代入椭圆方程得a 245a 2+4a 245b 2=1,∴a 2=11b 2.∵5=a 2-b 2,∴b 2=12.答案:C15.(2011某某,12分)设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点(0,4),离心率为35.(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.解:(Ⅰ)将(0,4)代入C 的方程得16b2=1,∴b =4,又e =c a =35得a 2-b 2a 2=925,即1-16a 2=925,∴a =5,∴C 的方程为x 225+y 216=1.(Ⅱ)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1,即x 2-3x -8=0,解得x 1=3-412,x 2=3+412, ∴AB 的中点坐标x =x 1+x 22=32,y =y 1+y 22=25(x 1+x 2-6)=-65, 即中点坐标为(32,-65).注:用韦达定理正确求得结果,同样给分.16.(2011新课标全国,5分)椭圆x 216+y 28=1的离心率为( )A.13B.12C.33D.22解析:由x 216+y 28=1可得a 2=16,b 2=8,∴c 2=a 2-b 2=8.∴e 2=c 2a 2=12.∴e =22.答案:D17.(2010某某,5分)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ·FP 的最大值为( )A .2B .3C .6D .8解析:由椭圆x 24+y 23=1,可得点F (-1,0),点O (0,0),设P (x ,y ),-2≤x ≤2,则OP ·FP=x 2+x +y 2=x 2+x +3(1-x 24)=14x 2+x +3=14(x +2)2+2,当且仅当x =2时,OP ·FP 取得最大值6.word 答案:C11 / 11。
高考数学真题之椭圆

椭圆2019年1.(2019全国1文12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=2.(2019全国II 文9)若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .83.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.4.(2019江苏16)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a-+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.5.(2019浙江15)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.6.(2019全国II 文20)已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.7.(2019天津文19)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,顶点为B .3|2||OA OB =(O 为原点).(Ⅰ)求椭圆的离心率; (Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程.8.(2019全国III 文15)设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.9.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2010-2019年一、选择题1.(2018全国卷Ⅰ)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12CD 2.(2018全国卷Ⅱ)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 13.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为A .B .C .D .4.(2017浙江)椭圆22194x y +=的离心率是A .B C .23D .59 5.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C .3 D .136.(2017新课标Ⅰ)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足AMB ∠ =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞7.(2016年全国I 卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 A .13 B .12 C .23 D .348.(2016年全国III 卷)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .349.(2015新课标1)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB =A .3B .6C .9D .1210.(2015广东)已知椭圆222125x y m+=(0m >)的左焦点为()14,0F -,则m = A .2 B .3 C .4 D .911.(2015福建)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A .B .3(0,]4C .D .3[,1)412.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .2613.(2013新课标1)已知椭圆22221(0)x y a b a b+=>>的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=114.(2013广东)已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 15.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题16.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =,则当m =___时,点B 横坐标的绝对值最大.17.(2015浙江)椭圆22221x y a b +=(0a b >>)的右焦点(),0F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .18.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .19.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .20.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.21.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为____.22.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于 .23.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.24.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =;则点A 的坐标是 .三、解答题25.(2018江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程. 26.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.27.(2018北京)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为3,焦距为.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .28.(2018天津)设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3||AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.29.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .30.(2017天津)已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.31.(2017山东)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0)a b >>的离心率为2,椭圆C 截直线1y =所得线段的长度为 (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :(0)y kx m m =+≠交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,N 的半径为||NO . 设D 为AB 的中点,DE ,DF 与N 分别相切于点E ,F ,求EDF ∠的最小值.x32.(2017北京)已知椭圆C 的两个顶点分别为(2,0)A -,(2,0)B ,焦点在x 轴上,离心. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:BDE ∆与BDN ∆的面积之比为4:5.33.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.34.(2016年北京)已知椭圆C :22221x y a b+=过(2,0)A ,(0,1)B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x轴交于点N ,求证:四边形ABNM 的面积为定值.35.(2016年全国II 卷)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当AM AN =时,求AMN ∆的面积; (Ⅱ)当AM AN =时,证明:32k <<.36.(2016年山东)已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,焦距为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .(i)设直线PM 、QM 的斜率分别为k 、k',证明k k'为定值; (ii)求直线AB 的斜率的最小值.37.(2016年天津)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.38.(2015新课标2)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,点在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.39.(2015天津)已知椭圆22221(0)x y a b a b+=>>的上顶点为B ,左焦点为F ,离心率为5. (Ⅰ)求直线BF 的斜率;(Ⅱ)设直线BF 与椭圆交于点P (P 异于点B ),故点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M ,||=||PM MQ λ. (i )求λ的值;(ii )若||sin =9PM BQP ∠,求椭圆的方程.40.(2015陕西)如图,椭圆E :22221x y a b+=(a >b >0)经过点(0,1)A -,且离心率为22.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.41.(2015重庆)如图,椭圆22221x y a b+=(a >b >0)的左、右焦点分别为1F ,2F ,且过2F 的直线交椭圆于,P Q 两点,且PQ ⊥1PF .(Ⅰ)若122PF =+|,222PF =-|,求椭圆的标准方程; (Ⅱ)若|1PQ PF λ=,且3443λ≤≤,试确定椭圆离心率e 的取值范围.42. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>3F 是椭圆E 的右焦点,直线AF 23,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.43.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.44.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .45.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ; (Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率. 46.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b ab+=>>,直线y x =被椭圆C . (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.47.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=证明你的结论.48.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标. 49.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点23)P ,.(Ⅰ)求椭圆C 的方程;(Ⅱ)设0000(,)(0)Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点(0,22)A ,连接AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.50.(2013湖北)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.51. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 3, 过点F 且与x43(Ⅰ) 求椭圆的方程;(Ⅱ) 设A ,B 分别为椭圆的左、右顶点, 过点F 且斜率为k 的直线与椭圆交于C ,D两点.若··8AC DB AD CB +=, 求k 的值.52.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,离心率为32,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.53.(2012北京)已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMNk 的值. 54.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.55.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.56.(2011陕西)设椭圆C : ()222210x y a b a b +=>>过点(0,4),离心率为35.(Ⅰ)求C 的方程; (Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 57.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.58.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(0﹤b ﹤1)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.59.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB . (Ⅰ)求椭圆C 的离心率; (Ⅱ)如果||AB =154,求椭圆C 的方程.。
高三数学框图试题

高三数学框图试题1.执行如图所示的程序框图,则输出的结果是()A.14B.15C.16D.17【答案】C【解析】根据程序框图,从到得到,因此将输出. 故选C.【考点】程序框图.2.右图是计算某年级500名学生期末考试(满分为100分)及格率的程序框图,则图中空白框内应填入()A.B.C.D.【答案】D.【解析】通过程序的判断语句可知,表示的是及格的人数,表示的是不及格的人数,∴.【考点】程序框图.3.执行如图所示的程序框图,若输入n的值为4,则输出S的值为 ( )A.5B.6C.7D.8【答案】C【解析】第一次循环后:S=1,i=2第二次循环后:S=2,i=3第三次循环后:S=4,i=4第四次循环后:S=7,i=5,故输出74.定义某种运算,运算原理如右图所示,则式子的值为【答案】13【解析】由算法知:,而【考点】新定义5.阅读右面的程序框图,运行相应的程序,输出的结果为()A.B.C.D.【答案】C【解析】第一次循环,第二次循环,第三次循环,第四次循环,,因此当时,【考点】循环体流程图6.执行如图所示的程序框图,则输出的k值是.【答案】3.【解析】由程序框图知,输出.【考点】程序框图.7.执行如图所示的程序框图.若输出,则框图中①处可以填入()A.B.C.D.【答案】B【解析】依次循环的结果为:;;;.因为输出,所以可满足,故选.【考点】程序框图.8.执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于( )A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]【答案】A;【解析】若,则;若,;综上所述.【考点】本题考查算法框图,考查学生的逻辑推理能力.9.如图,运行该程序后输出的值为()A.66B.55C.11D.10【答案】A【解析】由程序框图可以看出,本框图的作用就是计算的值,所以输出的.【考点】程序框图及其应用.10.如果执行框图,输入,则输出的数等于()A.B.C.D.【答案】D【解析】第一次循环,;第二次循环,;第三次循环,;第四次循环,;第五次循环,;此时不满足条件,输出,选D.【考点】算法与框图.11.程序框图如图所示,其输出结果是,则判断框中所填的条件是()A.B.C.D.【答案】B【解析】由题意可知第一次运行后,第二次运行后,第三次运行后,第四次运行后,第五次运行后,此时停止运算,又判断框下方是“是”,故应填.故选B.【考点】算法流程图.12.执行如图所示程序框图.若输入,则输出的值是()A.B.C.D.【答案】C【解析】通过程序循环计算,知道得到的x大于23就结束,即.【考点】考查程序框图.13.执行如图所示的程序框图,输出的S值为()A.1B.C.D.【答案】C【解析】第一次执行循环:,;第二次执行循环:,,满足≥2,结束循环,输出.【考点】本小题考查了对算法程序框图的三种逻辑结构的理解,考查了数据处理能力和算法思想的应用.14.如图所示,程序据图(算法流程图)的输出结果为()A.B.C.D.【答案】C【解析】;;,输出所以答案选择C【考点】本题考查算法框图的识别,逻辑思维,属于中等难题.15.随机抽取某产品件,测得其长度分别为,如图所示的程序框图输出样本的平均值,则在处理框①中应填入的式子是(注:框图中的赋值符号“=”也可以写成“←”“:=”)A.B.C.D.【答案】D,i=2时,s=,i=3【解析】如图所示的程序框图输出样本的平均值,当i=1时,s=a1时,…,因此,处理框①应填入的式子是,故选D。
高考数学真题专题(文数) 椭圆

专题九 解析几何第二十五讲 椭圆2019年1.(2019全国1文12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=2.(2019全国II 文9)若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .83.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.4.(2019江苏16)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a-+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.5.(2019浙江15)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.6.(2019全国II 文20)已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.7.(2019天津文19)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,顶点为B .|2||OA OB =(O 为原点).(Ⅰ)求椭圆的离心率; (Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程.8.(2019全国III 文15)设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.9.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2010-2019年一、选择题1.(2018全国卷Ⅰ)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12CD 2.(2018全国卷Ⅱ)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 13.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为A .B .C .D .4.(2017浙江)椭圆22194x y +=的离心率是A .3 B .3 C .23 D .595.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C .3 D .136.(2017新课标Ⅰ)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足AMB ∠ =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞7.(2016年全国I 卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 A .13 B .12 C .23 D .348.(2016年全国III 卷)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .349.(2015新课标1)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB =A .3B .6C .9D .1210.(2015广东)已知椭圆222125x y m+=(0m >)的左焦点为()14,0F -,则m = A .2 B .3 C .4 D .911.(2015福建)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4A F B F +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A .B .3(0,]4C .D .3[,1)412.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .2613.(2013新课标1)已知椭圆22221(0)x y a b a b+=>>的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=114.(2013广东)已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 15.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题16.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =,则当m =___时,点B 横坐标的绝对值最大.17.(2015浙江)椭圆22221x y a b +=(0a b >>)的右焦点(),0F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .18.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .19.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .20.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.21.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为____.22.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于 .23.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.24.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =;则点A 的坐标是 .三、解答题25.(2018江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点1,)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程. 26.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.27.(2018北京)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为3,焦距为.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .28.(2018天津)设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3||AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.29.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .30.(2017天津)已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.31.(2017山东)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0)a b >>的离心率为2,椭圆C 截直线1y =所得线段的长度为 (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :(0)y kx m m =+≠交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,N 的半径为||NO . 设D 为AB 的中点,DE ,DF 与N 分别相切于点E ,F ,求EDF ∠的最小值.x32.(2017北京)已知椭圆C 的两个顶点分别为(2,0)A -,(2,0)B ,焦点在x 轴上,离心. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:BDE ∆与BDN ∆的面积之比为4:5.33.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.34.(2016年北京)已知椭圆C :22221x y a b+=过(2,0)A ,(0,1)B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x轴交于点N ,求证:四边形ABNM 的面积为定值.35.(2016年全国II 卷)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当AM AN =时,求AMN ∆的面积;(Ⅱ)当AM AN =2k <<.36.(2016年山东)已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,焦距为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .(i)设直线PM 、QM 的斜率分别为k 、k',证明k k'为定值; (ii)求直线AB 的斜率的最小值.37.(2016年天津)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.38.(2015新课标2)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,点在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.39.(2015天津)已知椭圆22221(0)x y a b a b+=>>的上顶点为B ,左焦点为F ,离心率为(Ⅰ)求直线BF 的斜率;(Ⅱ)设直线BF 与椭圆交于点P (P 异于点B ),故点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M ,||=||PM MQ λ. (i )求λ的值;(ii )若||sin =9PM BQP ∠,求椭圆的方程.40.(2015陕西)如图,椭圆E (Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.41.(2015重庆)直线交椭圆于,P Q 两点,且PQ ⊥1PF .42. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.43.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.44.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .45.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ; (Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率. 46.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C ab a b+=>>的离心率为2,直线y x =被椭圆C . (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.47.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.48.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标.49.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .12短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△B D M 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.51. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x(Ⅰ) 求椭圆的方程;(Ⅱ) 设A ,B 分别为椭圆的左、右顶点, 过点F 且斜率为k 的直线与椭圆交于C ,D两点.若··8AC DB AD CB +=, 求k 的值.52.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.53.(2012北京)已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMN得面积为3时,求k 的值. 54.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.55.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.56.(2011陕西)设椭圆C : ()222210x y a b a b +=>>过点(0,4),离心率为35.(Ⅰ)求C 的方程; (Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 57.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.58.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(0﹤b ﹤1)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.59.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB . (Ⅰ)求椭圆C 的离心率; (Ⅱ)如果||AB =154,求椭圆C 的方程.。
高考物理十年试题分类解析 专题05 万有引力与天体运动

十年高考试题分类解析-物理一.2012年高考题1. (2012·新课标理综)假设地球是一半径为R 、质量分布均匀的球体。
一矿井深度为d 。
已知质量分布均匀的球壳对壳内物体的引力为零。
矿井底部和地面处的重力加速度大小之比为 A.R d -1 B. R d +1 C. 2)(R d R - D. 2)(dR R - 1.【答案】:A【解析】:在地球表面,g=GM/R 2,M=34πR 3ρ.在矿井底部,g’=GM’/(R-d )2, M’=34π(R-d )3ρ.。
联立解得g’/ g=Rd -1,选项A 正确。
【考点定位】此题考查万有引力定律及其相关知识。
2.(2012·福建理综)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v 。
假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N ,已知引力常量为G,,则这颗行星的质量为 A .mv 2/GN B .mv 4/GN . C . Nv 2/Gm . D .Nv 4/Gm .2.【答案】:B【解析】:该行星表面的在连接速度重力加速度g=N/m ;由万有引力等于绕某一行星表面附近做匀速圆周运动的向心力,GMm/R 2=mv 2/R 。
行星表面附近万有引力等于卫星重力,有mg=GMm/R 2,,联立解得:行星的质量M= mv 4/GN .选项B 正确。
3. (2012·北京理综)关于环绕地球运动的卫星,下列说法正确的是 A.分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期 B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率 C.在赤道上空运行的两颗地球同步卫星,.它们的轨道半径有可能不同 D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合 3【答案】:B【解析】:分别沿圆轨道和椭圆轨道运行的两颖卫星,可能具有相同的周期,选4.(2012·重庆理综)冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O做匀速圆周运动,由此可知,冥王星绕O点运动的A.轨道半径约为卡戎的17B.角速度大小约为卡戎的17C.线速度大小约为卡戎的7倍 D.向心力大小约为卡戎的7倍5.(2012·浙江理综)如图所示,在火星与木星轨道之间有一小行星带。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2012椭圆高考真题(含答案)20101.(2010·广东高考文科·T7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是()A.45B.35C.25D.15【思路点拨】由椭圆长轴的长度、短轴的长度和焦距成等差数列,列出a、b、c的关系,再转化为a、c间的关系,从而求出e.【规范解答】选 B.椭圆长轴的长度、短轴的长度和焦距成等差数列,2b a c,4b(a c),即:4b a2ac c,又a b c,4(a c)a2ac c,即3a2ac5c0,(a c)(3a5c)0,a c0(舍去)或3a5c0, eca3522222222222222,故选B.x22.(2010·福建高考文科·T11)若点O和点F分别为椭圆4y231的中心和左焦点,点P为椭圆上的任意一点,则OP FP的最大值为()A.2B.3C.6D.8【命题立意】本题考查椭圆的基本概念、平面向量的【规范解答】选C,设P x0,y0,则x042y0321即y0323x042,又因为F1,011222OP FP x0x01y0x0x03x022,又x02,2,446. OP FP2,6,所以OP FPmax3.(2010·海南高考理科·T20)设F1,F2分别是椭圆E:xa22yb221(a>b>0)的左、右焦点,过F1斜率为1的直线l与E 相交于A,B两点,且AF2,AB,BF2成等差数列. (Ⅰ)求E的离心率;(Ⅱ)设点P(0,-1)满足PA PB,求E的方程.【命题立意】本题综合考查了椭圆的定义、等差数列的概念以及直线与椭圆的关系等等.解决本题时,一定要灵活运用韦达定理以及弦长公式等知识.【思路点拨】利用等差数列的定义,得出AF2,AB,BF2满足的一个关系,然后再利用椭圆的定义进行计算.【规范解答】(Ⅰ)由椭圆的定义知,AF2BF2AB4a,又2AB AF2BF2 得AB43al的方程为y xc,其中c,设A x1,y1,B x2,y2,则A,B两点坐标满足方程组y x c 22 化简得,(a2b2)x22a2cx a2(c2b2)0 xy22 1b a则x1x22aca b222,x1x2a(c b)a b22222.因为直线AB斜率为1,所以AB4a34ab2222x1得a b,故a2b,所以E的离心率e22caa22.23(Ⅱ)设A,B两点的中点为N x0,y0,由(Ⅰ)知x0y0x0cc3x1x22aca b22c,.y01x01,得c3,从而a b 3.由PA PB,可知kPN 1.即椭圆E的方程为x218y291.【方法技巧】熟练利用圆锥曲线的定义及常用的性质,从题目中提取有价值的信息,然后列出方程组进行相关的计算.4.(2010·北京高考文科·T19)已知椭圆C的左、右焦点坐标分别是(0),0),离心率是P. 3,直线y t与椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为(Ⅰ)求椭圆C的方程;(Ⅱ)若圆P与x轴相切,求圆心P的坐标;(Ⅲ)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.【命题立意】本题考查了求椭圆方程,直线与圆的位置关系,函数的最值。
要求学生掌握椭圆标准中a,b,c的关系,离心率e ca.直线与圆相切问题转化为圆心到直线的距离等于半径来求解.第(Ⅲ)问中y最大值的求法用到了三角代换,体现了数学中的转化与化归思想.【思路点拨】由焦点可求出c,再利用离心率可求出a,b。
直线与圆的位置关系转化为圆心到直线的距离.【规范解答】(Ⅰ)因为ca3,且ca b 1 所以椭圆C的方程为x23y 1. 2(Ⅱ)由题意知p(0,t)(1t1) y t由x2得x2y1 3所以圆P.2由|t|解得t.所以点P的坐标是(0,2222). (Ⅲ)由(Ⅱ)知,圆P的方程x(y t)3(1t).因为点Q(x,y)在圆P上。
所以由图y可t t3知(y1t22to2。
63设(t1)(0,)t cos,sin2,s则in() 112c s 3当3,即t,且x0,y取最大值2.y【方法技巧】(1)直线与圆的位置关系:d r时相离;d r时相切;d r时相交;(2)求无理函数的最值时三角代换是一种常用的去根号的技巧.xa225.(2010·辽宁高考文理科·T20)设椭圆C:yb221(a b0)的右焦点为F,过点F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60,AF2FB. o(I)(II) 求椭圆C的离心率;如果|AB|=154,求椭圆C的方程.【命题立意】本题考查了直线的点斜式方程,考查了椭圆的离心率,椭圆的标准方程,考查了圆锥曲线中的弦长问题,以及推理运算能力.【思路点拨】(I)联立直线方程和椭圆方程,消去x,解出两个交点的纵坐标,利用这两个纵坐标间的关系,得出a、b、c间的关系,求出离心率.(II)利用弦长公式表示出|AB|,再结合离心率和a b c,求出a、b,写出椭圆方程.【规范解答】222设A(x1,y1),B(x2,y2) (y10 y20)(I)直线l的方程为y x c),其中c y x c)222242联立x2消去x 得(3a b)y cy3b0y221b a,y2223a b因为AF2FB,所以y12y2即3a b解得y1(c2a)2(c2a)3a b222,23a b232-y1|,所以54y5a=2得离心率e ca(II)因为|AB|ca23315。
3a b4,得a3,b由得b。
所以x2154 所以椭圆C的方程为9 1【方法技巧】1、直线、圆锥曲线的综合问题,往往是联立成方程组消去一个x(或y),得到关于y(或x)的一元二次方程,使问题得以解决.2、弦长问题,注意使用弦长公式,并结合一元二次方程根与系数的关系来解决问题.6.(2010·天津高考文理科·T20)已知椭圆为4(1)求椭圆的方程;(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(a,0),点Q(0,y0)在线段AB的垂直平分线上,且QA QB4,求y0的值. xa22yb22的离心率e1(a b0)2连接椭圆的四个顶点得到的菱形的面积【命题立意】本小题主要考察椭圆的标准方程和几何性质,直线的方程,平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查运算和推理能力。
【思路点拨】(1)建立关于a,b的方程组求出a,b;(2)构造新的一元二次方程求解。
【规范解答】(1)由e ca2222223a4c,再由c a b,得a2b由题意可知,2a2b4,即ab 22a2bx2解方程组得a=2,b=1,所以椭圆的方程为y1。
4ab 2(2)解:由(1)可知A(-2,0)。
设B点的坐标为(x1,,y1),直线l的斜率为k,则直线l的方程为y=k(x+2),y k(x2)于是A,B两点的坐标满足方程组x22y1 4由方程组消去y整理,得(14k2)x216k2x(16k24)0 由2x116k414k22,得x128k14k22,从而y18k24k14k,2,设线段AB是中点为M,则M的坐标为(以下分两种情况:2k14k214k2)(1)当k=0时,点B的坐标为(2,0)。
线段AB的垂直平分线为y轴,于是QA(2,y0),QB(2,y0)由QA QB=4,得y0=(2)当Y2k14kk01k时,线段AB的垂直平分线方程为(后边的Y改为小写)8k22(x14k6k)令x=0,解得y014k2由QA(2,y0),QB(x1,y1y0)QA QB2x1y0(y1y0)=4(16k15k1)(14k)22(28k)14k226k14k2(4k14k26k14k2)42=224整理得7k2,故k7所以y0=5综上y0=y0=57.(2010·福建高考理科·T17)已知中心在坐标原点O的椭圆C经过点A(2 , 3),且点F(2 ,0)为其右焦点. (I)求椭圆C的方程;(II)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.【命题立意】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.【思路点拨】第一步先求出左焦点,进而求出a,c,然后求解椭圆的标准方程;第二步依题意假设直线l的方程为y32x t,联立直线与椭圆的方程,利用判别式限制参数t的范围,再由直线OA与直线l的距离等于4列出方程,求解出t的值,注意判别式对参数t的限制. 【规范解答】(I)依题意,可设椭圆的方程为xa22yb221a b0,且可知左焦点为c2a4F2,0,从而有,解得,又2a AF AF358c2a b c,b12,故椭圆的方程为2222x216y2121;2x2y131612(II)假设存在符合题意的直线l,其方程为y x t,由得2y3x t23x3tx t120,因为直线l与椭圆C有公共点,所以23t43t120,解得t。
另一方面,由直线OA与直线222l的距离等于44,t,由于,所以符合题意的直线l不存在.【方法技巧】在求解直线与圆锥曲线的位置关系中的相交弦问题时,我们一定要注意判别式的限制。
因为抛物与直线有交点,注意应用0进行验证可避免增根也可以用来限制参数的范围.8.(2010·安徽高考理科·T19)已知椭圆E经过点A2,3,对称轴为坐标轴,焦点F1,F2在x轴上,离心率e12。
(1)求椭圆E的方程;(2)求F1AF2的角平分线所在直线l的方程;(3)在椭圆E上是否存在关于直线l明理由。
【命题立意】本题主要考查椭圆的定义及标准方程,椭圆的简单性质,点关于直线的对称性等知识,考查考生在解析几何的基本思想方法方面的认知水平,探究意识,创新意识和综合运算求解能力.【思路点拨】(1)设出椭圆的标准方程,再根据题设条件构建方程(组)求解;(2)根据角平分线的性质求出直线l的斜率或直线l上的一个点的坐标,进而求得直线l的方程;(3)先假设椭圆E上存在关于直线l对称的相异两点,在此基础之上进行推理运算,求解此两点,根据推理结果做出判断。
【规范解答】(1)设椭圆E的方程为ca124a22xa222yb22,1(a b0)22由题意e,9b21,又c a b,解得:c2,a4,b椭圆E的方程为x16y2121(2)方法1:由(1)问得F1(2,0),F2(2,0),又A2,3,易得F1AF2为直角三角形,其中AF23,F1F24,AF15,设F1AF2的角平分线所在直线l与x轴交于点M,根据角平线定理可知:321AF1F1MAF2F2M,可得F2M,M(,0)2直线l的方程为:y030x21,即y2x1。