传送带练习题
物理传送带练习题

物理传送带练习题一、单选题1.如图所示,光滑轨道ABCD是大型游乐设施过山车轨道的简化模型,最低点B处的入、出口靠近但相互错开,C是半径为R的圆形轨道的最高点,BD部分水平,末端D点与右端足够长的水平传送带无缝连接,传送带以恒定速度v逆时针转动,现将一质量为m的小滑块从轨道AB上某一固定位置A由静止释放,滑块能通过C点后再经D点滑上传送带,则()A.固定位置A到B点的竖直高度可能为2.4RB.滑块不可能重新回到出发点A处C.传送带速度v越大,滑块与传送带摩擦产生的热量越多D.滑块在传送带上向右运动的最大距离与传送带速度v有关2.如图所示,传送带的三个固定转动轴分别位于等腰三角形的三个顶点,两段倾斜部分长均为2m,且与水平方向的夹角为37°。
传送带以1m/s的速度逆时针匀速转动。
两个质量相同的小物块A、B从传送带顶端均以1m/s的初速度沿传送带下滑,物块与传送带间的动摩擦因数都是0.5,g取10m/s2,sin37°=0.6,cos37°=0.8,下列判断正确的是()A.物块A始终与传送带相对静止B.物块A先到达传送带底端C.传送带对物块A所做的功大于传送带对物块B所做的功D.两物块与传送带之间因摩擦所产生的总热量等于两物块机械能总的减少量二、多选题3.如图所示,传送带AB与水平方向夹角为 ,且足够长。
现有一质量为m可视为质点的物体,以初速度0v 沿着与传送带平行的方向,从B 点开始向上运动,物体与传送带之间的动摩擦因数为(tan )μμθ>。
传送带以恒定的速度v 运行,物体初速度大小和传送带的速度大小关系为0v v <。
则物体在传送带上运动的过程中,下列说法正确的是( )(重力加速度为g )A .运动过程中摩擦力对物体可能先做正功再做负功B .运动过程中物体的机械能一直增加C .若传送带逆时针运动,则摩擦力对物体做功为零D .若传送带顺时针运动,则物块在加速过程中电动机多消耗的电能为()0cos cos sin mv v v μθμθθ-- 4.如图甲,一质量为m 的小物块以初动能kE 向右滑上足够长的水平传送带上,传送带以恒定速度逆时针转动,小物块在传送带上运动时,小物块的动能k E 与小物块的位移x 关系k E x -图像如图乙所示,传送带与小物块之间动摩擦因数不变重力加速度为g 。
高中物理水平传送带练习题解析

3.10水平传送带教师一、单选题1.如图甲所示,一水平传送带沿顺时针方向旋转,在传送带左端A 处轻放一可视为质点的小物块,小物块从A 端到B 端的速度—时间变化规律如图乙所示,t =6s 时恰好到B 点,则( )A .AB 间距离为20mB .小物块在传送带上留下的痕迹是8mC .物块与传送带之间动摩擦因数为μ=0.5D .若物块速度刚好到4m/s 时,传送带速度立刻变为零,则物块不能到达B 端【答案】B【详解】A .由图可知,4s 后物体与传送带的速度相同,故传送带速度为4m /s ;图中图像与时间轴所围成的面积表示位移,故AB 的长度26416m 2x +⨯==() A 错误;B .小物体在传送带上留下的痕迹是44448m 2l ⨯=⨯-= B 正确;C .由图乙可知,加速过程的加速度2Δ41m/s Δ4v a t === 由牛顿第二定律可知mga g m μμ==联立解得0.1μ=C 错误;D .物块速度刚好到4m/s 时,传送带速度立刻变为零,物块由于惯性向前做匀减速直线A.B.C.D.运动的位移x =2A v v +t 1=5.75 m <8 m 则工件在到达B 端前速度就达到了13 m/s ,此后工件与传送带相对静止,因此工件先加速运动后匀速运动,根据牛顿第二定律可得合力F =ma 先不变后为零,故B 正确,A 、C 、D 错误。
故选B 。
3.如图所示,绷紧的水平传送带始终以恒定速度04m /s v =顺时针运行,小物块以16m /s v =的初速度从传送带右端滑上传送带。
已知物块与传送带间的动摩擦因数为0.2,传送带的长度为10m ,重力加速度210m /s g =,考虑小物块滑上传送带到离开传送带的过程,下列说法正确的是( )A .小物块从传送带左端滑离传送带B .小物块滑离传送带时的速度大小为6m /sC .小物块从滑上传送带到滑离传送带经历的时间为6.25sD .小物块在传送带上留下的划痕长度为17m【答案】C【详解】A .物块在传送带上的加速度22m/s a g μ==向左减速到零的时间113s ==v t a向左运动的最大距离 2119m 10m 2v x L a==<= 故物块不会从左端滑离传送带,故A 错误;B .物块向左减速到零后,向右加速,但只能加速到04m /s v =,故B 错误;C .物块向左加速到04m /s v =用时022s v t a==二、多选题4.如图所示,水平传送带A、B两端相距x=3.5m,工件与传送带间的动摩擦因数μ=0.1。
高中物理传送带问题(有答案)

传送带问题例1:一水平传送带长度为20m ,以2m /s 的速度做匀速运动,已知某物体与传送带间动摩擦因数为0.1,则从把该物体由静止放到传送带的一端开始,到达另一端所需时间为多少?解:物体加速度a=μg=1m/s2,经t1=v/a =2s 与传送带相对静止,所发生的位移S1=1/2 at 12=2m,然后和传送带一起匀速运动经t2=l-s1/v =9s ,所以共需时间t=t1+t2=11s练习:在物体和传送带达到共同速度时物体的位移,传送带的位移,物体和传送带的相对位移分别是多少?(S1=1/2 vt1=2m ,S2=vt1=4m ,Δs=s2-s1=2m )例2:如图2—1所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少?【解析】物体放上传送带以后,开始一段时间,其运动加速度2m/s 10cos sin =+=m mg mg a θμθ。
这样的加速度只能维持到物体的速度达到10m/s 为止,其对应的时间和位移分别为:,1s 10101s a v t === m 52 21==a s υ<16m 以后物体受到的摩擦力变为沿传送带向上,其加速度大小为(因为mgsin θ>μmgcos θ)。
22m/s 2cos sin =-=mmg mg a θμθ。
设物体完成剩余的位移2s 所用的时间为2t ,则22220221t a t s +=υ, 11m= ,10222t t + 解得:)s( 11 s, 1 2212舍去或-==t t , 所以:s 2s 1s 1=+=总t 。
例3:如图2—2所示,传送带与地面成夹角θ=30°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.6,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少?【解析】物体放上传送带以后,开始一段时间,其运动加速度2m/s 46.8cos sin =+=mmg mg a θμθ。
高中物理高一上传送带模型练习题

传送带模型
1.水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s
2.
(1)求行李刚开始运动时加速度的大小;
(2)求行李做匀加速直线运动的时间;
(3)如果行李箱底部沾有煤灰,当行李底部与传送带摩擦时就会留下痕迹,请问在行李箱从A到B运动的过程中,传送带上留下了多长的煤灰痕迹;
(4)在行李由A到B的这个过程中,有多少能量转化为了内能?
(5)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率。
2.如图所示,倾角为37º的传送带以4m/s的速度沿图示方向匀速运动。
已知传送带的上、下两端间的距离为L=7m。
现将一质量m=0.4kg的小木块轻放到传送带的顶端,使它从静止开始沿传送带下滑,已知木块与传送带间的动摩擦因数为μ=0.25,设最大静摩擦力等于滑动摩擦力,取g=10m/s2。
求:
(1)木块从顶端滑到底端所需要的时间;
(2)木块从顶端滑到底端摩擦力对木块做的功;
(3)木块从顶端滑到底端产生的热量?
3.如图所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B 的长度L=50m,则物体从A到B需要的时间为多少?。
传送带模型练习(带答案)

1: 如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角θ=30°。
现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处。
已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数μ=32,取g =10 m/s 2。
(1)通过计算说明工件在传送带上做什么运动;(2)求工件从P 点运动到Q 点所用的时间。
[答案] (1)先匀加速运动0.8 m ,然后匀速运动3.2 m (2)2.4 s解析 (1)工件受重力、摩擦力、支持力共同作用,摩擦力为动力由牛顿第二定律得:μmg cos θ-mg sin θ=ma 代入数值得:a =2.5 m/s 2则其速度达到传送带速度时发生的位移为 x 1=v 22a =222×2.5m =0.8 m<4 m 可见工件先匀加速运动0.8 m ,然后匀速运动3.2 m (2)匀加速时,由x 1=v 2t 1得t 1=0.8 s 匀速上升时t 2=x 2v =3.22s =1.6 s 所以工件从P 点运动到Q 点所用的时间为 t =t 1+t 2=2.4 s 2:如图,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间;(2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间.答案 (1)4 s (2)2 s解析 (1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,根据牛顿第二定律有mg (sin 37°-μcos 37°)=ma 则a =g sin 37°-μg cos 37°=2 m/s 2,根据l =12at 2得t =4 s. (2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a 1,由牛顿第二得,mg sin 37°+μmg cos 37°=ma 1则有a 1=mg sin 37°+μmg cos 37°m=10 m/s 2 设当物体运动速度等于传送带转动速度时经历的时间为t 1,位移为x 1,则有t 1=v a 1=1010 s =1 s ,x 1=12a 1t 21=5 m<l =16 m 当物体运动速度等于传送带速度瞬间,有mg sin 37°>μmg cos 37°,则下一时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力——摩擦力发生突变.设当物体下滑速度大于传送带转动速度时物体的加速度为a 2,则a 2=mg sin 37°-μmg cos 37°m=2 m/s 2 x 2=l -x 1=11 m 又因为x 2=vt 2+12a 2t 22,则有10t 2+t 22=11,解得:t 2=1 s(t 2=-11 s 舍去)所以t 总=t 1+t 2=2 s. 3.如图所示,足够长的传送带与水平面倾角θ=37°,以12m/s 的速率逆时针转动。
高中物理倾斜传送带练习题

班级: 高 ( )班 学号(后两位): 姓名:3.11倾斜传送带一、单选题1.如图所示,倾角为37θ=︒且长0.4m L =的传送带以恒定的速率1m/s v =沿顺时针方向运行,现将一质量2kg m =的物块(可视为质点)以03m/s v =的速度从底部滑上传送带,传送带与物块之间的动摩擦因数0.5μ=,取210m/s g =,则物块( )A .先做减速后做匀速运动B .开始加速度大小为22m/sC .经过0.2s t =到达顶端D .相对传送带发生的位移大小为0.4m2.如图,MN 是一段倾角为30θ=︒的传送带,一个可以看作质点,质量为1kg m =的物块,以沿传动带向下的速度04m/s v =从M 点开始沿传送带运动。
物块运动过程的部分v t -图像如图所示,取210m/s =g ,则( )A .物块最终从传送带N 点离开B .传送带的速度1m/s v =,方向沿斜面向下C .物块沿传送带下滑时的加速度22m/s a =D .物块将在5s 时回到原处二、多选题3.如图甲,倾角为θ的传送带始终以恒定速率v 2逆时针运行,t =0时初速度大小为v 1(v 1>v 2)的小物块从传送带的底端滑上传送带,在传送带上运动时速度随时间变化的v -t 图像如图乙,则( )A .0~t 3时间内,小物块所受到的摩擦力始终不变B .小物块与传送带间的动摩擦因数满足μ<tan θC .t 1时刻,小物块离传送带底端的距离达到最大D .小物块从最高点返回向下运动过程中摩擦力始终和运动方向相反4.渔业作业中,鱼虾捕捞上来后,通过“鱼虾分离装置”,实现了机械化分离鱼和虾,大大地降低了人工成本。
某科学小组将“鱼虾分离装置”简化为如图所示模型,分离器出口与传送带有一定的高度差,鱼虾落在斜面时有沿着斜面向下的初速度。
下列说法正确的是( )A .“虾”从掉落到传送带后,可能沿着传送带向下做加速直线运动B .“鱼”从掉落到传送带后,马上沿着传送带向上做加速直线运动C .“虾”在传送带运动时,摩擦力对“虾”做负功D .“鱼”在传送带运动时,加速度方向先向下后向上5.如图所示,飞机场运输行李的传送带保持恒定的速率运行,将行李箱无初速度地放在传送带底端,传送带将它送入飞机货舱。
2024高考物理一轮复习专题练习及解析—传送带模型和“滑块—木板”模型

2024高考物理一轮复习专题练习及解析—传送带模型和“滑块—木板”模型1.如图所示,飞机场运输行李的倾斜传送带保持恒定的速率运行,将行李箱无初速度地放在传送带底端,当传送带将它送入飞机货舱前行李箱已做匀速运动.假设行李箱与传送带之间的动摩擦因数为μ,传送带与水平面的夹角为θ,已知滑动摩擦力近似等于最大静摩擦力,下列说法正确的是()A.要实现这一目的前提是μ<tan θB.做匀速运动时,行李箱与传送带之间的摩擦力为零C.全过程传送带对行李箱的摩擦力方向沿传送带向上D.若使传送带速度足够大,可以无限缩短传送的时间2.(多选)图甲为一转动的传送带,以恒定的速率v顺时针转动.在传送带的右侧有一滑块以初速度v0从光滑水平面滑上传送带,运动一段时间后离开传送带,这一过程中滑块运动的v-t图像如图乙所示.由图像可知滑块()A.从右端离开传送带B.从左端离开传送带C.先受滑动摩擦力的作用,后受静摩擦力的作用D.变速运动过程中受滑动摩擦力的作用3.(多选)如图甲所示,光滑水平面上静置一个薄长木板,长木板上表面粗糙,其质量为M,t=0时刻,质量为m的物块以速度v水平滑上长木板,此后木板与物块运动的v-t图像如图乙所示,重力加速度g取10 m/s2,下列说法正确的是()A.M=mB.M=2mC.木板的长度为8 mD.木板与物块间的动摩擦因数为0.14.(2023·甘肃省模拟)如图所示,水平匀速转动的传送带左右两端相距L=3.5 m,物块A(可看作质点)以水平速度v0=4 m/s滑上传送带左端,物块与传送带间的动摩擦因数μ=0.1,设A到达传送带右端时的瞬时速度为v,g取10 m/s2,下列说法不正确的是()A.若传送带速度等于2 m/s,物块不可能先做减速运动后做匀速运动B.若传送带速度等于3.5 m/s,v可能等于3 m/sC.若A到达传送带右端时的瞬时速度v等于3 m/s,传送带可能沿逆时针方向转动D.若A到达传送带右端时的瞬时速度v等于3 m/s,则传送带的速度不大于3 m/s5.(多选)(2023·福建福州市高三检测)如图所示,质量为M的长木板A以速度v0在光滑水平面上向左匀速运动,质量为m的小滑块B轻放在木板左端,经过一段时间恰好从木板的右端滑出,小滑块与木板间的动摩擦因数为μ,下列说法中正确的是()A.若只增大m,则小滑块不能滑离木板B.若只增大M,则小滑块在木板上运动的时间变短C.若只增大v0,则小滑块离开木板的速度变大D.若只减小μ,则小滑块滑离木板过程中小滑块对地的位移变大6.(多选)如图甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2 kg,现在滑块上施加一个F=0.5t (N)的变力作用,从t=0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示.设最大静摩擦力与滑动摩擦力相等,重力加速度g取10 m/s2,则下列说法正确的是()A.滑块与木板间的动摩擦因数为0.4B.木板与水平地面间的动摩擦因数为0.2C.图乙中t2=24 sD.木板的最大加速度为2 m/s27.(2023·山东泰安市模拟)如图所示,水平传送带AB间的距离为16 m,质量分别为2 kg、4 kg的物块P、Q通过绕在光滑定滑轮上的细线连接,Q在传送带的左端,且连接物块Q的细线水平,当传送带以8 m/s的速度逆时针转动时,Q恰好静止.重力加速度取g=10 m/s2,最大静摩擦力等于滑动摩擦力.当传送带以8 m/s 的速度顺时针转动时,下列说法正确的是()A.Q与传送带间的动摩擦因数为0.6B.Q从传送带左端滑到右端所用的时间为2.4 sC.Q从传送带左端滑到右端,相对传送带运动的距离为4.8 mD.Q从传送带左端滑到右端的过程细线受到的拉力大小恒为20 N 8.(2023·河南信阳市模拟)如图甲所示,在顺时针匀速转动且倾角为θ=37°的传送带底端,一质量m=1 kg的小物块以某一初速度向上滑动,传送带足够长,物块的速度与时间(v-t)关系的部分图像如图乙所示,已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2,求:(1)物块与传送带之间的动摩擦因数μ;(2)物块沿传送带向上运动的最大位移;(3)物块向上运动到最高点的过程中相对传送带的路程.9.(2023·辽宁大连市检测)如图所示,一质量M=2 kg的长木板B静止在粗糙水平面上,其右端有一质量m=2 kg的小滑块A,对B施加一水平向右且大小为F=14 N的拉力;t=3 s后撤去拉力,撤去拉力时滑块仍然在木板上.已知A、B间的动摩擦因数为μ1=0.1,B与地面间的动摩擦因数为μ2=0.2,重力加速度取g =10 m/s2.(1)求有拉力时木板B和滑块A的加速度大小;(2)要使滑块A不从木板B左端掉落,求木板B的最小长度.1.C 2.AD 3.BC 4.D 5.AB6.ACD7.C [当传送带以v =8 m/s 的速度逆时针转动时,Q 恰好静止不动,对Q 受力分析知m P g =μm Q g ,解得μ=0.5,A 错误;当传送带以v =8 m/s 的速度顺时针转动,物块Q 先做初速度为零的匀加速直线运动,有m P g +μm Q g =(m P +m Q )a ,解得a =203 m/s 2,当物块Q 速度达到传送带速度,即8 m/s 后,做匀速直线运动,由v =at 1,解得匀加速的时间t 1=1.2 s ,匀加速的位移为x =v 22a =4.8 m ,则匀速运动的时间为t 2=L -x v =1.4 s ,Q 从传送带左端滑到右端所用的时间为t 总=t 1+t 2=2.6 s ,B 错误;加速阶段的位移之差为Δx =v t 1-x =4.8 m ,即Q 从传送带左端到右端相对传送带运动的距离为4.8 m ,C 正确;当Q 加速时,对P 分析有m P g -F T =m P a ,解得F T =203N ,之后做匀速直线运动,有F T ′=20 N ,D 错误.] 8.(1)0.5 (2)6.4 m (3)4.8 m解析 (1)由题图乙可知,物块的初速度v 0=8 m/s ,物块的速度减速到与传送带的速度相同时,加速度发生变化,所以传送带转动时的速度v =4 m/s ,从t =0到t=0.4 s 时间内,物块加速度大小为a 1=⎪⎪⎪⎪⎪⎪Δv Δt =8-40.4 m/s 2=10 m/s 2,方向沿斜面向下;物块受到重力、支持力和沿斜面向下的摩擦力的作用,沿斜面方向由牛顿第二定律有mg sin θ+μmg cos θ=ma 1,解得μ=0.5.(2)设在t =0.4 s 后,物块做减速运动的加速度大小为a 2,物块受到重力、支持力和沿斜面向上的摩擦力的作用,由牛顿第二定律可得mg sin θ-μmg cos θ=ma 2,解得a 2=2 m/s 2,物块从t =0.4 s 开始,经过t 1时间速度减为零,则t 1=42 s =2 s ,从t =0到t =0.4 s ,物块位移为x 1=v 0Δt -12a 1(Δt )2=2.4 m ,从t =0.4 s 到t =2.4 s ,物块减速到零的位移为x 2=v 2t 1=42×2 m =4 m ,物块沿传送带向上运动过程中的位移为x =x 1+x 2=6.4 m.(3)从t =0到t =0.4 s ,传送带位移为x 3=v Δt =1.6 m ,物块相对传送带向上运动Δx 1=x 1-x 3=0.8 m ,从t =0.4 s 到t =2.4 s ,传送带位移x 4=v t 1=8 m ,物块相对传送带向下运动Δx 2=x 4-x 2=4 m ,故物块向上运动到最高点的过程中,物块相对传送带的路程Δx =Δx 1+Δx 2=4.8 m.9.(1)2 m/s 2 1 m/s 2 (2)5.25 m解析 (1)对滑块A 根据牛顿第二定律可得μ1mg =ma 1,故A 的加速度大小为a 1=1 m/s 2,方向向右;对木板B 根据牛顿第二定律可得F -μ1mg -μ2(m +M )g =Ma 2,解得木板B 加速度大小为a 2=2 m/s 2.(2)撤去外力瞬间,A 的位移大小为x 1=12a 1t 2=4.5 m ,B 的位移大小为x 2=12a 2t 2=9 m ,撤去外力时,滑块A 和木板B 的速度分别为v 1=a 1t =3 m/s ,v 2=a 2t =6 m/s ,撤去外力后,滑块A 的受力没变,故滑块A 仍然做加速运动,加速度不变,木板B 做减速运动,其加速度大小变为a 2′=μ1mg +μ2(m +M )g M=5 m/s 2,设再经过时间t ′两者达到共速,则有v 1+a 1t ′=v 2-a 2′t ′撤去外力后,A 的位移大小为x 1′=v 1t ′+12a 1t ′2B 的位移大小为x 2′=v 2t ′-12a 2′t ′2故木板B 的长度至少为L =x 2-x 1+x 2′-x 1′代入数据解得L =5.25 m.。
高中物理倾斜传送带练习题答案

3.11倾斜传送带答案1.C【详解】AB .开始加速度大小为2sin cos 10m/s mg mg a mθμθ+==物块与传送带共速时2202v v ax -=得0.4m x L ==则物块只做匀减速运动至与传送带共速,AB 错误; C .到达顶端的时间为00.2s v v t a-==C 正确;D .相对传送带发生的位移大小为0.2m x x vt ∆=-=D 错误。
故选C 。
2.D【详解】AB .从图象可知,物体速度减为零后反向向上运动,最终的速度大小为1m/s ,因此没从N 点离开,并且能推出传送带斜向上运动,速度大小为1m/s ,故AB 错误; C .—v t 图象中斜率表示加速度,可知物块沿传送带下滑时的加速度224(1)m/s 2.5m/s 2a --==故C 错误;D .速度图象与时间轴围成的面积表示位移,由图可知,18s 5t =时,物块的速度为0,之后物块沿斜面向上运动,所以物块沿斜面向下运动的位移118164m m 255x =⨯⨯=18s 5t =到22s t =时,物块沿斜面向上加速运动的位移282151m m 25x -=⨯= 物块沿斜面向上匀速运动的时间123s x xt v-==匀所以物块回到原处的时间3s 2s 5s t =+=故D 正确。
故选D 。
3.BC【详解】A .通过乙图可以看出,小物块先向上减速运动,减速到零后反向加速,当速度与传送带速度相等时,加速度大小发生变化,所以小物块的速度达到与传送带速度相等以前,摩擦力方向一直沿斜面向下,t 2时刻以后摩擦力方向沿斜面向上,故A 错误;B .根据图乙可知,t 2时刻以后小物块相对于传送带向下加速运动,根据牛顿第二定律可得sin cos mg mg ma θμθ-=所以小物块与传送带间的动摩擦因数满足tan μθ<故B 正确;解得滑动距离310m x =则货箱在倾斜传送带上的匀速运动时间为23410s y L xt v -==所以货箱从A 点到D 点的时间为123439s t t t t t =+++=故A 正确;B .在水平传送带上,货箱要经过4s 才能达到和传送带一样的速度,而货箱是每隔1s 就放上去一个,所以当下一个货箱刚放上去时,它与前一个货箱的距离最小,当它的速度达到传送带的速度时,它与前一个货箱的距离最大,则有22min 101111m 0.5m 22L a t ==⨯⨯=22max 11011114m 22x L a t v t a t =+-=即最大距离为最小距离的8倍,故B 错误;C .在倾斜传送带上,货箱要经过2s 才能达到和传送带一样的速度,而每隔1s 就有一个货箱进入倾斜传送带;所以当下一个货箱刚刚到达倾斜传送带时,它与前一个货箱的距离最小,当它的速度达到倾斜传送带的速度时,它与前一个货箱的距离最大,则有22max 23023116m 22y L a t v t a t =+-=故C 正确;D .把一个货箱从A 点传送到D 点,电动机至少要做功2222111123323111sin37cos379200J 222y x y x W mv mgL mg v t a t mg v t v t a t μμ⎡⎤⎛⎫⎛⎫=+︒+-+︒-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦连续稳定工作24小时,共传送货箱60602486400()n =⨯⨯=个需要做功6920086400920086400J kw h 220.8kw h 3.610W nW ⨯==⨯=⋅=⋅⨯总故D 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传送带练习题在以后的运动中,到达右端所用的时间:s s v x L t 122412=-=-= 共用时间:t=t 1+t 2=3s(3)若传送带以v=4m/s 速度逆时针匀速运动,则物体一直减速运动,加速度为2m/s 1==g a μ,为使物体仍能到达B 端,则aL v 22=,解得m /s 22m /s 4122=⨯⨯==aL v 考点:牛顿第二定律的应用;匀变速直线运动的规律.11、如图所示,水平传送带AB 长L=10m ,向右匀速运动的速度v 0=4m/s .一质量为1kg 的小物块(可视为质点)以v 1=6m/s 的初速度从传送带右端B 点冲上传送带,物块与传送带间的动摩擦因数μ=0.4,重力加速度g 取10m/s 2.求:(1)物块相对地面向左运动的最大距离;(2)物块从B 点冲上传送带到再次回到B 点所用的时间.【答案】(1)物块相对地面向左运动的最大距离为4.5m ;(2)物块从B 点冲上传送带到再次回到B 点所用的时间3.125s【解析】考点:牛顿第二定律;匀变速直线运动的位移与时间的关系.版权所有专题:牛顿运动定律综合专题.分析:(1)当物块相对地面的速度为零时,相对地面向左运动有最大距离;(2)物块经历向左减速、向右加速、向右匀速三个过程,时间之和就是总时间. 解答:解:(1)设物块与传送带间摩擦力大小为f 、向左运动最大距离s 1时速度变为0 f=μmg﹣fs 1=0﹣解得:s 1=4.5m(2)设小物块经时间t 1速度减为0,然后反向加速,设加速度大小为a ,经时间t 2与传送带速度相等:v 1﹣at 1=0由牛顿第二定律得:a=解得:t 1=1.5sv 0=at 2解得:t 2=1s设反向加速时,物块的位移为s 2,则有:s 2===2m物块与传送带同速后,将做匀速直线运动,设经时间t3再次回到B点,则有:s1﹣s2=v0t3解得:所以物块从B点冲上传送带到再次回到B点所用的时间 t=t1+t2+t3=3.125s答:(1)物块相对地面向左运动的最大距离为4.5m;(2)物块从B点冲上传送带到再次回到B点所用的时间3.125s.点评:本题关键是明确滑块的受力情况和运动情况,然后分阶段根据牛顿第二定律列式求解加速度,再根据运动学公式列式求解,运算较麻烦,但过程较明朗.在工厂的流水线上安装水平传送带,可以把沿斜面滑下的工件用水平传送带进行传送,可大大提高工作效率.如图所示,一倾角θ=30°的光滑斜面下端与水平传送带相连,一工件从h=0.20m高处的A点由静止滑下后到达B点的速度为v1,接着以v1滑上水平放置的传送带.已知:传送带长L=15m,向右保持v0=4.0m/s的运行速度不变,工件与传送带间的动摩擦因数μ=0.20,g=10m/s2,空气阻力不计,工件可看成质点.求:(1)求工件从A点由静止下滑到离开传送带C点所用的时间.(2)假设传送带是白色的,工件为一煤块,则工件从B滑到C的过程中,在传送带上留下黑色痕迹的长度S=?【答案】(1)求工件从A点由静止下滑到离开传送带C点所用的时间为4.4s;(2)假设传送带是白色的,工件为一煤块,则工件从B滑到C的过程中,在传送带上留下黑色痕迹的长度为1m.【解析】考点:牛顿第二定律;匀变速直线运动的位移与时间的关系.专题:牛顿运动定律综合专题.分析:(1)从A到B是匀加速直线运动,根据牛顿第二定律求解加速度,根据运动学公式求解时间和末速度;B到C过程是先加速后匀速的过程,根据牛顿第二粒求解加速度,根据运动学公式求解时间;(2)根据运动学公式求解相对位移即可.解答:解析:(1)匀加速下滑时:mgsinθ=ma1﹣﹣﹣﹣﹣﹣①﹣﹣﹣﹣﹣﹣②得:v1==2m/s﹣﹣﹣﹣﹣﹣③从A﹣B用时t1:v1=at1得:t1=0.4s﹣﹣﹣﹣﹣﹣④从B﹣C先匀加速后匀速:加速时:μmg=ma2得:﹣﹣﹣﹣﹣﹣⑤匀加速时间t2:v0=v1+a2t2得:t2=10s﹣﹣﹣﹣﹣﹣⑥在t2内:=3m﹣﹣﹣﹣﹣﹣⑦匀速时:L﹣x1=v0t3得:t3=3s﹣﹣﹣﹣﹣﹣⑧从A﹣C总时间:t=t1+t2+t3=4.4s﹣﹣﹣﹣﹣﹣⑨(2)在t2内,传送带位移为:x2=v0t2=4m﹣﹣﹣﹣﹣﹣⑩黑色痕迹长度:S=x2﹣x1=1m答:(1)求工件从A点由静止下滑到离开传送带C点所用的时间为4.4s;(2)假设传送带是白色的,工件为一煤块,则工件从B滑到C的过程中,在传送带上留下黑色痕迹的长度为1m.点评:解决本题的关键是理清物块在传送带上的运动规律,结合牛顿第二定律和运动学公式进行求解.用如图所示的水平传送带和斜面将货物运送到斜面的顶端,传送带两端AB的距离为d=10.4m,传送带以v1=10m/s顺时针匀速运动,右端B靠近倾角θ=37°的斜面底端,斜面底端与传送带的B端之间用一段长度可以不计的小圆弧平滑连接.斜面的总长L=9.8m,当物体以v2=12m/s向右的水平初速度从A点冲上传送带,发现物体通过B点后经t=2.0s第二次到达斜面上的C点,物体和所有接触面的动摩擦因数均为μ=0.5.求:(1)物体从A点到达B点的时间;(2)BC的距离;(3)为了将物体送上斜面的顶端,要在A端给物体一个向右的水平初速度,求这个初速度的最小值.【答案】(1)物体从A点到达B点的时间为1s;(2)BC的距离为4m;(3)为了将物体送上斜面的顶端,要在A端给物体一个向右的水平初速度,则这个初速度的最小值为17.3m/s【解析】考点:匀变速直线运动的速度与位移的关系;匀变速直线运动的速度与时间的关系.专题:直线运动规律专题.分析:(1)滑动摩擦力提供加速度,根据牛顿第二定律可得物体在水平传送带AB上的加速度a1=μg,物体在水平传送带上先做匀减速直线运动,减速的时间t1=,位移X1=,当与传送带共速后开始做匀速直线运动,匀速的时间t2=,所以,物体从A点到达B点的时间t=t1+t2.代入数据计算即可.(2)物体在斜面BC上向上运动时的加速度a2=gsinθ+μgcosθ,从经过B点到在斜面上速度减为零经历的时间t3=,位移X2=,之后,物体沿斜面下滑,加速度a3=gsinθ﹣μgcosθ,再经历时间t4=t﹣t3到达C点,物体下滑的位移X3=a3t42,所以,BC的长度X BC=X2﹣X3.(3)物体要到达斜面的顶端,则物体在B点的最小速度v B,由v B2=2a2L得v B,物体在水平传送带AB上一直做匀减速直线运动,由v A2﹣v B2=2a1d可解得得物体的最小初速度v A.解答:解:(1)物体在水平传送带AB上的加速度a1=μg=5 m/s2物体在水平传送带上先做匀减速直线运动,减速的时间t1==0.4s位移X1==4.4m当与传送带共速后开始做匀速直线运动,匀速的时间t2==0.6s所以,物体从A点到达B点的时间t=t1+t2=1s(2)物体在斜面BC上向上运动时的加速度a2=gsinθ+μgcosθ=10 m/s2从经过B点到在斜面上速度减为零经历的时间t3==1s位移X2==5m之后,物体沿斜面下滑,加速度a3=gsinθ﹣μgcosθ=2 m/s2再经历时间t4=t﹣t3=1s到达C点,物体下滑的位移X3=a3t42=1m所以,BC的长度X BC=X2﹣X3=4m(3)物体要到达斜面的顶端,则物体在B点的最小速度v B由v B2=2a2L得 v B=14m/s物体在水平传送带AB上一直做匀减速直线运动,由v A2﹣v B2=2a1d得物体的最小初速度v A=17.3m/s答:(1)物体从A点到达B点的时间为1s;(2)BC的距离为4m;(3)为了将物体送上斜面的顶端,要在A端给物体一个向右的水平初速度,则这个初速度的最小值为17.3m/s.点评:此题文字较多,首先要有耐心读题.对于传送带问题,关键是分析物体的运动情况,本题要边计算边分析,不能只定性分析.如图所示,水平传送带以速度v1匀速运动,小物体P、Q由通过光滑定滑轮的不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,已知v1>v2,P与定滑轮间的绳水平。
不计定滑轮质量,绳足够长,物体与传送带之间的最大静摩擦力和滑动摩擦力相等。
从最初直到物体P从传送带离开的过程,以下判断正确的是( )A.物体P可能先减速后加速B.物体P可能先加速后减速C.物体P可能先加速后匀速D.物体P可能先减速后匀速【答案】AC【解析】试题分析:物块P受向右的摩擦力和向左的细绳的拉力,当向右的摩擦力小于向左的细绳的拉力时,物块向右做减速运动,减速到零后反向加速,选项A正确,D错误;若P 受到的摩擦力大于Q的重力,故P先加速后匀速,也有可能一直加速运动,故B错误,C正确.考点:牛顿第二定律.如图所示,传送带与水平方向夹37°角,AB长为L=16m的传送带以恒定速度v=10m/s运动,在传送带上端A处无初速释放质量为m=0.5kg的物块,物块与带面间的动摩擦因数μ=0.5,求:(1)当传送带顺时针转动时,物块从A到B所经历的时间为多少?(2)当传送带逆时针转动时,物块从A到B所经历的时间为多少?【答案】(1)若传送带顺时针转动,物体由A滑到B的时间为4s.(2)若传送带逆时针转动,物体从A到B需要的时间为2s.【解析】考点:牛顿第二定律;匀变速直线运动的位移与时间的关系.专题:牛顿运动定律综合专题.分析:(1)隔离法选取小物块为研究对象进行受力分析,然后由牛顿第二定律求小物块的加速度,然后由运动学公式求解.(2)物体在传送带上受到重力、支持力和摩擦力作用先做初速度为0的匀加速直线运动,当速度和传送带速度一样时进行判断物体跟随传送带匀速还是单独做匀变速直线运动,根据总位移为16m,可以求出整个运动过程的时间t.解答:解:(1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,由牛顿第二定律得:mg(sin 37°﹣μcos 37°)=ma,代入数据得:a=2m/s2,由匀变速运动的位移公式得:代入数据得:t=4 s.(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a1,由牛顿第二定律得:mgsin 37°+μmgcos 37°=ma1,代入数据得:a1=10 m/s2,设当物体运动速度等于传送带转动速度时经历的时间为t1,位移为x1,则有:当物体运动速度等于传送带速度瞬间,有mgsin 37°>μmgcos 37°,则下一时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力﹣﹣摩擦力发生突变.设当物体下滑速度大于传送带转动速度时物体的加速度为a2,由牛顿第二定律得:代入数据得:a 2=2 m/s 2,位移:x 2=l ﹣x 1=16﹣5=11m ,又因为x 2=vt 2+则有:10t 2+=11,解得:t 2=1 s (t 2=﹣11 s 舍去)所以有:t 总=t 1+t 2=2 s .答:(1)若传送带顺时针转动,物体由A 滑到B 的时间为4s .(2)若传送带逆时针转动,物体从A 到B 需要的时间为2s .点评: 解决本题的关键理清物体的运动规律,知道物体运动,明确速度和加速度的变化,结合牛顿第二定律和运动学公式进行求解.从此题看出出,皮带传送物体所受摩擦力可能发生突变,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻.倾斜的传送带以恒定的速率沿逆时针方向运行,如图甲所示,在t =0时,将质量m =2.0kg 的小物块轻放在传送带上A 点处,2s 时物块从B 点离开传送带,物块速度随时间变化的图象如图乙所示,设沿传送带向下为运动的正方向,取重力加速度g =10m/s 2。