活性污泥膨胀的5种处理方法
活性污泥膨胀的主要原因与对策

活性污泥膨胀的主要原因与对策摘要针对工业废水采用普通活性污泥法处理易出现的丝状菌型污泥膨胀, 对丝状菌型污泥膨胀分析和总结出五种主要膨胀类型。
即:基质限制,溶解氧限制,营养物质缺乏型, 腐败废水或硫化物因素和高、低p H 冲击。
对负荷、溶解氧、水质和水量变化等因素对污泥膨胀中菌胶团和丝状菌生长的相互影响进行了较为详细的阐述, 给出了统一的污泥膨胀理论, 并对不同类型的污泥膨胀给出了相应的控制方法关键词:活性污泥膨胀措施活性污泥法在处理城市污水及造纸、印染、化工等众多有机工业废水方面得到了广泛的应用,并取得了良好的效果, 但是活性污泥法在实际运行中始终伴随着一个棘手的问题—污泥膨胀。
其主要表现是:污泥结构松散, 沉淀压缩性能差;SV值增大(有时达到90 % ,SVI达到300以上);二次沉淀池难以固液分离,导致大量污泥流失, 出水浑浊; 回流污泥浓度低, 有时还伴随大量的泡沫产生, 直接影响着整个生化系统的正常运行。
活性污泥膨胀分为二种, 一种是由于活性污泥中的丝状菌过度增殖引起的丝状菌型污泥膨胀; 另外一种是由于高亲水性粘性物质大量积累附着在污泥上, 导致其比重变轻, 引起的粘性膨胀, 属于非丝状菌型污泥膨胀。
研究表明90 %以上的污泥膨胀是由丝状菌的过度增殖引起的,Segzin 等人发现,污泥沉降性能与丝状菌的长度有很好的相关性,107 m/ g 的丝状菌长度是污泥膨胀与否的重要分界线。
1 活性污泥膨胀的主要原因1。
1 认识丝状菌丝状菌是一大类菌体相连而形成丝状的微生物的统称, 荷兰学者Eikelboom 将丝状菌分为29 个类型、7 个群, 并制成了活性污泥丝状微生物检索表。
不同的丝状菌对生长环境有着不同的要求, 表1 列出了各种不同条件下优势丝状菌的类表2丝状茵与菌胶团细菌理化性质对比表【习-序号性质菌胶丝状菌1最大生鲜/ tax髙4 4J- 1低 3 0d' E2基质亲合力/ K f低64mg/l40mg/l3DO亲合力f K DO低0.0 027mg/l4内源代谢率岛高0 D12d- 1低0.OlOd' 15产率系如高 D.153g/g他0 139g/g6积累能力/宣高7耐讥娥能力及贮存能力髙非常低丝状菌的功能与其结构形态密切相关。
污泥膨胀的原因及解决方法

污泥膨胀的原因及解决方法
污泥膨胀的原因主要有两个方面,一是污泥中的有机物质在厌氧条件下分解产生气体,导致污泥体积膨胀;二是污泥中的微生物活动会释放出胶状物质,使得污泥颗粒之间的空隙减小,也会导致污泥膨胀。
解决污泥膨胀问题的方法有多种途径。
首先可以考虑加强对污泥的脱水处理,通过减少污泥中的水分含量来减轻污泥膨胀的情况。
其次可以加入一定比例的固体结构稳定剂,如氧化铁、硅酸盐等,来增加污泥的稳定性,减少膨胀现象。
另外还可以修改污泥中的化学成分,如添加生石灰等碱性物质来中和污泥中的酸性物质,从而有效地减少膨胀发生的可能性。
污水处理中导致污泥膨胀的原因及解决方案

污水处理中导致污泥膨胀的原因及解决方案污泥膨胀是活性污泥处理工艺中常见的一种异常现象,是指活性污泥沉降性能恶化,随二沉池出水流失。
发生污泥膨胀时,活性污泥SVI值(1g干污泥所占体积,mL/g)超过150时,预示着活性污泥即将或已经为膨胀状态,应当立即采取控制措施。
污泥膨胀可以分为丝状菌膨胀和非丝状菌膨胀两大类。
前者是因为污泥中丝状菌过度繁殖,后者是因为菌胶团的细菌本身生理活动异常。
两类污泥膨胀的各自成因分析正常环境下,菌胶团的生长率远大于丝状菌,不会出现丝状菌过度繁殖的情况,但出现下列情况时,会引起丝状菌膨胀:01 进水有机物太少,导致微生物食料不足;02 进水中氮、磷等营养物质不足;03 pH偏低;04 曝气池溶解氧含量太低;05 进水水质或水量波动大,对微生物造成冲击;06 进入曝气池的污水因“腐化”产生较多的H₂S(超过2mg/L)时,导致丝状硫黄菌过度繁殖;07 丝状菌大量繁殖适宜温度为25~30℃,故而夏季容易发生丝状膨胀。
而非丝状菌膨胀本质是由于菌胶团细菌本身生理活动异常,原因有以下两条:01 进水含有大量溶解性有机物,但缺乏足够的氮、磷等营养物,此时菌胶团表现为“吃坏了”,分泌大量多聚糖类代谢物(含大量亲水羟基,使活性污泥呈凝胶状,表现为黏性膨胀02 进水中含有大量有毒物质,菌落中毒,不能分泌足够的粘性物质,无法形成絮体,不能在二沉池分离或者浓缩,此时活性污泥表现为离散型膨胀。
曝气池污泥膨胀的解决办法解决办法分为三类:临时控制、工艺运行控制、永久性控制。
临时控制法该法主要用于临时原因(水量与水质波动等)造成的污泥膨胀,分为絮凝剂法和杀菌剂法。
絮凝剂法用于非丝状菌引起的膨胀,药剂投加量折合Al₂O₃为10mg/L左右。
杀菌剂法用于丝状菌引起的膨胀,常用的杀菌剂有二氧化氯、次氯酸钠、漂白粉,加氯量为污泥干固体重的0.3%~0.6%,加药时要观察生物相并测定SVI 值,当SVI值在最大允许范围内时,应停止加药。
活性污泥指标及污泥膨胀处理

活性污泥指标及污泥膨胀处理活性污泥是一种用于废水处理的生物质,含有大量的微生物和有机物。
为了检测活性污泥的处理效果和其质量状况,需要通过一系列的指标进行评估。
本文将介绍一些常见的活性污泥指标,并探讨污泥膨胀处理方法。
常见的活性污泥指标包括:1.总污泥浓度:表示单位体积活性污泥中的固体物质的含量,通常以干重或湿重表示。
2.污泥有机物含量:活性污泥中有机物含量越高,代表其水解、酸化和产气能力越强。
3.污泥颗粒大小:颗粒大小直接影响活性污泥的沉降性质。
过大的颗粒会造成沉积不完全,过小的颗粒会造成泥水分离困难。
4.污泥体积指数:也称为SVI,衡量了单位体积活性污泥的沉降性能。
SVI越低,表示污泥沉降性能越好。
5.污泥活性指数:也称为MLSS,表示单位体积活性污泥中的可分解物质含量。
MLSS越高,表示活性污泥的处理能力越强。
6.流变特性:包括流变学参数、粘度、黏度等,可以反映活性污泥的流动性质和处理能力。
对于活性污泥膨胀处理,目的是通过添加一些化学物质或改变操作条件,使活性污泥的颗粒聚集或解聚,以控制污泥的膨胀程度。
常用的活性污泥膨胀处理方法有以下几种:1.混凝剂添加:添加一些常用的混凝剂如FeCl3、PAM等,可以增加污泥颗粒的凝聚性,促进污泥的沉降和分离。
2.曝气调节:通过改变曝气条件,如提高或降低曝气量、调整曝气方式等,来调节活性污泥的颗粒大小和聚集状态。
3.温度控制:提高活性污泥系统的运行温度,可以促进微生物的生长和代谢,增加活性污泥的聚集性。
4.搅拌调节:通过适当调整搅拌强度和时间,可以改善活性污泥的颗粒结构,减少颗粒间的黏合力。
5.改变有机物负荷:适当增加或减少废水中的有机物负荷,可以调节废水处理系统中的有机物负荷,进而影响活性污泥的膨胀程度。
需要注意的是,活性污泥指标和污泥膨胀处理方法是相互关联的。
通过监测活性污泥的指标,可以找出污泥膨胀问题的原因,进而采取相应的处理方法。
同时,膨胀处理方法的选择也要考虑到活性污泥的特性和废水的水质状况。
活性污泥上浮和沉淀池中污泥膨胀成因及检测与控制(DOC)

生化系统活性污泥上浮和沉淀池中污泥膨胀成因及检测与控制引言:在采用活性污泥法处理废水的运行过程中,有多种原因可引起生化体统(曝气池)中污泥活性受到抑制,导致生化系统中污泥上浮和沉淀池中污泥膨胀,从而使有机物的去除率下降。
污泥膨胀、上浮的问题是活性污泥自产生以来一直伴随并常常发生的一个棘手的问题。
其主要特征是:污泥结构松散,质量变轻,体积膨大,沉淀压缩性能差;SV值增大,有时达到90%,SVI达到400以上;大量污泥流失,出水浑浊;二次沉淀池难以固液分离,回流污泥浓度低,有时还伴随大量的泡沫的产生,无法维持生化处理的正常工作。
污泥膨胀、上浮是生化处理系统较为严重的异常现象之一,它直接影响出水水质,并危害整个生化系统的运作。
生化池(曝气池)中污泥活性一旦受到抑制,就会导致微生物性质和类群的改变、有机底物的去除率下降。
有些微生物(如丝状菌)的过量增长会形成泡沫或浮渣,运行时机械应力、挟裹气泡等均会使活性污泥的比重降低而上浮飘走,流入二沉池会引起二沉池污泥膨胀,不仅增加了出水中的悬浮固体量,而且会大大降低生物反应系统(曝气池)中活性污泥的活性和数量。
污泥膨胀的发生率是相当高的,在欧洲近50%的城市污水厂每年都会有不同程度的污泥膨胀发生,在我国的发生率也非常高。
基本上目前各种类型的活性污泥工艺都会发生污泥膨胀。
污泥膨胀不但发生率高,发生普遍,而且一旦发生难以控制,通常都需要很长的时间来调整。
针对污泥膨胀、污泥上浮及生化系统中污泥活性受抑制,各方面的理论很多,但并不完全一致。
本文在阅读大量文献基础上,对导致活性污泥活性抑制与膨胀、上浮的原因、检测方法和控制技术进行了讨论,整理出几种较为成熟且有普遍意义的观点,并归纳如下。
1 引起活性污泥上浮的主要因素1.1 进水水质1.1.1 过量的表面活性物质和油脂类化合物这类物质可以影响细胞质膜的稳定性和通透性,使细胞的某些必要成分流失而导致微生物生长停滞和死亡。
当曝气池进水中含有大量这类物质时,会产生大量泡沫(气泡),这些气泡很容易附聚在菌胶团上,使活性污泥的比重降低而上浮。
氧化沟活性污泥法污泥膨胀问题分析与解决对策

氧化沟活性污泥法污泥膨胀问题分析与解决对策【摘要】氧化沟活性污泥处理法是污水处理中应用较为广泛的一项工艺,具有出水水质好,运行稳定可靠,管理简便等特点,但该法污泥膨胀问题一直是运行中困扰人们的难题之一。
本文介绍了氧化沟活性污泥污水处理厂污泥膨胀现象,分析了具体的原因,并提出了污泥膨胀解决对策,取得了令人满意的效果,其经验值得参考借鉴。
【关键词】污泥膨胀;进水水质;污泥负荷;临时措施氧化沟工艺是传统活性污泥工艺的一种变形,具有出水水质好、工艺安全可靠等特点,因此,在污水处理中得到广泛的应用。
但氧化沟活性污泥法在实际应用中也存在着一些问题,而污泥膨胀就是运行中经常发生的一个问题。
其危害就是污泥沉降性能差,终沉池出水悬浮物浓度升高,使活性污泥大量流失、曝气池内污泥浓度下降、处理能力受损,最终影响出水水质,使其无法达标排放。
因此,有必要对污泥膨胀问题进行研究,并采取相应的对策,以便于更好地将此工艺应用于污水处理中。
1.污泥膨胀成因分析活性污泥中的细菌主要有菌胶团及丝状细菌,它们构成了活性污泥的骨架.微型动物附着生长于其中或浮游于其间。
细菌、微型动物、其他微生物以及污水中悬浮物等到混杂在一起形成有很强的吸附、分解有机物的能力的絮状体活性污泥,当活性污泥中丝状真菌过度度繁殖时,出现了污泥膨胀。
它是污泥膨胀中最主要类型。
而另一种种情况是,在污水水温较低而污泥负荷较高时,微生物的负荷高,细菌吸取了大量营养物质,由于温度低,代谢速度慢,积蓄起大量高黏性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值升高,形成污泥膨胀。
这种情况比较少见。
由丝状菌引起的污泥膨胀的主要原因有:水质方面和运行方面。
1.1水质方面原因水质组分的改变,水质腐化、营养盐缺乏、重金属等有毒物流入等都会引起污泥膨胀。
参与活性污泥处理的微生物,在其生命活动过程中,需要不断地从其周围环境的污水中吸取其所必需的营养物质,包括碳源、氨氮、无机盐类及某些生长素等,所处理的污水中必须含有充足的这些物质。
污泥膨胀现象的原因和控制措施

污泥膨胀现象的原因和控制措施活性污泥法中的关键是活性污泥, 其沉降性能的好坏直接影响到出水水质。
一、什么是“活性污泥活性污泥法自1914年由E.Arden 和W.T.Lokett在英国曼彻斯特开创以来, 广泛被应用于生活污水和工业废水的处理。
所谓活性污泥, 就是由细菌、原生动物等微生物与悬浮物质、胶体物质混杂在一起而形成的具有很强吸附分解有机物能力的絮状体颗粒, 这种絮状结构具有良好的沉降性能, 使处理水与污泥分开, 最终达到废水净化的目的。
二、什么是“污泥膨胀”?发生污泥膨胀是活性污泥处理系统在运行过程中出现的异常情况之一,其表观现象是活性污泥絮凝体的结构与正常絮凝体相比要松散一些, 体积膨胀, 含水率上升, 不利于污泥底物对污水中营养物质的吸收降解, 微生物大量消失, 并且影响后续构筑物的沉淀效果。
三、污泥膨胀的测定指标评价污泥沉降性能常用指标有下列几种:①污泥沉降比: 取活性污泥反应器中的混合液静置30min后所形成的沉淀污泥的容积占原混合液容积的百分比。
正常的活性污泥沉静30min 后, 一般可接近其最大密度, 反映沉淀池中活性污泥的浓缩情况,即SV30。
②污泥容积指数: 曝气池出口处的混合液, 在经过了30min 静沉后, 每克干污泥所形成的沉淀污泥所占有的容积。
可表示活性污泥中菌胶团结合水率的高低。
③污泥成层沉降速度: 混合液静置一段时间后, 形成清晰的泥水分界线, 此后进入成层沉淀阶段, 分界线将以匀速下降。
④丝状菌长度: 活性污泥单位体积内丝状菌的长度, 该量用来表示丝状菌含量。
四、污泥膨胀的诱因目前, 对污泥膨胀的研究可以分为两个方面, 一方面从工艺运行的角度来研究。
比如: 调整污水的pH 值、溶解氧、泥龄等; 另一方面是对引起污泥膨胀的微生物进行研究。
这两个方面是相互影响、相互联系、相互制约的。
从目前已有的研究成果来看, 活性污泥膨胀的发生与以下几种因素有关。
1、进水水质(1) 进水中氮和磷营养物质缺乏: 当进水中氮和磷含量不足时,会使低营养型微生物如: 贝氏硫细菌、浮游分枝球衣菌等丝状菌过量繁殖, 出现丝状菌污泥膨胀。
活性污泥丝状膨胀和丝状膨胀控制对策等

3、改革工艺 (1)投加某种物质来增加污泥的比重或杀灭丝状菌
投加铁盐、铝盐等混凝剂,可以通过其凝聚作用增加 活性污泥的比重。
丝状菌的比表面积大,遇到有害化学药剂时,遭受破 坏的主要是丝状菌,常用的化学药剂是氯气,投加臭氧、 过氧化氢也能起作用。 (2)采用新工艺:将活性污泥法改用生物膜法。AB、 A/O(缺氧-好氧)法、A2/O2、(缺氧-好氧-缺氧-好氧)A2/O( 厌氧-缺氧-好氧)、SBR(序批式间歇曝气反应器)法等。
2、 处理设备负荷高,占地少
3、 对营养物的需求量少:
COD:N:P=350-500:5:1,相比而言对N、P的 需求要小的多,因此厌氧处理时可以不添加或少添加营养 盐
不4足、:运行经费经济,污泥量少。 1、处理时间长; 2、出水的有机物浓度高于好氧处理; 3、处理过程中产生臭气和有色物质 4、对温度变化和有毒物质较为敏感
1、控制溶解氧 保持曝气池内有足够的溶解氧(>2mg/L),可在曝气池
中用强化曝气、射流曝气等方法控制高负荷下的污泥膨胀。 2、控制有机负荷
有机负荷可用容积负荷表示,即单位反应器容积每日接 受的废水中有机污染物的量。污染负荷在0.2-0.3kg BOD/ kg MLSS.d(混合液污泥浓度)为宜。
8
6
3、对C、N的竞争 营养物浓度较低时,利于丝状菌生长而且还可蓄积营养
物,更进一步抑制动胶菌的生长。
4、有机物冲击负荷的影响 如果曝气池中有机物浓度突然增加,供氧量不变,由于
好氧生物的呼吸作用迅速消耗溶解氧,利于丝状细菌的生 长。
7
二、控制活性污泥丝状膨胀的对策 根本在于控制引起丝状细菌过度生长的环境因子。
环境工程微生物学 第二十二讲
第二篇 第三章 水环境污染控制与 治理的生态工程及微生物学原理(2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活性污泥膨胀的5种处理方法
当确认活性污泥系统发生丝状菌膨胀后,首先可以通过镜检和污泥沉降比观察来判断污泥膨胀的程度;随后,通过对系统的食微比、溶解氧、进水营养盐浓度,混合液pH值、水温等运行参数的分析,判断丝状菌发生膨胀的成因,最后,采取有针对性的解决措施。
1.对于因为食微比长期偏低并由营养盐不足诱发的污泥膨胀
如果膨胀程度尚未达到高度膨胀,调整食微比和补充足量的营养盐可逐步使污泥恢复正常状态。
其中食微比的调整,应以加大排泥量为主,以增加进水负荷为辅,使污泥负荷达到0.2kgBOD/kgMLSS.d以上。
在满足微生物对N、P等营养盐的需求前提下,负荷增加并达到合理的区间内,可以促进菌胶团细菌的繁殖,使其生长的速度大于丝状菌繁殖的速度,从而抑制污泥膨胀;同时,加大剩余污泥的排放,不仅能改善系统的食微比,而且可以排出大量的丝状菌,有利于在优化调整过程中,使菌胶团细菌在活性污泥的生长中占优势地位。
2.对于因为食微比长期偏低并由水温高、溶解氧偏低诱发的污泥膨胀
如果膨胀程度尚未达到高度膨胀,通过调整食微比同时加大曝气量可逐步使污泥恢复正常状态。
有时由于设备的原因或水温的原因,供氧量难以大幅增加,那么食微比的调整可以采用加大排泥,从而减低曝气池污泥浓度的方式来实现。
由
于污泥浓度的下降有利于降低氧的需求量,而食微比的提升则有利于氧的利用效率提高。
3.对于由于pH值偏低诱发的污泥膨胀
这种情况下,往往其食微比也是不足的,如果膨胀程度尚未达到高度膨胀,除了调整进水的pH值,向曝气池投加液碱外,加大排泥,提高食微比仍然是一个必要的调整手段。
4.对于污泥膨胀程度达到高度膨胀的情况
上述的手段依然是有效的,但是调整周期会大幅延长,有时会长达1个月以上才会有明显效果。
5.对于污泥膨胀的程度达到极度膨胀的情况
仅通过上述的工艺调整,不仅时间周期更长,还要长期忍受恶化的出水水质。
这种情况下,将系统中的膨胀污泥排空,接种新的活性污泥进行重新培菌是较为合理的选择。
注意事项:
•水中的氨态氮对丝状菌具有一定的抑制作用,有意提高进水中氨态氮的浓度(超过微生物对N需求的1倍以上),则有利于缩短调整周期。
•其他应对高度或极度膨胀的措施还有:例如向系统中投加惰性物质、投加杀菌剂和将pH值提高至10以上来压断丝状菌菌丝、杀灭丝状菌等比较激进的措施。
本文不推荐轻易使用,因为这些措施的实施不仅成本较高,而且把握不慎会导致系统的出水进一步恶化,最终不得不选择重新培养活性污泥,延长了处理的周期。
整体而言,造成污泥膨胀的一个共同点就是食微比偏低,在系统运行中要注意控制食微比;同时,污泥膨胀的现象与污泥老化的现象也有一些相似之处。
在运行管理中,要特别注意两者的区别,以便采取正确的方法解决系统运行中的异常问题。