苏科版七年级上册第二章《有理数》(难题)单元测试(2)(解析版)

合集下载

苏教版七年级数学上册第二章有理数单元测试及答案

苏教版七年级数学上册第二章有理数单元测试及答案

七年级数教第二章有理数单元尝试之阳早格格创做姓名得分1、52-的千万于值是,52-的好异数是,52-的倒数是.2、某火库的火位下落1米,记做 -1米,那么 +1.2米表示.3、数轴上表示有理数-3.5与4.5二面的距离是.4、已知|a -3|+24)(+b =0,则2003)(b a +=. 5、已知p 是数轴上的一面4-,把p 面背左移动3个单位后再背左移1个单位少度,那么p 面表示的数是______________. 6、最大的背整数与最小的正整数的战是_________ . 7、()1-2003+()20041-= .8、若x 、y 是二个背数,且x <y ,那么|x||y| 9、若|a|+a =0,则a 的与值范畴是 10、若|a|+|b|=0,则a =,b =二、粗心选一选:(每小题3分,同24分.请将您的采用问案挖正在下表中.)1、如果一个数的仄圆与那个数的好等于0,那么那个数只可是( )A 0B -1C 1D 0或者12、千万于值大于或者等于1,而小于4的所有的正整数的战是( )A 8B 7C 6D 53、估计:(-2)100+(-2)101的是( )A 2100B -1C -2D -2100 4、二个背数的战一定是( )A 背B 非正数C 非背数D 正数5、已知数轴上表示-2战-101的二个面分别为A ,B ,那么A ,B 二面间的距离等于( )A 99B 100C 102D 103 6、31-的好异数是( )A -3B 3C 31 D31-7、若x >0,y <0,且|x|<|y|,则x +y 一定是( )A 背数B 正数C 0D 无法决定标记8、一个数的千万于值是3,则那个数不妨是( )A 3B 3-C 3或者3-D 31 9、()34--等于( )A 12-B 12C 64-D 64 10、,162=a 则a 是( )A 4或者4-B 4-C 4D 8或者8- 三、估计题(每小题4分,同32分)1、()26++()14-+()16-+()8+2、()3.5-+()2.3-()5.2--()8.4+-3、()8-)02.0()25(-⨯-⨯4、 ⎪⎭⎫⎝⎛-+-127659521()36-⨯5、 ()1-⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷3114310 6、8+()23-()2-⨯7、81)4(2033--÷- 8、100()()222---÷⎪⎭⎫ ⎝⎛-÷32四、(5分)m =2,n =3,供m+n 的值五、(5分)已知a 、b 互为好异数,c 、d 互为背倒数(即1cd =-),x 是最小的正整数.试供220082008()()()x a b cd x a b cd -+++++-的值六、(6分)出租车司机小李某天下午经营尽是正在物品走背的群众大讲上举止的,如果确定背东为正,背西为背,那天下午他的止车里程(单位:千米)如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6(1)将终尾一名搭客收到手段天时,小李距下午出车时的出收面多近?(2)若汽车耗油量为3降/千米,那天下午小李同耗油几降? 七、(7分)毕节倒银河火库的警戒火位是4.73米,下表记录的是今年某一周内的火位变更情况,与河流的警戒火位动做0面,而且上周终(星期六)的火位达到警戒火位,正号表示火位比前一天降下,背号表示火位比前一天下落.(本题10分)⑴本周哪一银河流的火位最下?哪一银河流的火位最矮?它们位于警戒火位之上仍旧之下?⑵ 与上周终相比,本周终河流的火位是降下了仍旧下落了?⑵以警戒火位动做整面,用合线统计图表示本周的火位情况.火位变更(米)日 一 二 三 四 五 六 八、(6分)瞅察下列各式:33332211123410016254544+++==⨯⨯=⨯⨯………1、估计 :33333123410++++⋅⋅⋅+的值2、试预测333331234n ++++⋅⋅⋅+的值《有理数及其运算》单元尝试卷卷参照问案一、耐性挖一挖:1、25、25、52- 2、该火库的火位降下1.2米 3、8 4、–1 5、–6 6、0 7、0 8、> 9、a ≤ 0 10、a = 0 b = 0二、挖空题三、估计题 1、解:本式 =(26)(8)(14)(16)++++-+- 2、解:本式 =5.3 3.2 2.5 4.8--+-=34(30)+- =5.3 2.5 3.2 4.8-+--= 4 =2.88--= 10.8- 3、解:本式 =200(0.02)⨯- 4、 解:本式=1557(36)(36)(36)(36)29612⨯--⨯-+⨯--⨯-= 4- = 18203021-+-+ = 4841-+ = 7- 5、解:本式 = 43(1)()()434-⨯-⨯- 6、解:本式 = 89(2)+⨯- =43()434⨯- = 818- = 343- = 10-7、解:本式 = 1108()648-⨯-- 8、解:本式 =10043÷-= 1188- = 253-= 0 = 22 四、解:∵2m =∴2m=±∵3n=∴3n=±当2,3==时m nm n+=+= 523当2,3==-时m nm n+=+-= 1-2(3)当2,3=-=时m n+=-+= 1(2)3m n当2,3m n=-=-时+=-+-= 5-(2)(3)m n五、解:∵a、b互为好异数∴0+=a b∵c、d互为背倒数∴1cd=-∵x是最小的正整数∴1x=∴220082008-+++++-x a b cd x a b cd()()()=220082008-+-⨯++--1[0(1)]10[(1)]= 2六、解:(1)将终尾一名搭客收到手段天时,小李距下午出车时的出收面的位子:15+(-2)+5+(-1)+10+(-3)+(-2)+12+4+(-5)+6 =(15+5+10+12+4+6)+[(-2)+(-1)+(-3)+(-2)+(-5)] = 52+(-13)= 39将要终尾一名搭客收到手段天时,小李距下午出车时的出收面的东里39千米处(2)那天下午小李同走了:= 15+2+5+1+10+3+2+12+4+5+6= 65若汽车耗油量为3降/千米,那天下午小李同耗油65×3 = 195问:若汽车耗油量为3降/千米,那天下午小李同耗油195星期二的本质火位是:74.41 +(-星期五的本质火位是:74.37 +(-星期六的本质火位是:74.01 +(-由上述估计可知:本周星期一河流的火位最下;星期日河流的火位最矮;它们皆位于警戒火位之上.(2)由(1)的估计可知本周终(星期六)河流的火位是74.00,而上周终(星期六)河流的火位是73.40.所以本周终(星期六)河流的火位是降下了.(3) 本周的火位相对付于警戒火位的火位睹下表以警戒火位动做整面,用合线统计图表示本周的火位情况为: 八、解:1、33333123410++++⋅⋅⋅+=22110(101)4⨯⨯+=11001214⨯⨯=3025 2、333331234n ++++⋅⋅⋅+=221(1)4n n +。

苏科版七年级上册第二章《有理数》(难题)单元测试(2)(解析版)

苏科版七年级上册第二章《有理数》(难题)单元测试(2)(解析版)

苏科版七上第二章《有理数》(难题)单元测试(2)班级:___________姓名:___________得分:___________一、选择题1. 已知a 是实数,下列说法:①a 2和|a |都是正数;②如果|a |=−a ,那么a 一定是负数;③a 的倒数是1a ;④绝对值最小的实数不存在;其中正确的有 A. 0个B. 1个C. 2个D. 3个 2. 计算(−1)0−(12)2018×(−2)2019的结果是( ).A. 3B. −2C. 2D. −13. 若用A 、B 、C 分别表示有理数a 、b 、c ,O 为原点如图所示.化简|a −c |+|b −a |−|c −a |的结果为( )A. a +2b −cB. b −3a +2cC. a +b −2cD. b −a4. 取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:,如果自然数m 恰好经过7步运算可得到1,则所有符合条件的m 的值有( )A. 3个B. 4个C. 5个D. 6个5. 如图,数轴上两定点A 、B 对应的数分别为−18和14,现在有甲、乙两只电子蚂蚁分别从A 、B 同时出发,沿着数轴爬行,速度分别为每秒1.5个单位和1.7个单位,它们第一次相向爬行1秒,第二次反向爬行2秒,第三次相向爬行3秒,第四次反向爬行4秒,第五次相向爬行5秒,……,按如此规律,则它们第一次相遇所需的时间为( )A. 55秒B. 190秒C. 200秒D. 210秒6.某商店出售三种品牌的面粉,袋上分别标有质量为(2.5±0.1)kg,(2.5±0.2)kg,(2.5±0.3)kg的字样,任意取出两袋,它们的质量最多相差()A. 0.8kgB. 0.4kgC. 0.5kgD. 0.6kg7.对于代数式(x−1)2+2,下列说法正确的是A. 当x=1时,最大值是2B. 当x=1时,最小值是2C. 当x=−1时,最大值是2D. 当x=−1时,最小值是28.小调皮写作业时,将两滴墨水滴在一条数轴上.如图所示,根据图中标出的数值可判定墨迹盖住的整数共()个.A. 78B. 79C. 80D. 819.如图圆的周长为4个单位长度.在该圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示−1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示2016的点与圆周上表示数字哪个点重合?()A. 0B. 1C. 2D. 3二、填空题10.1−2+3−4+5−⋯−2016+2017−2018+2019=________.11.已知|x+2|+(y−5)2=0,则x+y的值为______ .12.如果5个有理数相乘的积是正数,那么负因数的个数可以为______ 个.13.定义新运算:对于任意有理数a,b,都有a⊕b=a(a−b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2−5)+1=2×(−3)+1=−6+ 1=−5,则(−3)⊕4的值为______ .14. 在227,−(−1),3.14,−|8−22|,−3,−32,−(−13)3,0中,有理数有m 个,自然数有n 个,分数有k 个,负数有t 个,则m −n −k +t =_____ 15. 数轴上到2.5的距离为3.5的点所表示的数是______ .16. 如图,按下列程序进行计算,经过两次输入,最后输出的数是12,则最初输入的数是_____.三、解答题17. 请阅读下面的材料:计算:(−130)÷(23−110+16−25)解法一:原式=(−130)÷23−(−130)÷110+(−130)÷16−130÷(−25) =−120+13−15+112=16 解法二:原式=(−130)÷[(23+16)−(110+25)]=(−130)÷(56−12)=−130×3=−110解法三:原式的倒数为(23−110+16−25)÷(−130)=(23−110+16−25)×(−30)=−20+3−5+12=−10,故原式=−110(1)上述得出的结果不同,肯定有错误的解法,你认为解法___________是错误的.(2)请你用你认为简捷的解法计算:(−142)÷(16−314+23−27).18.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最大的负整数,且a、b满足|a+3|+(c−6)2=0.(1)a=________,b=____________,c=___________;(2)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=_____________,AC=_____________,BC=______________.(用含t的代数式表示)(3)请问:2BC+AB−32AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.19.观察下列等式11×2=1−12,12×3=12−13,13×4=13−14,将以上三个等式两边分别相加得:11×2+12×3+13×4=1−12+12−13+13−14=1−14=34.(1)猜想并写出:1n(n+1)=______(2)直接写出下列各式的计算结果:11×2+12×3+13×4+⋯+1n×(n+1)=______(3)探究并计算:12×4+14×6+16×8+⋯+12014×2016.20.已知,A,B在数轴上对应的数分别用a,b表示,且(12ab+100)2+|a−20|=0,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离.(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四次向右移动7个单位长度,….点P能移动到与A或B重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动与哪一点重合?21.观察下列各式21−20=2022−21=2123−22=2224−23=23….①探索式子的规律,试写出第n个等式______ ;②计算2m−2m−1,并运用该结果,计算22000−21999−21998−⋯−2;③计算:20+21+22+23+24+⋯+22015.22.请你观察:1 1×2=11−12,12×3=12−13;13×4=13−14;…1 1×2+12×3=11−12+12−13=1−13=23;1 1×2+12×3+13×4=11−12+12−13+13−14=1−14=34;…以上方法称为“裂项相消求和法”请类比完成:(1)11×2+12×3+13×4+14×5=__;(2)21×2+22×3+23×4+⋯2n×(n+1)=_______.(3)类比计算:112−256+3112−41920+5130−64142+7156−87172的值答案和解析1.A解:①a是实数,当a=0时,a2和|a|都是0,故①说法错误.②a是实数,当a=0时,|a|=a=0,a不是负数,故②说法错误.③a是实数,当a=0时,1没有意义,故③说法错误.a④a是实数,|a|≥0,所以绝对值最小的实数是0,故④说法错误.2.A解:原式=1−2−2018×(−2)2019=3.3.D解:根据数轴可知:a<c<0<b.∴c<0,a−c<0,b−a>0,c−a>0∴原式=c−a+b−a−c+a=b−a4.B解:根据分析,可得则所有符合条件的m的值为:128、21、20、3.5.B6.D解:∵质量最重的面粉为2.5+0.3=2.8kg,质量最轻的面粉为:2.5−0.3=2.2kg,∴它们的质量最多相差:2.8−2.2=0.6kg.7.B解:∵(x−1)2≥0,∴(x−1)2+2≥2,∴当x=1时,最小值是2,8.C解:根据数轴的特点,−27.3到24.2之间的整数有−27、−26、−25、…、21、22、23、24共52个,50.4到78.9之间的整数有51、52、53、…、76、77、78共28个,所以被墨迹盖住的整数有52+28=80个.9.B解:∵−1−2016=−2017,2017÷4=504…1,∴数轴上表示数2016的点与圆周上表示数字1重合.10.1010解:1−2+3−4+5−6+⋯+2015−2016+2017−2018+2019 =(1−2)+(3−4)+(5−6)+⋯+(2017−2018)+2019=−1009+2019=1010.11.3解:由题意得,x+2=0,y−5=0,解得,x=−2,y=5,则x+y=3,12.0或2或4解:∵5个有理数相乘的积是正数,∴负因数的个数为偶数:0个或2个或4个,13.22解:根据题中的新定义得:(−3)⊕4=−3×(−3−4)+1=−3×(−7)+1=21+1=22.14. 6解:227,−(−1),3.14,−|8−22|,−3,−32,−(−13)3,0是有理数,则m =8; −(−1),0是自然数,则n =2;227,3.14,−(−13)3是分数,则k =3; −|8−22|,−3,−32是负数,则t =3, 则m −n −k +t =8−2−3+3=6,15. −1或6解:在2.5的左边时,2.5−3.5=−1, 在2.5的右边时,2.5+3.5=6,所以,所表示的数是−1或6.16. −98解:由程序图可知:4(4x +6)+6=12, 移项、合并同类项得,16x =−18,化系数为1得,x =−98,17. 解:(1)一(2)(−142)÷(16−314+23−27)=(−142)÷[(16+23)−(314+27)] =(−142)÷(56−12)=−114.解:(1)有解题过程可得解法一错误;故答案为:一;18.解:(1)−3;−1;6;(2)3t+2;6t+9;3t+7;(3)∵AB=3t+2,AC=6t+9,BC=3t+7,∴2BC+AB−32AC=2(3t+7)+3t+2−32(6t+9)=6t+14+3t+2−9t−13.5=2.5,∴2BC+AB−32AC的值不随着时间t的变化而改变,其值为2.5.解:(1)∵|a+3|+(c−6) 2=0,∴a+3=0,c−6=0,∴a=−3,c=6,∵b是最大的负整数,∴b=−1,故答案为−3;−1;6;(2)∵点A以每秒2个单位长度的速度向左运动,∴运动后对应的点为−3−2t,点B以每秒1个单位长度速度向右运动,∴运动后对应的点为−1+t,点C以每秒4个单位长度速度向右运动,∴运动后对应的点为6+4t,∴AB=−1+t−(−3−2t)=3t+2,AC=6+4t−(−3−2t)=6t+9,BC=6+4t−(−1+t)=3t+7,故答案为3t+2;6t+9;3t+7;19.(1)1n −1n+1(2)nn+1(3)解:原式=12(12−14)+12(14−16)+12(16−18)+⋯+12(12014−12016)=12(12−14+14−16+16−18+⋯+12014−12016)=12(12−12016)=10074032.解:(1)∵11×2=1−12,12×3=12−13,13×4=13−14,∴1n(n+1)=1n−1n+1.故答案为:1n −1n+1;(2)原式=1−12+12−13+13−14+⋯+1n−1n+1=1−1n+1=nn+1.故答案为:nn+1;(3)解:原式=12(12−14)+12(14−16)+12(16−18)+⋯+12(12014−12016)=12(12−14+14−16+1 6−18+⋯+12014−12016)=12(12−12016)=10074032.20.解:(1)∵(12ab+100)2+|a−20|=0,∴12ab+100=0,a−20=0,∴a=20,b=−10,∴AB=20−(−10)=30,数轴上标出A、B得:(2)∵|BC|=6且C在线段OB上,∴x C−(−10)=6,∴x C=−4,∵PB=2PC,当P在点B左侧时PB<PC,此种情况不成立,当P在线段BC上时,x P−x B=2(x c−x p),∴x p+10=2(−4−x p),解得:x p=−6;当P在点C右侧时,x p−x B=2(x p−x c),x p+10=2x p+8,x p=2.综上所述P点对应的数为−6或2.(3)第一次点P表示−1,第二次点P表示2,依次−3,4,−5,6…则第n次为(−1)n⋅n,点A表示20,则第20次P与A重合;点B表示−10,点P与点B不重合.21.①2n−2n−1=2n−1;解:②∵2m−2m−1=2m−1,∴22000−21999−21998−⋯−2=21999−21998−⋯−2=21998−⋯−2=2;③20+21+22+23+24+⋯+22015=(21−20)+(22−21)+⋯+(22016−22015)=22016−1.解:①∵21−20=20,②22−21=21,③23−22=22…∴第n(n为正整数)个等式可表示为:2n−2n−1=2n−1(n为正整数).故答案为2n−2n−1=2;n−122.(1)45;(2)2nn+1;解:(3)112−256+3112−41920+5130−64142+7156−87172=1+12−(3−16)+3+112−(5−120)+5+130−(7−142)+7+156−(9−172)=1+12−3+16+3+112−5+120+5+130−7+142+7+156−9+172=(1−3+3−5+5−7+7−9)+(12+16+112+120+130+142+156+172)=(−8)+(1−12+12−13+13−14+14−15+15−16+16−17+17−18+18−19)=(−8)+(1−19)=−719.解:(1)11×2+12×3+13×4+14×5=1−12+12−13+13−14+14−15=1−15=45故答案为45;(2)21×2+22×3+23×4+⋯2n×(n+1)=2(1−12+12−13+13−14+⋯+1n−1n+1)=2(1−1n+1)=2×nn+1=2nn+1故答案为2nn+1;。

苏科版七年级上《第二章有理数》单元测试含答案.docx

苏科版七年级上《第二章有理数》单元测试含答案.docx

第二章有理数单元测试一. 单选题(共10题;共30分)1•下列各组数中:①・扌和(-5) 2;②(-3)彳和.宁;③.(-0.3) 5和0.35;④和0"°; ⑤(-1)彳和一 (-1) 2 .相等的共有( )4组 D 、5组2•计算-4x2的结果是(3.2015的倒数是() 6.下列说法屮,正确的是( )7. - 5的相反数是()A.5B.15C. - 15 8•已知 a>b 且 a+b=0,贝ij ()9•下列各数中,比・2小的数是(A. - 3B. - 1C.OD.210.如果向北走3m,记作+3m,那么・10m 表示()A 、向东走10mB 、向南走10mC 、向西走10mD 、向北走10m二、填空题(共8题;共39分)|a|=1, |b|=2, |c|=3,月.a>b>c,那么 a+b - c= _____________12. 在数・5, 1,・3, 5,・2中任选两个数相乘,其中最大的积是A.aVOB.b>0C.b<0D.a>0 A 、-6 B 、-2C 、D 、-8 A. -20152015 c 2015 D. 20154.计•算(1 - -孑-^)• ・§) • B 、5•计算( -25)三手的结果等于( B 、-5 C 、-15D 、A •所冇的冇理数都能用数轴上的点表示B •冇理数分为正数和负数C •符号不同的两个数互为相反数 D.两数相加和一定大于任何一个加数13. 若 a<0, b<0, |a|<|b|,则 a ・b ____________ 0.14. ・2倒数是 ______ ,・2绝对值是 _________15. 计算:1 ■ ( ■ 3) = _______16. 如果水库的水位高于正常水位Im 时,记作+lm,那么低于正常水位2m 时,应记作 ____________ . 17. 若 |a - 1|=4,则 a= ________ .18. 计算:-(+ j , - ( - 5.6) = ___________ ,・ | ・ 2|= ______ , 0+ (・ 7) = _________ ・ (・ 1)- I -3|= __________ •三、解答题(共6题;共31分)29.把下列各数分别填入相应的大括号里:・ 227 , 0,・(+0.18) , 34 }:};};}.20. 若|a|=5, |b|=3,① 求a+b 的值;② 若a+b<0,求a-b 的值.21. 若|a| =4, |b|=2,且 aVb,求 a - b 的值.-5.13, 5,・ | ・ 2|, +41, 正数集合{ 负数集合{ 整数集合{ 分数集合{22.小明在初三复习归纳吋发现初中阶段学习了三个非负数,分别是:①X;②a;③|a| (a是任意实数).于是他结合所学习的三个非负数的知识,自己编了一道题:已知(x+2) 2+|x+y・1|二0,求/的值•请你利用三个非负数的知识解答这个问题23•为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15, -4, +13, - 10, - 12, +3,- 13, - 17.(1)出车地记为0,最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.1升/千米,这天上午汽车共耗油多少升?24.如图是一个三阶幻方,由9个数构成并且横行,竖行和对角线上的和都相等,试填出空格屮的数.-3795答案解析一、单选题I、【答案】C【考点】有理数的乘方【解析】f分莎丿首先计算出各组数的值,然后作出判断.【解答】@-52=-25, (-5)2=25;②(-3)3=-27 ^-33=-27;③.(-0.3)乙0.00729 , 0.35=0.00729;④O ioo=o2oo=o;⑤(-1)3=-1,・(-1)2=-1.故②③④⑤组相等.故选C.(点讦口本题主要考查有理数乘方的运算.正数的任何次幕都是正数;负数的奇次帚是负数,负数的偶次幕是正数.2、【答案】D【考点】有理数的乘法【解析】【解答】解:原式二・(4x2)=-8,故选:D.【分析】根据两数相乘同号得正异号得负,再把绝对值相乘,可得答案.3、【答案】C【考点】倒数【解析】【解答】解:2015的倒数是诰故选:C.【分析】根据倒数的定义可得2015的倒数是祐 .4、【答案】C【解析】【解答】解:设44+4=a,原式二(.1 - a) (a+£ ) - (1 _ a - ) a=a+-^ - a2 - a _ a+a2+-^ a=-^ ,■ ■■故选c【分析】设4+j+^=a,原式变形后计算即可得到结果.5、【答案】C【考点】有理数的除法【解析】【解答】解:V (- 25) 号 (-25) x|=- 15, ・•・(・25)十扌的结果等于・15.故选:C.【分析】根据有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,求出算式(-25) 的结果等于多少即可.6、【答案】A【考点】有理数的加法【解析】【解答】解:所有的有理数都能用数轴上的点表示,A正确;有理数分为正数、0和负数,B错误;・3和+2不是相反数,C错误;正数与负数相加,和小于正数,D错误;故选A.【分析】利用排除法求解.7、【答案】A【考点】相反数【解析】【解答】解:-5的相反数是5.故选A.【分析】根据相反数的定义直接求得结果.8、【答案】D【考点】有理数的加法【解析】【解答】解:Va>b a+b=O, Aa>0, b<0,故选:D.【分析】根据互为相反数两数之和为0,得到a与b互为相反数,即可做出判断.9、【答案】A【考点】有理数大小比较【解析】【解答】解:根据两个负数,绝对值大的反而小可知- 3<-2. 故选:A.【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比・2小的数是・3・10、【答案】B【考点】正数和负数【解析】【解答】解:如果向北走3m,记作+3m,南、北是两种相反意义的方向,那么-10m表示向南走10m;故选B.【分析】正数和负数是两种相反意义的量,如果向北走3m,记作+3m,即可得出-10m的意义.二、填空题11>【答案】2或0【考点】有理数的混合运算【解析】【解答】解:V|a|=l, |b|=2, |c|=3,・:a=±l, b=±2, c=±3,Va>b>c,a= - 1, b= - 2, c= - 3 xiK a=l, b= - 2, c= - 3,则a+b - c=2 或0.故答案为:2或0【分析】先利用绝对值的代数意义求出a, b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.12、【答案】15【考点】有理数的乘法【解析】【解答】解:根据题意得:(・5) x (・3) "5,故答案为:15【分析】根据题意确定出积最大的即可.13、【答案】>【解析】【解答】解:Va<0, b<0, |a|<|b|A a ・ b>0.【分析】根据有理数的减法运算法则进行计算,结合绝对值的性质确定运算符号,再比较大小.14、【答案】2【考点】绝对值,倒数【解析】【解答】解:- 2的倒数为-*, - 2的绝对值为2. 故答案为■ * ; 2.【分析】分别根据倒数的定义以及绝刈值的意义即可得到答案.15、【答案】4【考点】有理数的减法【解析】【解答】解:(・3)=1+3=4.故答案为:4.【分析】根据有理数的减法法则,求出(・3)的值是多少即可.16、【答案】-2m【考点】正数和负数【解析】【解答】解:高于正常水位记作正,那么低于正常水位记作负.低于正常水位2米记作:-2m. 故答案为:-2m【分析】弄清楚规定,根据规定记数低于正常水位2m.17、【答案】5或・3【考点】绝对值【解析】【解答】解:・・・|a-l|=4, .\a - 1=4或解得:a=5或3.故答案为:5或・3.【分析】依据绝对值的定义得到a・1=±4,故此可求得a的值.18、【答案】-5.6; -2; - 7; -4【考点】相反数,绝对值,有理数的加减混合运算【解析】【解答】解:原式=・扌;原式=5.6:原式=-2;原式二・7;原式=-1 - 3= - 4, 故答案为:・亍;5.6; - 2; - 7; - 4【分析】原式利用减法法则,绝对值的代数意义计算即可得到结果.三、解答题19、【答案】【解答】解:正数集合{5, +41, 34}; 负数集合{-5.13, -|-2|,・ 227,・(+0.18) }; 整数集合{5, -|-2|, +41, 0};分数集合{- 5.13, - 227, - (+0.18) , 34}【考点】有理数【解析】【分析】按照有理数的分类填写:'正整数整数0负整数 V ■20、 【答案】解:(1) V|a|=5, |b|=3,a=±5, b=±3,.\a+b=8或2或・2或-8;(2) Va=±5, b 二±3,且 a+b<0,a= - 5, b=±3,A a - b= - 8 nJc - 2.【考点】有理数的加法【解析】【分析】(1)由于|a|=5, |b|=3,那么a=±5, b=±3,再分4种情况分别计算即可;(2)由于a=±5, b=±3,且a+b<0,易求a= - 5, b=±3,进而分2种情况计算即可.21、 【答案】解:V|a|=4, |b|=2,a=±4, b=±2,Va<b,•Ia= - 4, b=±2,a - b= - 4 - 2= - 6,或 a-b=-4- ( - 2 ) = - 4+2= - 2,所以,a - b 的值为-2或-6.【解析】【分析】根据绝对值的性质求出a 、b,再判断出a 、b 的对应情况,然后根据有理数的减法运算 法则有理数' 分数{ 正分数负分数进行计算即可得解.22、【答案】解:I (x+2) »x+y - 1冋,/• x+2=0x+y-l=0,解得x=-2y=3,x y= ( - 2)3= - 8,即x,的值是■&【考点】有理数的乘方【解析】【分析】根据题意,可得(x+2)2+|x+y-l|=O,然后根据偶次方的非负性,以及绝对值的非负性, 可得x+2=0, x+y・20,据此求出x、y的值各是多少,再把它们代入/ ,求出的值是多少即可.23、【答案】解:(1) 0+15 - 4+13 - 10 ・ 12+3 - 13 - 17= - 25.答:最后一名老师送到目的地时,小王在出车地点的西面25千米处.(2) |+151 + | - 4| + |+131 + | - 10| + | - 121 + |+31 + | - 13| + | - 171 =87 (千米),87x0.1=8.7 (升).答:这天上午汽车共耗油8.7升【考点】正数和负数【解析】【分析】(1)由已知,岀车地位0,向东为正,向西为负,则把表示的行程距离相加所得的值, 如果是正数,那么是距出车地东面多远,如果是负数,那么是距出车地东面多远.(2)不论是向西(负数)还是向东(正数)都是出租车的行程.因此把它们行程的绝对值相加就是出租车的全部行程.既而求得耗油量.24、【答案】解:J・3+7+5=・3+12=9,・・・三个数的和为9,第三行中间的数是9 -(9+5) =-5,最中间的数是9 -(- 3+9) =3,第二列最上边的数是9- ( - 5+3) =9+2=11,第一行的第一个数是9・(・3+21) =9・8二1,第一列的第二个数是9・(1+9)=・3111■379-5【考点】冇理数的加法【解析】【分析】先根据最后一列求出三个数的和,然后求出第三行中间的数,根据对角线的数求出最中间的数再求出第二列最上边的数,再根据第一行的三个数的和求出左上角的数,然后求出第一列的第二个数,从而得解.。

苏科版七年级上《第二章有理数》单元检测试题含答案

苏科版七年级上《第二章有理数》单元检测试题含答案

②若每千米耗油 0.0 升,则今天共耗油多少升?
䁮 .如图是一个“有理数转换器”(箭头是指有理数进入转换器后的路径,方框是 对进入的数进行转换的转换器)
1 当小明输入 3;9;0. 这三个数时,这三次输入的结果分别是多少? 䁮 你认为当输入什么数时,其输出的结果是 0? 3 你认为这的“有理数转换器”不可能输出什么数?
3.中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以
我们为中国节水,为世界节水.若每人每天浪费水 0.3䁮r,那么 100 万人每天
浪费的水,用科学记数法表示为( )
A.3.䁮 10 r C.3.䁮 10 r
B.3.䁮 10 r D.3.䁮 10 r
.下列关于零的说法中,正确的个数是( )①零是正数;②零是负数;③零
所以输出的数应为非负数.
∴ 晦 0, 1,


时,原式
01 0
31
1
䁮 10;

时,原式
01 0
31
1
䁮 0;
所以


3
的值为 10 或 0.
䁮3.解: 1 根据题意:规定向东为正,向西为负:则 1
13
10
1䁮
3
13
1
䁮 千米,
故小王在出车地点的西方,距离是 䁮 千米; 䁮 这天下午汽车走的路程为
1
13
10
1䁮
3
13
汽车耗油量为 0. 升/千米,则 t 0. 3 .t 升,
① 晦 0;② 晦 0;③ 晦 ;④ 晦 t 0.
1 .若 䁮 䁮 䁮‫ ݕ‬1 0,则 ‫________ ݕ‬.
1t.有一颗高出地面 10 米的树,一只蜗牛想从树底下爬上去晒晒太阳,他爬行 的路径是每向上爬行 米又向下滑行 1 米,它想爬到树顶至少爬行________米.

2021年苏科版七年级数学上册 第2章 有理数 单元检测卷含答案

2021年苏科版七年级数学上册 第2章 有理数 单元检测卷含答案

第2章有理数一.填空题(共8小题,满分32分,每小题4分)1.(4分)如果把一个物体向前移动5m记作+5m,那么这个物体向后移动4m记作m.2.(4分)﹣3的相反数是,的倒数是.3.(4分)计算:0﹣(﹣6)=.4.(4分)数轴上,点B在点A的右边,已知点A表示的数是﹣2,且AB=5.那么点B表示的数是.5.(4分)在﹣8,2020,3,0,﹣5,+13,,﹣6.9中,正整数有m个,负数有n个,则m+n的值为.6.(4分)若|a﹣4|+|b﹣6|=0,则2a﹣b=.7.(4分)对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则3☆(﹣2)=.8.(4分)计算:(﹣1)1+(﹣1)2+(﹣1)3+…+(﹣1)2030=.二.选择题(共10小题,满分30分,每小题3分)9.(3分)2的绝对值是()A.﹣2B.C.2D.±210.(3分)下列五个数:,3.3030030003…,﹣π,﹣0.5,3.14,其中是无理数有()A.1个B.2个C.3个D.4个11.(3分)2019年12月以来,新冠病毒席卷全球.截止2020年3月24日10:56,我国累计确诊81749例,海外累计确诊297601例.用科学记数法表示全球确诊约为()例.A.8.2×104B.29.8×104C.2.98×105D.3.8×105 12.(3分)一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.13.(3分)下列说法正确的是()A.0既不是整数也不是分数B.整数和分数统称为有理数C.一个数的绝对值一定是正数D.绝对值等于本身的数是0和114.(3分)如图所示为某市2020年1月7日的天气预报图,则这天的温差是()A.﹣12°C B.8°C C.﹣8°C D.12°C15.(3分)下列每两个数中,数值相等的是()A.32与23B.﹣3×2与﹣3÷2C.﹣32与(﹣3)2D.﹣23与(﹣2)3 16.(3分)数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣10 17.(3分)若|m﹣4|+(n+2)2=0,则mn的值是()A.16B.﹣16C.8D.﹣818.(3分)对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1|D.﹣|a|﹣1三.解答题(共8小题,满分58分)19.(9分)计算:(1)(﹣1)+(﹣2)+(﹣3)+(﹣4);(2)25×﹣(﹣25)×+25×(﹣);(3)﹣22+[18﹣(﹣3)×2]÷4.20.(6分)先将下列各式写成省略加号的和的形式,再按括号内要求交换加数的位置.(1)(+16)+(﹣28)﹣(﹣6)﹣(﹣13)﹣(+7)=(写成省略加号的和)=(使符号相同的加数在一起)=(运算结果);(2)(﹣3.1)﹣(﹣4.5)+(4.4)﹣(+1.3)+(﹣2.5)=(写成省略加号的和)=(使和为整数的加数在一起)=(运算结果).21.(5分)在下面带有箭头的直线上先确定好原点以及单位长度,然后在所得的数轴上把下列各数表示出来:﹣2,3.5,﹣1,2.75,2,﹣3.22.(8分)把下列各数填在相应的大括号内:﹣35,0.1,﹣,0,﹣3,1,4.01001000…,22,﹣0.3,,π.正数:{,…};整数:{,…};负分数:{,…};非负整数:{,…}.23.(7分)我们规定“△”是一种数学运算符号,两数a、b通过“△”运算是a﹣b+ab,即a△b=a﹣b+ab,例如:3△5=3﹣5+3×5(1)求:2△(﹣3)的值;(2)求:(﹣5)△[1△(﹣2)]的值.24.(7分)已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.25.(8分)小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+6,4,+9,﹣7,﹣6,+10,﹣8.(1)小虫最后是否回到出发点O?(2)小虫离开出发点O最远是多少cm?(3)在爬行过程中,如果每爬行1cm奖励一粒米,则小虫一共得到多少粒米?26.(8分)如图,在数轴上有A、B、C三点,请回答:(1)将C点向左移动6个单位后,这时的点所表示的数是;(2)怎样移动A、B、C三点中的任意一点,才能使这三点所表示的数之和为零请写出一种移动方法;(3)怎样移动A、B、C三点中的两个点,才能使这三点表示相同的数请写出一种移动方法.参考答案与试题解析一.填空题(共8小题,满分32分,每小题4分)1.(4分)如果把一个物体向前移动5m记作+5m,那么这个物体向后移动4m记作﹣4m.【分析】根据正数与负数的意义可求解.【解答】解:一个物体向前移动5m记作+5m,那么这个物体向后移动4m记作﹣4m,故答案为﹣4.2.(4分)﹣3的相反数是3,的倒数是3.【分析】直接利用倒数和相反数的定义得出答案.【解答】解:﹣3的相反数是:3,的倒数是:3.故答案为:3,3.3.(4分)计算:0﹣(﹣6)=6.【分析】利用有理数的减法法则,直接求解即可.【解答】解:原式=0+6=6.故答案为:6.4.(4分)数轴上,点B在点A的右边,已知点A表示的数是﹣2,且AB=5.那么点B表示的数是3.【分析】根据数轴表示数的意义,在点A的右边,到点A距离为5的点所表示的数为3.【解答】解:﹣2+5=3,故答案为:3.5.(4分)在﹣8,2020,3,0,﹣5,+13,,﹣6.9中,正整数有m个,负数有n个,则m+n的值为5.【分析】根据正整数,负分数的定义得出它们的个数,再代入计算即可.【解答】解:正整数有2020,+13,共2个;负数有﹣8,﹣5,﹣6.9,共3个;∴m=2,n=3,∴m+n=2+3=5.故答案为:5.6.(4分)若|a﹣4|+|b﹣6|=0,则2a﹣b=2.【分析】由已知可得a=4,b=6,代入所求式子即可.【解答】解:∵|a﹣4|+|b﹣6|=0,∴a=4,b=6,∴2a﹣b=2,故答案为2.7.(4分)对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则3☆(﹣2)=7.【分析】根据新定义把新运算转化为常规运算进行解答便可.【解答】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.8.(4分)计算:(﹣1)1+(﹣1)2+(﹣1)3+…+(﹣1)2030=0.【分析】根据乘方的定义计算可得.【解答】解:原式=﹣1+1﹣1+1﹣……﹣1+1=0×1015=0,故答案为:0.二.选择题(共10小题,满分30分,每小题3分)9.(3分)2的绝对值是()A.﹣2B.C.2D.±2【分析】利用绝对值的意义进行求解即可.【解答】解:2的绝对值就是在数轴上表示2的点到原点的距离,即|2|=2,故选:C.10.(3分)下列五个数:,3.3030030003…,﹣π,﹣0.5,3.14,其中是无理数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解::是分数,属于有理数;﹣0.5,3.14是有限小数,属于有理数;无理数有:3.3030030003…,﹣π共2个.故选:B.11.(3分)2019年12月以来,新冠病毒席卷全球.截止2020年3月24日10:56,我国累计确诊81749例,海外累计确诊297601例.用科学记数法表示全球确诊约为()例.A.8.2×104B.29.8×104C.2.98×105D.3.8×105【分析】求出全球确诊数量,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:81749+297601=379350(例),379350≈3.8×105.故选:D.12.(3分)一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.【分析】分别求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【解答】解:∵|1.2|=1.2,|﹣2.3|=2.3,|+0.9|=0.9,|﹣0.8|=0.8,又∵0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D中的元件.故选:D.13.(3分)下列说法正确的是()A.0既不是整数也不是分数B.整数和分数统称为有理数C.一个数的绝对值一定是正数D.绝对值等于本身的数是0和1【分析】按照有理数的分类和绝对值的性质进行判断.【解答】解:0是整数,A错.整数和分数统称有理数是有理数的概念,B对.一个数的绝对值一定是非负数,C错.绝对值等于本身的数是非负数,D错.故选B.14.(3分)如图所示为某市2020年1月7日的天气预报图,则这天的温差是()A.﹣12°C B.8°C C.﹣8°C D.12°C【分析】用最高温度减去最低温度,再利用减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5﹣(﹣7),=5+7,=12(℃).故选:D.15.(3分)下列每两个数中,数值相等的是()A.32与23B.﹣3×2与﹣3÷2C.﹣32与(﹣3)2D.﹣23与(﹣2)3【分析】先利用有理数的运算法则计算各选项中的数,再进行比较.【解答】解:A、32=9,23=8,故不相等;B、﹣3×2=﹣6,﹣3÷2=﹣1.5,故不相等;C、﹣32=﹣9,(﹣3)2=9,故不相等;D、﹣23与(﹣2)3都等于﹣8,相等.故选:D.16.(3分)数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣10【分析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B表示的数是多少即可.【解答】解:点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选:D.17.(3分)若|m﹣4|+(n+2)2=0,则mn的值是()A.16B.﹣16C.8D.﹣8【分析】首先根据非负数的性质,得出m与n的值,然后代入mn中求值即可.【解答】解:∵|m﹣4|+(n+2)2=0,∴m﹣4=0,n+2=0,解得,m=4,n=﹣2,∴mn=4×(﹣2)=﹣8,故选:D.18.(3分)对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1|D.﹣|a|﹣1【分析】负数一定小于0,可将各项化简,然后再进行判断.【解答】解:A、﹣(﹣3+a)=3﹣a,a≤3时,原式不是负数,故A错误;B、﹣a,当a≤0时,原式不是负数,故B错误;C、∵﹣|a+1|≤0,∴当a≠﹣1时,原式才符合负数的要求,故C错误;D、∵﹣|a|≤0,∴﹣|a|﹣1≤﹣1<0,所以原式一定是负数,故D正确.故选:D.三.解答题(共8小题,满分58分)19.(9分)计算:(1)(﹣1)+(﹣2)+(﹣3)+(﹣4);(2)25×﹣(﹣25)×+25×(﹣);(3)﹣22+[18﹣(﹣3)×2]÷4.【分析】(1)根据有理数的加法法则计算即可求解;(2)根据乘法分配律计算;(3)先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣1)+(﹣2)+(﹣3)+(﹣4)=﹣(1+2+3+4)=﹣10;(2)25×﹣(﹣25)×+25×(﹣)=25×(+﹣)=25×1=25;(3)﹣22+[18﹣(﹣3)×2]÷4=﹣4+(18+6)÷4=﹣4+24÷4=﹣4+6=2.20.(6分)先将下列各式写成省略加号的和的形式,再按括号内要求交换加数的位置.(1)(+16)+(﹣28)﹣(﹣6)﹣(﹣13)﹣(+7)=16﹣28+6+13﹣7(写成省略加号的和)=16+6+13+(﹣28﹣7)(使符号相同的加数在一起)=0(运算结果);(2)(﹣3.1)﹣(﹣4.5)+(4.4)﹣(+1.3)+(﹣2.5)=﹣3.1+4.5+4.4﹣1.3﹣2.5(写成省略加号的和)=(4.4﹣3.1﹣1.3)+(4.5﹣2.5)(使和为整数的加数在一起)=2(运算结果).【分析】利用加减法法则把混合运算写成省略加号和的形式,再利用加法的交换律和结合律,最后求和.【解答】解:(1)原式=16﹣28+6+13﹣7=16+6+13+(﹣28﹣7)=0;(2)原式=﹣3.1+4.5+4.4﹣1.3﹣2.5=(4.4﹣3.1﹣1.3)+(4.5﹣2.5)=2.故答案为:(1)16﹣28+6+13﹣7;16+6+13+(﹣28﹣7);0.(2)原式=﹣3.1+4.5+4.4﹣1.3﹣2.5=(4.4﹣3.1﹣1.3)+(4.5﹣2.5)=0+2=2.故答案为:﹣3.1+4.5+4.4﹣1.3﹣2.5;(4.4﹣3.1﹣1.3)+(4.5﹣2.5);2.21.(5分)在下面带有箭头的直线上先确定好原点以及单位长度,然后在所得的数轴上把下列各数表示出来:﹣2,3.5,﹣1,2.75,2,﹣3.【分析】根据数轴表示数的意义和方法,将各个数在数轴表示即可.【解答】解:将﹣2,3.5,﹣1,2.75,2,﹣3在数轴上表示如下:22.(8分)把下列各数填在相应的大括号内:﹣35,0.1,﹣,0,﹣3,1,4.01001000…,22,﹣0.3,,π.正数:{0.1,1,4.01001000…,22,,π,…};整数:{﹣35,0,1,22,,…};负分数:{﹣,﹣3,﹣0.3,…};非负整数:{0,1,22,,…}.【分析】根据有理数的分类进行填空即可.【解答】解:正数:{0.1,1,4.01001000…,22,,π,…};整数:{﹣35,0,1,22,,…};负分数:{﹣,﹣3,﹣0.3,…};非负整数:{0,1,22,,…}.故答案为:0.1,1,4.01001000…,22,,π;﹣35,0,1,22,;﹣,﹣3,﹣0.3;0,1,22,.23.(7分)我们规定“△”是一种数学运算符号,两数a、b通过“△”运算是a﹣b+ab,即a△b=a﹣b+ab,例如:3△5=3﹣5+3×5(1)求:2△(﹣3)的值;(2)求:(﹣5)△[1△(﹣2)]的值.【分析】(1)根据a△b=a﹣b+ab,可以求得所求式子的值;(2)根据a△b=a﹣b+ab,可以求得所求式子的值.【解答】解:(1)∵a△b=a﹣b+ab,∴2△(﹣3)=2﹣(﹣3)+2×(﹣3)=2+3+(﹣6)=﹣1;(2)(﹣5)△[1△(﹣2)]=(﹣5)△[1﹣(﹣2)+1×(﹣2)]=(﹣5)△(1+2﹣2)=(﹣5)△1=(﹣5)﹣1+(﹣5)×1=(﹣5)﹣1+(﹣5)=﹣11.24.(7分)已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.在数轴上找出﹣a,﹣b,﹣c的对应点,依据a,b,c,﹣a,﹣b,﹣c在数轴上的位置比较大小.在此基础上化简给出的式子.【解答】解:(1)解法一:根据表示互为相反数的两个点在数轴上的关系,分别找出﹣a,﹣b,﹣c对应的点如图所示,由图上的位置关系可知﹣b>a=﹣c>﹣a=c>b.解法二:由图知,a>0,b<0,c<0且|a|=|c|=|b|,∴﹣b>a=﹣c>﹣a=c>b.(2)∵a>0,b<0,c<0,且|a|=|c|<|b|,∴a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣a﹣b﹣a+b﹣b+c=﹣2a﹣b+c.25.(8分)小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+6,4,+9,﹣7,﹣6,+10,﹣8.(1)小虫最后是否回到出发点O?(2)小虫离开出发点O最远是多少cm?(3)在爬行过程中,如果每爬行1cm奖励一粒米,则小虫一共得到多少粒米?【分析】(1)计算这些数的和,根据和的符合、绝对值可以判断出小虫是否回到出发点,(2)计算出每一次离开出发点的距离,比较得出结论,(3)求出这些数的绝对值的和,即爬行的总路程,即可求出得米粒.【解答】解:(1)6+4+9﹣7﹣6+10﹣8=8 cm,答:小虫最后没有回到出发点O,最后在出发点右侧8cm的地方.(2)每次爬行后离开出发点的距离为:6cm,10cm,19cm,12cm,6cm,16cm,8cm,答:小虫离开出发点O最远是19cm.(3)6+4+9+7+6+10+8=50(粒)答:小虫一共得到50粒米.26.(8分)如图,在数轴上有A、B、C三点,请回答:(1)将C点向左移动6个单位后,这时的点所表示的数是﹣3;(2)怎样移动A、B、C三点中的任意一点,才能使这三点所表示的数之和为零请写出一种移动方法;(3)怎样移动A、B、C三点中的两个点,才能使这三点表示相同的数请写出一种移动方法.【分析】(1)首先发现数轴上点C表示的数是3,再根据向左平移6个单位,即3﹣6=﹣3;(2)若移动点A,则需移到﹣1的位置;若移动点B,则需移到1的位置;若移动点C,则需要移动6的位置;再结合数轴说出平移的方法即可.(3)此题为开放性试题,根据平移和数的大小变化规律:左减右加进行分析.【解答】解:(1)依题意得:C点对应的数为3,左移6个单位后的数为:3﹣6=﹣3;(2)点A向右移动3个单位或点B点向右移动3个单位或点C向右移动3个单位;(3)将点A向右移动7个单位,点B向右移动5个单位或将点B向左移动2个单位,点C向左移动7个单位或将点A向右移动2个单位,点C向左移动5个单位.1、三人行,必有我师。

苏科版七年级上册数学第2章 有理数 含答案

苏科版七年级上册数学第2章 有理数 含答案

苏科版七年级上册数学第2章有理数含答案一、单选题(共15题,共计45分)1、若,则a的相反数是()A.6B.-6C.36D.-362、如果两个数的积为负数,和也为负数,那么这两个数是()A.都是正数B.都是负数C.一正一负,且负数的绝对值大D.一正一负,且正数的绝对值大3、如图,点A、B、C为数轴上表示的3个数,下列说法不正确的是 ( )A.c<0B.a-b>0C.c-b<0D.a-c>04、下列算式中,运算结果为负数的是()A.-(-3)B.|-3|C.-3 2D.(-3) 25、﹣3的绝对值是()A. B.﹣3 C.3 D.±36、有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.a>bB.a<bC.ab>0D. >07、有理数a、b在数轴上的位置如图示,则 ( )A.a+b<0B.a+b>0C.a-b=0D.a-b>08、若,则下列结论正确的是().A. B. C. , D. 或9、数据,π,-3,2.5,中无理数出现的频率是( )A.20%B.40%C.60%D.80%10、下列说法中,正确的是()A.两个有理数相加,符号不变,并把绝对值相加B.若,则a=b C.任何有理数的绝对值都是正数 D.一个有理数不是整数就是分数11、在实数,-,-3.1415926,0,,0.010010001中,无理数有()A.1个B.2个C.3个D.4个12、数轴上在原点以及原点右侧的点所表示的数是 ( )A.正数B.负数C.非负数D.非正数13、已知m<2<﹣m,若有理数m在数轴上对应的点为M,则点M在数轴上可能的位置是()A. B. C.D.14、下列几组数中是互为相反数的是()A.- 和0.7B. 和-0.333C.-(-6)和6D.- 和0.2515、﹣2是2的()A.绝对值B.相反数C.倒数D.算术平方根二、填空题(共10题,共计30分)16、若有理数 a 、 b 满足 |2a+1|+(b−3)2=0 ,则 a b =________.17、物体向右运动4m记作+4m,那么物体向左运动3m,应记作________ m.18、实数a在数轴的位置如图所示,则|a﹣1|=________ .19、有理数a,b,c在数轴上的对应点如图所示,化简________.20、把数346840精确到千位,用科学记数法表示为________ .21、一个数的倒数为﹣2,则这个数的相反数是________.22、计算:|﹣5|=________.23、﹣2.5的倒数等于________.24、已知,则 n=________ .25、-5+(-9)-15=________.三、解答题(共5题,共计25分)26、计算:27、在数轴标出表示下列各数的点,并用“<”把它们连接起来.—3, 3.5, 0,-1.5,-1.28、画出数轴并标出表示下列各数的点,并用“<”把下列各数连接起来.,,,,,,,029、若a、b互为相反数,c、d互为倒数,n的绝对值为2,求代数式的值.30、数a、b在数轴上对应的点如图所示,试化简|a+b|+|b−a|+|b|−|a−|a| |参考答案一、单选题(共15题,共计45分)1、A2、C3、B5、C6、A7、B8、D9、B10、D11、A12、C13、B14、D15、B二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

2020年苏科版七年级数学上册第2章 有理数单元测试题(有答案)

2020年苏科版七年级数学上册第2章 有理数单元测试题(有答案)

苏教版七年级上册数学第二单元单元测试卷一、单选题(共12题;共24分)1. ( 2分) ﹣2018的倒数是()A. 2018B.C. ﹣2018D.2. ( 2分) 3的相反数是()A. B. 3 C. ﹣3 D. ±3. ( 2分) 作为世界文化遗产的长城,其总长大约为6700000m。

数据6700000用科学记数法表()A. 6.7×106B. 67×105C. 0.67×107D. 6.7×1074. ( 2分) ﹣5的绝对值是()A. 5B. ﹣5C.D. -5. ( 2分) 某汽车参展商为参加第8届中国(长春)国际汽车博览会,印制了105 000张宣传彩页.105000这个数字用科学记数法表示为()A. 10.5×104B. 1.05×105C. 1.05×106D. 0.105×1066. ( 2分) 如果a与﹣2互为相反数,那么a等于()A. ﹣2B. 2C. ﹣D.7. ( 2分) 据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数据2500万用科学记数法表示为()A. 2.5×108B. 2.5×107C. 2.5×106D. 25×1068. ( 2分) 若x是有理数,则x2+1一定是()A. 等于1B. 大于1C. 不小于1D. 不大于19. ( 2分) 下列计算正确的是()A. (﹣2)﹣(﹣5)=﹣7B. (+3)+(﹣6)=3C. (+5)﹣(﹣8)=﹣3D. (﹣5)﹣(﹣8)=310. ( 2分) 下列说法正确的是()A. 正数和负数互为相反数B. -a的相反数是正数C. 任何有理数的绝对值都大于它本身D. 任何一个有理数都有相反数11. ( 2分) 为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32018的值是( )A. 32019-1B. 32018-1C.D.12. ( 2分) 2016年某省人口数超过105 000 000,将这个数用科学记数法表示为()A. 0.105×109B. 1.05×109C. 1.05×108D. 105×106二、填空题(共11题;共22分)13. ( 2分)的倒数是________;的相反数是________.14. ( 2分) 绝对值小于3的所有负整数的和为________,积为________。

苏科版七年级数学上册 第二单元有理数单元测试卷(含答案)

苏科版七年级数学上册 第二单元有理数单元测试卷(含答案)

苏科版七年级数学上册 第二单元有理数单元测试卷一、选择题1.负数的引入是数学发展史上的一大飞跃,使数的家族得到了扩张,为人们认识世界提供了更多的工具.中国是世界上最早认识和应用负数的国家,比西方早一千多年,负数最早记载于下列哪部著作中( )A .B .C .D .2.数轴的原型来源于生活实际,数轴体现了( )的数学思想,是我们学习和研究有理数的重要工具. A .整体B .方程C .转化D .数形结合3.某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( ) A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯4.如图,关于A 、B 、C 这三部分数集的个数,下列说法正确的是( )A .A 、C 两部分有无数个,B 部分只有一个0 B .A 、B 、C 三部分有无数个 C .A 、B 、C 三部分都只有一个D .A 部分只有一个,B 、C 两部分有无数个5.下列说法:① 平方等于64的数是8;② 若a ,b 互为相反数,ab ≠0,则1ab=-;③ 若a a -=,则3()a -的值为负数;④ 若ab ≠0,则a ba b+的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( ) A .0个B .1个C .2个D .3个6.(2019·江西省大吉山中学初一期末)当使用计算器的键,将1156的结果切换成小数格式19.16666667,则对应这个结果19.16666667,以下说法错误的是( )A .它不是准确值B .它是一个估算结果C .它是四舍五入得到的D .它是一个近似数7.设n 是自然数,则()()2112nn +-+-的值为( )A .1B .-1C .0D .1或-18.如图,数轴上A ,B 两点所表示的数互为倒数,则关于原点的说法正确的是( )A .一定在点A 的左侧B .一定与线段AB 的中点重合C .可能在点B 的右侧D .一定与点A 或点B 重合9.)“!”是一种运算符号,并且1!=1,2!=1×2,3!=1×2×3,4!=1×2×3×4, 则20182017!!的值是( ) A .1 B .2016 C .2017 D .201810.数32019・72020・132021的个位数是 ( ) A .1B .3C .7D .911.有一张厚度为0.1毫米的纸片,对折1次后的厚度是20.1⨯毫米,继续对折,2次,3次,4次……假设这张纸对折了20次,那么此时的厚度相当于每层高3米的楼房层数约是( )(参考数据:1021024=, 2021048576=) A .3层B .20层C .35层D .350层12.若a ,b 为有理数,下列判断正确的个数是( )(1)12a ++总是正数;(2)()224a ab +-总是正数;(3)()255ab +-的最大值为5;(4)()223ab -+的最大值是3.A .1B .2C .3D .4二、填空题13.若()2320m n -++=,则m+2n 的值是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版七上第二章《有理数》(难题)单元测试(2)班级:___________姓名:___________得分:___________一、选择题1. 已知a 是实数,下列说法:①a 2和|a |都是正数;②如果|a |=−a ,那么a 一定是负数;③a 的倒数是1a ;④绝对值最小的实数不存在;其中正确的有 A. 0个B. 1个C. 2个D. 3个 2. 计算(−1)0−(12)2018×(−2)2019的结果是( ).A. 3B. −2C. 2D. −13. 若用A 、B 、C 分别表示有理数a 、b 、c ,O 为原点如图所示.化简|a −c |+|b −a |−|c −a |的结果为( )A. a +2b −cB. b −3a +2cC. a +b −2cD. b −a4. 取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:,如果自然数m 恰好经过7步运算可得到1,则所有符合条件的m 的值有( )A. 3个B. 4个C. 5个D. 6个5. 如图,数轴上两定点A 、B 对应的数分别为−18和14,现在有甲、乙两只电子蚂蚁分别从A 、B 同时出发,沿着数轴爬行,速度分别为每秒1.5个单位和1.7个单位,它们第一次相向爬行1秒,第二次反向爬行2秒,第三次相向爬行3秒,第四次反向爬行4秒,第五次相向爬行5秒,……,按如此规律,则它们第一次相遇所需的时间为( )A. 55秒B. 190秒C. 200秒D. 210秒6.某商店出售三种品牌的面粉,袋上分别标有质量为(2.5±0.1)kg,(2.5±0.2)kg,(2.5±0.3)kg的字样,任意取出两袋,它们的质量最多相差()A. 0.8kgB. 0.4kgC. 0.5kgD. 0.6kg7.对于代数式(x−1)2+2,下列说法正确的是A. 当x=1时,最大值是2B. 当x=1时,最小值是2C. 当x=−1时,最大值是2D. 当x=−1时,最小值是28.小调皮写作业时,将两滴墨水滴在一条数轴上.如图所示,根据图中标出的数值可判定墨迹盖住的整数共()个.A. 78B. 79C. 80D. 819.如图圆的周长为4个单位长度.在该圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示−1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示2016的点与圆周上表示数字哪个点重合?()A. 0B. 1C. 2D. 3二、填空题10.1−2+3−4+5−⋯−2016+2017−2018+2019=________.11.已知|x+2|+(y−5)2=0,则x+y的值为______ .12.如果5个有理数相乘的积是正数,那么负因数的个数可以为______ 个.13.定义新运算:对于任意有理数a,b,都有a⊕b=a(a−b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2−5)+1=2×(−3)+1=−6+ 1=−5,则(−3)⊕4的值为______ .14. 在227,−(−1),3.14,−|8−22|,−3,−32,−(−13)3,0中,有理数有m 个,自然数有n 个,分数有k 个,负数有t 个,则m −n −k +t =_____ 15. 数轴上到2.5的距离为3.5的点所表示的数是______ .16. 如图,按下列程序进行计算,经过两次输入,最后输出的数是12,则最初输入的数是_____.三、解答题17. 请阅读下面的材料:计算:(−130)÷(23−110+16−25)解法一:原式=(−130)÷23−(−130)÷110+(−130)÷16−130÷(−25) =−120+13−15+112=16 解法二:原式=(−130)÷[(23+16)−(110+25)]=(−130)÷(56−12)=−130×3=−110解法三:原式的倒数为(23−110+16−25)÷(−130)=(23−110+16−25)×(−30)=−20+3−5+12=−10,故原式=−110(1)上述得出的结果不同,肯定有错误的解法,你认为解法___________是错误的.(2)请你用你认为简捷的解法计算:(−142)÷(16−314+23−27).18.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最大的负整数,且a、b满足|a+3|+(c−6)2=0.(1)a=________,b=____________,c=___________;(2)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=_____________,AC=_____________,BC=______________.(用含t的代数式表示)(3)请问:2BC+AB−32AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.19.观察下列等式11×2=1−12,12×3=12−13,13×4=13−14,将以上三个等式两边分别相加得:11×2+12×3+13×4=1−12+12−13+13−14=1−14=34.(1)猜想并写出:1n(n+1)=______(2)直接写出下列各式的计算结果:11×2+12×3+13×4+⋯+1n×(n+1)=______(3)探究并计算:12×4+14×6+16×8+⋯+12014×2016.ab+100)2+|a−20|=0,20.已知,A,B在数轴上对应的数分别用a,b表示,且(12P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离.(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四次向右移动7个单位长度,….点P能移动到与A或B重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动与哪一点重合?21.观察下列各式21−20=2022−21=2123−22=2224−23=23….①探索式子的规律,试写出第n个等式______ ;②计算2m−2m−1,并运用该结果,计算22000−21999−21998−⋯−2;③计算:20+21+22+23+24+⋯+22015.22.请你观察:1 1×2=11−12,12×3=12−13;13×4=13−14;…1 1×2+12×3=11−12+12−13=1−13=23;1 1×2+12×3+13×4=11−12+12−13+13−14=1−14=34;…以上方法称为“裂项相消求和法”请类比完成:(1)11×2+12×3+13×4+14×5=__;(2)21×2+22×3+23×4+⋯2n×(n+1)=_______.(3)类比计算:112−256+3112−41920+5130−64142+7156−87172的值答案和解析1.A解:①a是实数,当a=0时,a2和|a|都是0,故①说法错误.②a是实数,当a=0时,|a|=a=0,a不是负数,故②说法错误.③a是实数,当a=0时,1没有意义,故③说法错误.a④a是实数,|a|≥0,所以绝对值最小的实数是0,故④说法错误.2.A解:原式=1−2−2018×(−2)2019=3.3.D解:根据数轴可知:a<c<0<b.∴c<0,a−c<0,b−a>0,c−a>0∴原式=c−a+b−a−c+a=b−a4.B解:根据分析,可得则所有符合条件的m的值为:128、21、20、3.5.B6.D解:∵质量最重的面粉为2.5+0.3=2.8kg,质量最轻的面粉为:2.5−0.3=2.2kg,∴它们的质量最多相差:2.8−2.2=0.6kg.7.B解:∵(x−1)2≥0,∴(x−1)2+2≥2,∴当x=1时,最小值是2,8.C解:根据数轴的特点,−27.3到24.2之间的整数有−27、−26、−25、…、21、22、23、24共52个,50.4到78.9之间的整数有51、52、53、…、76、77、78共28个,所以被墨迹盖住的整数有52+28=80个.9.B解:∵−1−2016=−2017,2017÷4=504…1,∴数轴上表示数2016的点与圆周上表示数字1重合.10.1010解:1−2+3−4+5−6+⋯+2015−2016+2017−2018+2019 =(1−2)+(3−4)+(5−6)+⋯+(2017−2018)+2019=−1009+2019=1010.11.3解:由题意得,x+2=0,y−5=0,解得,x=−2,y=5,则x+y=3,12.0或2或4解:∵5个有理数相乘的积是正数,∴负因数的个数为偶数:0个或2个或4个,13.22解:根据题中的新定义得:(−3)⊕4=−3×(−3−4)+1=−3×(−7)+1=21+1=22.14. 6解:227,−(−1),3.14,−|8−22|,−3,−32,−(−13)3,0是有理数,则m =8; −(−1),0是自然数,则n =2;227,3.14,−(−13)3是分数,则k =3; −|8−22|,−3,−32是负数,则t =3,则m −n −k +t =8−2−3+3=6,15. −1或6解:在2.5的左边时,2.5−3.5=−1,在2.5的右边时,2.5+3.5=6,所以,所表示的数是−1或6.16. −98解:由程序图可知:4(4x +6)+6=12,移项、合并同类项得,16x =−18,化系数为1得,x =−98,17. 解:(1)一(2)(−142)÷(16−314+23−27)=(−142)÷[(16+23)−(314+27)] =(−142)÷(56−12)=−114.解:(1)有解题过程可得解法一错误;故答案为:一;18.解:(1)−3;−1;6;(2)3t+2;6t+9;3t+7;(3)∵AB=3t+2,AC=6t+9,BC=3t+7,∴2BC+AB−32AC=2(3t+7)+3t+2−32(6t+9)=6t+14+3t+2−9t−13.5=2.5,∴2BC+AB−32AC的值不随着时间t的变化而改变,其值为2.5.解:(1)∵|a+3|+(c−6) 2=0,∴a+3=0,c−6=0,∴a=−3,c=6,∵b是最大的负整数,∴b=−1,故答案为−3;−1;6;(2)∵点A以每秒2个单位长度的速度向左运动,∴运动后对应的点为−3−2t,点B以每秒1个单位长度速度向右运动,∴运动后对应的点为−1+t,点C以每秒4个单位长度速度向右运动,∴运动后对应的点为6+4t,∴AB=−1+t−(−3−2t)=3t+2,AC=6+4t−(−3−2t)=6t+9,BC=6+4t−(−1+t)=3t+7,故答案为3t+2;6t+9;3t+7;19.(1)1n −1n+1(2)nn+1(3)解:原式=12(12−14)+12(14−16)+12(16−18)+⋯+12(12014−12016)=12(12−14+14−16+16−18+⋯+12014−12016)=12(12−12016)=10074032.解:(1)∵11×2=1−12,12×3=12−13,13×4=13−14,∴1n(n+1)=1n−1n+1.故答案为:1n −1n+1;(2)原式=1−12+12−13+13−14+⋯+1n−1n+1=1−1n+1=nn+1.故答案为:nn+1;(3)解:原式=12(12−14)+12(14−16)+12(16−18)+⋯+12(12014−12016)=12(12−14+14−16+1 6−18+⋯+12014−12016)=12(12−12016)=10074032.20.解:(1)∵(12ab+100)2+|a−20|=0,∴12ab+100=0,a−20=0,∴a=20,b=−10,∴AB=20−(−10)=30,数轴上标出A、B得:(2)∵|BC|=6且C在线段OB上,∴x C−(−10)=6,∴x C=−4,∵PB=2PC,当P在点B左侧时PB<PC,此种情况不成立,当P在线段BC上时,x P−x B=2(x c−x p),∴x p+10=2(−4−x p),解得:x p=−6;当P在点C右侧时,x p−x B=2(x p−x c),x p+10=2x p+8,x p=2.综上所述P点对应的数为−6或2.(3)第一次点P表示−1,第二次点P表示2,依次−3,4,−5,6…则第n次为(−1)n⋅n,点A表示20,则第20次P与A重合;点B表示−10,点P与点B不重合.21.①2n−2n−1=2n−1;解:②∵2m−2m−1=2m−1,∴22000−21999−21998−⋯−2=21999−21998−⋯−2=21998−⋯−2=2;③20+21+22+23+24+⋯+22015=(21−20)+(22−21)+⋯+(22016−22015)=22016−1.解:①∵21−20=20,②22−21=21,③23−22=22…∴第n(n为正整数)个等式可表示为:2n−2n−1=2n−1(n为正整数).故答案为2n−2n−1=2;n−122.(1)4;5(2)2nn+1;解:(3)112−256+3112−41920+5130−64142+7156−87172=1+12−(3−16)+3+112−(5−120)+5+130−(7−142)+7+156−(9−172)=1+12−3+16+3+112−5+120+5+130−7+142+7+156−9+172=(1−3+3−5+5−7+7−9)+(12+16+112+120+130+142+156+172)=(−8)+(1−12+12−13+13−14+14−15+15−16+16−17+17−18+18−19)=(−8)+(1−19)=−719.解:(1)11×2+12×3+13×4+14×5=1−12+12−13+13−14+14−15=1−15=45故答案为45;(2)21×2+22×3+23×4+⋯2n×(n+1)=2(1−12+12−13+13−14+⋯+1n−1n+1)=2(1−1n+1)=2×nn+1=2nn+1故答案为2nn+1;。

相关文档
最新文档