人教A版数学高二选修2-2 第一章《导数及其应用》综合能力检测

合集下载

新版高中数学人教A版选修2-2习题:第一章导数及其应用 检测A(1)

新版高中数学人教A版选修2-2习题:第一章导数及其应用 检测A(1)

第一章检测(A)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则()A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1解析∵y'=2x+a,∴曲线y=x2+ax+b在(0,b)处的切线的斜率为a,切线方程为y-b=ax,即ax-y+b=0.∴a=1,b=1.答案A2若函数f(x)=ax5+bx3+c满足f'(1)=2,则f'(-1)等于()A.-1B.-2C.2D.0解析f'(x)=5ax4+3bx2为偶函数,∴f'(-1)=f'(1)=2.答案C3若函数f(x)=a ln x+x在x=1处取得极值,则a的值为()A.12B.-1 C.0 D.-12解析f'(x)=ax+1,令f'(x)=0,得x=-a, 易知函数f(x)在x=-a处取得极值.所以a=-1.答案B4已知函数f(x)的导数f'(x)=a(x+1)(x-a),且f(x)在x=a处取得极大值,则实数a的取值范围是() A.(-1,+∞) B.(-1,0)C.(0,1)D.(1,+∞)答案B5设f(x)={x2,x∈[0,1],1x,x∈(1,e],则∫ef(x)d x等于()A.43B.54C.65D.76解析∫e0f(x)d x=∫1x2d x+∫e11xd x=13x3|1+ln x|e1=43.故选A.答案A6已知点P在曲线y=4e x+1上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()A.[0,π4) B.[π4,π2)C.(π2,3π4] D.[3π4,π)解析因为0>y'=-4e x(e x+1)2=-4e x+2+1e x≥-1,当且仅当x=0时取等号.即-1≤tan α<0,所以3π4≤α<π.答案D7∫1(e x+2x)d x等于() A.1 B.e-1C.eD.e+1解析∵(e x+x2)'=e x+2x,∴∫10(e x+2x)d x=(e x+x2)|1=(e1+12)-(e0+0)=e.答案C8设a∈R,若函数y=e ax+3x,x∈R有大于零的极值点,则() A.a>-3 B.a<-3C.a>-13D.a<-13解析令y'=a e ax+3=0,∴e ax=-3a.设x=x0为大于0的极值点,∴e ax0=-3a.∴a<0,ax0<0.∴0<e ax0<1,即0<-3a<1.∴a<-3.答案B9设a<b,函数y=(x-a)2(x-b)的图象可能是()解析y'=2(x-a)(x-b)+(x-a)2=(x-a)(3x-a-2b),令y'=0,得x=a或x=a+2b3.∵a<b ,∴a<a+2b3. ∴当x=a 时,y 取极大值0;当x=a+2b3时,y 取极小值,且极小值小于零.故选C . 答案C10若函数f (x ),g (x )满足∫ 1-1f (x )g (x )d x=0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x+1,g (x )=x-1;③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A.0B.1C.2D.3解析对于①,∫ 1-1sin 12x ·cos 12x d x=∫ 1-112sin x d x=12∫ 1-1sin x d x=12(-cos x )|-11=12{-cos 1-[-cos(-1)]}=12(-cos 1+cos 1) =0.故①为一组正交函数;对于②,∫ 1-1(x+1)(x-1)d x=∫ 1-1(x 2-1)d x=(13x 3-x)|-11=13-1-(-13+1)=23-2=-43≠0,故②不是一组正交函数;对于③,∫1-1x·x2d x=∫1-1x3d x=(14x4)|-11=0.故③为一组正交函数,故选C.答案C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11∫-1-21(11+5x)3d x=.解析取F(x)=-110(5x+11)2,从而F'(x)=1(11+5x)3.则∫-1-21(11+5x)3d x=F(-1)-F(-2)=-110×62+110×12=110−1360=772.答案77212若函数f(x)在x=a处的导数为A(aA≠0),函数F(x)=f(x)-A2x2满足F'(a)=0,则A=.解析由题知f'(a)=A,又F'(x)=f'(x)-2A2x,且F'(a)=f'(a)-2aA2=A-2aA2=0.∵aA≠0,∴A=12a.答案12a13已知函数f (x )在(0,+∞)内可导,且f (e x )=x+e x ,则f'(1)= . 解析令e x =t ,则x=ln t ,∴f (t )=ln t+t ,∴f'(t )=1t +1,∴f'(1)=2.答案214设曲线y=e x 在点(0,1)处的切线与曲线y=1x(x>0)上点P 处的切线垂直,则点P 的坐标为 .解析曲线y=e x 在点(0,1)处的切线斜率k=y'=e x |x=0=1;由y=1x,可得y'=-1x2,因为曲线y=1x(x>0)在点P 处的切线与曲线y=e x 在点(0,1)处的切线垂直,所以-1x P2=-1,解得x P =1,由y=1x,得y P =1,故所求点P 的坐标为(1,1). 答案(1,1)15已知函数f (x )为一次函数,其图象经过点(3,4),且∫ 10f (x )d x=1,则函数f (x )的解析式为 .解析设函数f (x )=ax+b (a ≠0).∵函数f (x )的图象经过点(3,4),∴b=4-3a.∴∫ 10f (x )d x=∫10(ax+4-3a )d x =[12ax 2+(4-3a )x]|01=12a+4-3a=1, ∴a=65.∴b=25.∴f (x )=65x+25.答案f (x )=65x+25三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)求定积分∫0-1x2x2+2xd x的值.解∫0-1x2x2+2xd x=∫0-1x2+2x-2xx2+2xd x=∫0-1(1-2x+2)d x=∫0-11d x-∫0-12x+2d x=1-2∫0-11x+2d x=1-2ln(x+2)|-10=1-2ln 2.17(8分)已知曲线f(x)=2x3-3x,过点M(0,32)作曲线f(x)的切线,求切线的方程.解设切点坐标为N(x0,2x03-3x0),由导数的几何意义知切线的斜率k就是切点处的导数值,而f'(x)=6x2-3,所以切线的斜率k=f'(x0)=6x02-3.所以切线方程为y=(6x02-3)x+32.又点N在切线上,所以2x03-3x0=(6x02-3)x0+32,解得x0=-2.故切线方程为y=21x+32.18(9分)求函数y=13x3+3-ln x的单调区间.解函数的定义域为(0,+∞),y'=x2-1x =(x-1)(x2+x+1)x.令y'>0,则{(x-1)(x2+x+1)x>0,x>0,解得x>1;令y'<0,则{(x-1)(x2+x+1)x<0, x>0,解得0<x<1.故函数的单调递增区间为(1,+∞),单调递减区间为(0,1).19(10分)设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.解(1)因f(x)=a(x-5)2+6ln x,故f'(x)=2a(x-5)+6x.令x=1,得f(1)=16a,f'(1)=6-8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),由点(0,6)在切线上可得6-16a=8a-6,故a=12.(2)由(1)知,f(x)=12(x-5)2+6ln x(x>0),f'(x)=x-5+6x =(x-2)(x-3)x.令f'(x)=0,解得x1=2,x2=3.当0<x<2或x>3时,f'(x)>0,故f(x)的单调递增区间为(0,2),(3,+∞);当2<x<3时,f'(x)<0,故f(x)的单调递减区间为(2,3).由此可知f(x)在x=2处取得极大值f(2)=92+6ln 2,在x=3处取得极小值f(3)=2+6ln 3.20(10分)已知f(x)=a(x-ln x)+2x-1x2,a∈R.(1)讨论f(x)的单调性;(2)当a=1时,证明f(x)>f'(x)+32对于任意的x∈[1,2]成立.解(1)f(x)的定义域为(0,+∞).f'(x )=a-a x −2x 2+2x 3=(ax 2-2)(x -1)x 3. 当a ≤0时,x ∈(0,1)时,f'(x )>0,f (x )单调递增,x ∈(1,+∞)时,f'(x )<0,f (x )单调递减.当a>0时,f'(x )=a (x -1)x 3(x -√2a )(x +√2a ).①0<a<2时,√2a >1,当x ∈(0,1)或x ∈(√2a ,+∞)时,f'(x )>0,f (x )单调递增,当x ∈(1,√2a)时,f'(x )<0,f (x )单调递减.②a=2时,√2a =1,在x ∈(0,+∞)内,f'(x )≥0,f (x )单调递增.③a>2时,0<√2a <1,当x ∈(0,√2a )或x ∈(1,+∞)时,f'(x )>0,f (x )单调递增,当x ∈(√2a ,1)时,f'(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a<2时,f (x )在(0,1)内单调递增,在(1,√2a)内单调递减,在(√2a,+∞)内单调递增;当a=2时,f (x )在(0,+∞)内单调递增;当a>2时,f (x )在(0,√2a )内单调递增,在(√2a ,1)内单调递减,在(1,+∞)内单调递增. (2)由(1)知,a=1时,f (x )-f'(x )=x-ln x+2x -1x 2−(1-1x −2x 2+2x 3)=x-ln x+3x +1x 2−2x 3-1,x ∈[1,2].设g (x )=x-ln x ,h (x )=3x +1x 2−2x 3-1,x ∈[1,2].则f (x )-f'(x )=g (x )+h (x ).由g'(x )=x -1x≥0, 可得g (x )≥g (1)=1, 当且仅当x=1时取得等号.又h'(x )=-3x 2-2x+6x 4, 设φ(x )=-3x 2-2x+6,则φ(x )在x ∈[1,2]单调递减, 因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )在(1,x 0)内单调递增,在(x 0,2)内单调递减.由h (1)=1,h (2)=12,可得h (x )≥h (2)=12, 当且仅当x=2时取得等号.所以f (x )-f'(x )>g (1)+h (2)=32,即f (x )>f'(x )+32对于任意的x ∈[1,2]成立.。

新人教A版选修(2-2)第一章《导数及其应用》word单元测试

新人教A版选修(2-2)第一章《导数及其应用》word单元测试

4 27《导数及其应用》训练题一、选择题(每小题5分,共50分)1 .设函数y = f (x )可导,则 蚂 f (1 +^x ) - f(1)等于( A . f'(1)B . 3f'(1)3LX1C . - f'(1) 3 ).D .以上都不对 1 2.已知物体的运动方程是 S r ^t 44-4t 3 16t 2 (t 表示时间,S 表示位移),则瞬时速度 为0的时刻是A . 0 秒、 C . 2 秒、 ).2秒或4秒 8秒或16秒 B . 0秒、D . 0秒、 2秒或16秒 4秒或8秒3.若曲线y = xx 3在x = x 0处的切线互相垂直,则 X )等于().336B .64•若点P 在曲线 3-3x 2• (3 - . 3)x 3上移动,经过点 4P 的切线的倾斜角为:-,则角〉的取值范围是A . [0,二] ).B .[02)U [2 二兀)能的是( ).6.函数 f (X )= x37.已知函数 f(x )C .[訂:)II 2■:D .叱七P5 •设f '(x )是函数•ax -2在区间[1「二)内是增函数,则实数 a 的取值范围是().C . (-3,::)D . (-3 2=x - px -qx 的图像与x 轴切于点(1,0),则 f (x )的极大值、 极小值分别为(4 A .).4B . 0,27 4C . —, 0 D . 0,27271 1&由直线x , x = 2,曲线y 及x 轴所围图形的面积是(2x1517 1 , A.B.C. In 2D. 2ln 244239.函数f(x)二x -3bx 3b 在(0,1)内有极小值,则().A . 0 ::: b < 1B . b =1C . b 010. y = ax 2V 的图像与直线y = x 相切,则a 的值为().111A .B .C .-8 4 2、填空题(每小题5分,共20分)11.由定积分的几何意义可知I 4 一 x 2 = -----------12. 函数f(x)=xln x(x 0)的单调递增区间是13.已知函数f(x)二ax-lnx ,若f(x)・1在区间(1,=:)内恒成立,则实数 a 的范围为14.设函数f(x)=x 「ax 的导数为f'(x)=2x ・1,则数列{-^}( n ・N *)的前n 项和 f (n) 是 _______________ .三、解答题(共6题,共80分)15.(本题12分)1求经过点(2,0)且与曲线y相切的直线方程x16.(本题12分)已知 x 1,求证:x In(1 - x).).D .b :.-17.(本题14分) 已知函数f (x) = -x3 3x2 9x a ,(i)求f (x)的单调递减区间;(n)若f (x)在区间[一2,2]上的最大值为20,求它在该区间上的最小值.18.(本题14分)已知函数f (x) =x4 -4x3• ax2 -1在区间[0,1]上单调递增,在区间[1,2]上单调递减,(i)求a的值;(n)设g(x) =bx2 -1,若方程f (x) =g(x)的解集恰有3个元素,求b的取值范围.19.(本题14分)某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格。

高中数学第一章导数及其应用模块综合检测新人教A选修22

高中数学第一章导数及其应用模块综合检测新人教A选修22

【优化方案】2021-2021学年高中数学 第一章 导数及其应用模块综合检测 新人教A 版选修2-2(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合标题问题要求的)1.在△ABC 中,E ,F 分别为AB ,AC 的中点,则有EF ∥BC .这个命题的大前提为( )A .三角形的中位线平行于第三边B .三角形的中位线等于第三边的一半C .EF 为中位线D .EF ∥CB答案:A2.⎠⎛01(ex +2x)dx =( ) A .1 B .e -1C .eD .e +1解析:选C .⎠⎛01(ex +2x)dx =(ex +x2)10=e ,故选C . 3.复数(1-i 2)2=a +bi(a ,b ∈R ,i 是虚数单位),则a2-b2的值为( ) A .0 B .1C .2D .-1解析:选D .(1-i 2)2=1-2i +i22=-i =a +bi.所以a =0,b =-1,所以a2-b2=0-1=-1. 4.下列求导运算正确的是( )A .(x +3x )′=1+3x2B .(log2x)′=1xln 2C .(3x)′=3xlog3eD .(x2cos x)′=-2xsin x解析:选B.(x +3x )′=1-3x2,所以A 不正确;(3x)′=3xln 3,所以C 不正确;(x2cos x)′=2xcos x +x2·(-sin x),所以D 不正确;(log2x)′=1xln 2,所以B 正确.故选B.5.用反证法证明命题:“若(a -1)(b -1)(c -1)>0,则a ,b ,c 中至少有一个大于1”时,下列假设中正确的是( )A .假设a ,b ,c 都大于1B .假设a ,b ,c 都不大于1C .假设a ,b ,c 中至多有一个大于1D .假设a ,b ,c 中至多有两个大于1解析:选B.a ,b ,c 中至少有一个大于1的否认为a ,b ,c 都不大于1.6.已知函数f(x)=2x +1x +2,则函数y =f(x)的单调增区间是( )A .(-∞,+∞)B .(-∞,-2)C .(-2,+∞)D .(-∞,-2)和(-2,+∞)解析:选D .据解析式可知函数f(x)的定义域为{x|x ∈R ,x≠-2},由于f′(x)=3x +22>0,故函数f(x)在(-∞,-2)和(-2,+∞)上分别为增函数.7.已知集合A ={x|x2+y2=4},集合B ={x||x +i|<2,i 为虚数单位,x ∈R},则集合A 与B 的关系是( )A .AB B .B AC .A∩B =AD .A∩B =∅解析:选B.|x +i|=x2+1<2,即x2+1<4,解得-3<x <3,∴B =(-3,3),而A =[-2,2],∴B A ,故选B.8.用数学归纳法证明12+22+…+(n -1)2+n2+(n -1)2+…+22+12=n 2n2+13时,从n =k 到n =k +1,等式左边应添加的式子是( )A .(k -1)2+2k2B .(k +1)2+k2C .(k +1)2D .13(k +1)[2(k +1)2+1]解析:选B.n =k 时,左边=12+22+…+(k -1)2+k2+(k -1)2+…+22+12,n =k +1时,左边=12+22+…+(k -1)2+k2+(k +1)2+k2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k2.9.若P =a +a +7,Q =a +3+a +4(a≥0),则P ,Q 的大小关系为( )A .P >QB .P =QC .P <QD .由a 的取值确定解析:选C .要比力P 与Q 的大小,只需比力P2与Q2的大小,只需比力2a +7+2a a +7与2a +7+2a +3a +4的大小,只需比力a2+7a 与a2+7a +12的大小,即比力0与12的大小,而0<12,故P <Q.10.如图,暗影部分的面积为( )A .⎠⎛ab [f(x)-g(x)]dx B .⎠⎛ac [g(x)-f(x)]dx +⎠⎛cb [f(x)-g(x)]dx C .⎠⎛ac [f(x)-g(x)]dx +⎠⎛cb [g(x)-f(x)]dx D .⎠⎛ab [g(x)-f(x)]dx 解析:选B.∵在区间(a ,c)上g(x)>f(x),而在区间(c ,b)上g(x)<f(x).∴S =⎠⎛a c [g(x)-f(x)]dx +⎠⎛cb [f(x)-g(x)]dx ,故选B.11.设函数f(x)在R 上可导,其导函数为f′(x),且函数y =(1-x)f′(x)的图象如图所示,则下列结论中必然成立的是( )A .函数f(x)有极大值f(2)和极小值f(1)B .函数f(x)有极大值f(-2)和极小值f(1)C .函数f(x)有极大值f(2)和极小值f(-2)D .函数f(x)有极大值f(-2)和极小值f(2)解析:选D .由题图可知,当x <-2时,f′(x)>0;当x =-2时,f′(x)=0;当-2<x <1时,f′(x)<0;当1<x <2时,f′(x)<0;当x =2时,f′(x)=0;当x >2时,f′(x)>0.由此可以获得函数f(x)在x =-2处取得极大值,在x =2处取得极小值.12.观察数表:1 2 3 4 … 第一行2 3 4 5 … 第二行3 4 5 6 … 第三行4 5 6 7 … 第四行… … … …第一列 第二列 第三列 第四列按照数表中所反映的规律,第n 行与第n -1列的交叉点上的数应该是( )A .2n -1B .2n +1C .n2-1D .2n -2解析:选D .按照数表可知,第1行第1列上的数为1,第2行第2列上的数为3,第3行第3列上的数为5,第4行第4列上的数为7,那么,由此可以推导出第n 行与第n 列交叉点上的数应该是2n -1,故第n 行与第n -1列的交叉点上的数应为2n -2.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)13.设复数i 满足i(z +1)=-3+2i(i 为虚数单位),则z 的实部是________.解析:由i(z +1)=-3+2i ,获得z =-3+2i i -1=2+3i -1=1+3i.答案:114.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为p =25-18q ,则产量q =________时,利润L 最大.解析:收入R =q·p =q(25-18q)=25q -18q2.利润L =R -C =(25q -18q2)-(100+4q)=-18q2+21q -100(0<q <200),L′=-14q +21,令L′=0,即-14q +21=0,求得独一的极值点q =84.∴产量q 为84时,利润L 最大.答案:8415.已知圆的方程是x2+y2=r2,则经过圆上一点M(x0,y0)的切线方程为x0x +y0y =r2.类比上述性质,可以获得椭圆x2a2+y2b2=1类似的性质为________. 解析:圆的性质中,经过圆上一点M(x0,y0)的切线方程就是将圆的方程中的一个x 与y 分别用M(x0,y0)的横坐标与纵坐标替换.故可得椭圆x2a2+y2b2=1类似的性质为:过椭圆x2a2+y2b2=1上一点P(x0,y0)的切线方程为x0x a2+y0y b2=1.答案:经过椭圆x2a2+y2b2=1上一点P(x0,y0)的切线方程为x0x a2+y0y b2=116.(2021·山东省实验中学月考)给出下列四个命题:①若f′(x 0)=0,则x0是f(x)的极值点;②“可导函数f(x)在区间(a ,b)上不单调”等价于“f(x)在区间(a ,b)上有极值”;③若f(x)>g(x),则f′(x)>g′(x);④如果在区间[a ,b]上函数y =f(x)的图象是一条连续不断的曲线,则该函数在[a ,b]上必然能取得最大值和最小值.其中真命题的序号是________(把所有真命题的序号都填上).解析:②④显然正确;对f(x)=x3,有f′(0)=0,但x =0不是极值点,故①错;f(x)=x +1>g(x)=x ,但f′(x)=g′(x)=1,故③错.答案:②④三、解答题(本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知复数z1=2-3i ,z2=15-5i 2+i 2. 求:(1)z1+z 2;(2)z1·z2;(3)z1z2.解:z2=15-5i 2+i 2=15-5i 3+4i =53-i 3-4i 3+4i 3-4i =5-15i 5 =1-3i.(1)z1+z 2=(2-3i)+(1+3i)=3.(2)z1·z2=(2-3i)(1-3i)=2-9-9i =-7-9i.(3)z1z2=2-3i 1-3i =2-3i 1+3i 1-3i 1+3i =2+9+3i 10=1110+310i. 18.(本小题满分12分)求函数f(x)=ex x -2的单调区间. 解:函数f(x)的定义域为(-∞,2)∪(2,+∞).f′(x)=ex x -2-ex x -22=ex x -3x -22. 因为x ∈(-∞,2)∪(2,+∞),所以ex >0,(x -2)2>0.由f′(x)>0,得x >3,所以函数f(x)的单调递增区间为(3,+∞);由f′(x)<0,得x <3,又定义域为(-∞,2)∪(2,+∞),所以函数f(x)的单调递减区间为(-∞,2)和(2,3).19.(本小题满分12分)已知a ,b ,c >0,且a +b +c =1,求证:(1)a2+b2+c2≥13; (2)a +b +c ≤ 3.证明:(1)∵a2+19≥23a ,b2+19≥23b ,c2+19≥23c ,∴(a2+19)+(b2+19)+(c2+19)≥23a +23b +23c =23.∴a2+b2+c2≥13.(2)∵a·13≤a +132,b·13≤b +132,c·13≤c +132, 三式相加得a 3+b 3+c 3≤12(a +b +c)+12=1, ∴a +b +c ≤ 3.20.(本小题满分12分)已知数列{an}满足Sn +an =2n +1.(1)写出a1,a2,a3,并推测an 的表达式;(2)用数学归纳法证明所得的结论.解:(1)由Sn +an =2n +1,当n =1时,S1=a1,∴a1+a1=2×1+1,得a1=32.当n =2时,S2=a1+a2,则a1+a2+a2=5,将a1=32代入得a2=74. 同理可得a3=158.∴an =2n +1-12n =2-12n .(2)证明:当n =1时,结论成立.假设n =k 时,命题成立,即ak =2-12k ;当n =k +1时,Sn +an =2n +1,则a1+a2+…+ak +2ak +1=2(k +1)+1.∵a1+a2+…+ak =2k +1-ak ,∴2ak +1=4-12k ,ak +1=2-12k +1成立. ∴当n =k +1时,结论也成立.∴按照上述知对于任意自然数n ∈N*,结论成立.21.(本小题满分13分)设函数f(x)=x3+ax2+x +1,a ∈R.(1)若x =1时,函数f(x)取得极值,求函数f(x)在x =-1处的切线方程;(2)若函数f(x)在区间(12,1)内不单调,求实数a 的取值范围.解:(1)由已知得f′(x)=3x2+2ax +1,f′(1)=0,故a =-2,∴f(x)=x3-2x2+x +1,当x =-1时,f(-1)=-3,即切点坐标为(-1,-3). 又f′(-1)=8,∴切线方程为8x -y +5=0.(2)f(x)在区间(12,1)内不单调,即f′(x)=0在(12,1)内有解,令f′(x)=3x2+2ax +1=0,则2ax =-3x2-1.由x ∈(12,1),得2a =-3x -1x .令h(x)=-3x -1x ,由h′(x)=-3+1x2=0,知h(x)在(33,1)上单调递减,在(12,33]上单调递增,∴h(1)<h(x)≤h(33),即h(x)∈(-4,-23].∴-4<2a≤-23,即-2<a≤- 3.而当a =-3时,f′(x)=3x2-23x +1=(3x -1)2≥0,不满足题意. 综上,实数a 的取值范围为(-2,-3).22.(本小题满分13分)已知函数f(x)=38x2-2x +2+ln x.(1)求函数y =f(x)的单调区间;(2)若函数y =f(x)在[em ,+∞)(m ∈Z)上有零点,求m 的最大值.解:(1)函数f(x)的定义域为(0,+∞).f′(x)=34x -2+1x =3x -2x -24x , 当f′(x)>0时,x ∈(0,23)∪(2,+∞);当f′(x)<0时,x ∈(23,2),所以函数f(x)的单调递增区间为(0,23)和(2,+∞),单调递减区间为[23,2].(2)由(1)知y 极大值=f(23)=56+ln 23>0,y 极小值=f(2)=ln 2-12>0.当x >0且x→0时f(x)<0,故f(x)在定义域上存在独一零点x0,且x0∈(0,23).若m≥0,则em≥1,[em ,+∞)⊂(23,+∞),此区间不存在零点,舍去,故m <0.当m =-1时,x ∈[1e ,+∞),f(1e )=1+38e2-2e >0,又(1e ,23)为增区间,此区间不存在零点,舍去.当m =-2时,x ∈[1e2,+∞),f(1e2)=1e2(38e2-2)<0,又(1e2,23)为增区间,且y =f(23)>0,故x0∈(1e2,23).综上,m 的最大值为-2.。

人教新课标版数学高二-选修2-2第1章《导数及应用》单元检测(A)

人教新课标版数学高二-选修2-2第1章《导数及应用》单元检测(A)

第一章 导数及其应用(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知曲线y =x 2+2x -2在点M 处的切线与x 轴平行,则点M 的坐标是( ) A .(-1,3) B .(-1,-3) C .(-2,-3) D .(-2,3)2.函数y =x 4-2x 2+5的单调减区间为( ) A .(-∞,-1)及(0,1) B .(-1,0)及(1,+∞) C .(-1,1)D .(-∞,-1)及(1,+∞)3.函数f (x )=x 3+ax 2+3x -9,在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .54.已知函数f (x )=ax 3-x 2+x -5在(-∞,+∞)上既有极大值,也有极小值,则实数a 的取值范围为( )A .a >13B .a ≥13C .a <13且a ≠0D .a ≤13且a ≠05.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向 作直线运动,则由x =1运动到x =2时F (x )作的功为( )A. 3 JB.233JC.433J D .2 3 J 6.设曲线y =x n +1(n ∈N *)在(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2 010x 1+ log 2 010x 2+…+log 2 010x 2 009的值为( ) A .-log 2 0102 009 B .-1 C .(log 2 0102 009)-1 D .17.已知函数f (a )=ʃa 0sin x d x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π2等于( )A .1B .1-cos 1C .0D .cos 1-18.函数f (x )=2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15 D .5,-169.如果圆柱的轴截面周长为定值4,则圆柱体积的最大值为( ) A.827π B.1627π C.89π D.169π 10.曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积为( )A . 20π⎰(sin x -cos x )d x B .240π⎰ (sin x -cos x )d x C .20π⎰(cos x -sin x )d x D .240π⎰(cos x -sin x )d x11.用力把弹簧从平衡位置拉长10 cm ,此时用的力是200 N ,变力F 做的功W 为( ) A .5 J B .10 J C .20 J D .40 J 12.已知f (x )的导函数f ′(x )图象如图所示,那么f (x )的图象最有可能是图中的( )题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分) 13.已知函数f (x )=-x 3+ax 在区间(-1,1)上是增函数,则实数a 的取值范围是________.14.若a =22π⎰sin x d x ,b =ʃ10cos x d x ,则a 与b 的关系是________.15.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内, 已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为______________. 16.由曲线y =x 2,y =x ,y =3x 所围成的图形面积为________. 三、解答题(本大题共6小题,共70分)17.(10分)设函数f (x )=2x 3-3(a +1)x 2+6ax +8,其中a ∈R .已知f (x )在x =3处取得极 值.(1)求f (x )的解析式;(2)求f (x )在点A (1,16)处的切线方程.18.(12分)设铁路AB 长为50,BC ⊥AB ,且BC =10,为将货物从A 运往C ,现在AB 上距点B 为x 的点M 处修一公路至C ,已知单位距离的铁路运费为2,公路运费为4.(1)将总运费y 表示为x 的函数; (2)如何选点M 才使总运费最小?19.(12分)设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(]0,1上的最大值为12,求a 的值.20.(12分)要设计一容积为V 的有盖圆柱形储油罐,已知侧面的单位面积造价是底面造 价的一半,盖的单位面积造价又是侧面造价的一半.问储油罐的半径r 和高h 之比为何 值时造价最省?21.(12分)若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数的解析式;(2)若方程f (x )=k 有3个不同的根,求实数k 的取值范围.22.(12分)已知函数f (x )=ax 3-32x 2+1(x ∈R ),其中a >0.(1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)若在区间[-12,12]上,f (x )>0恒成立,求a 的取值范围.答案1.B [∵f ′(x)=2x +2=0,∴x =-1. f(-1)=(-1)2+2×(-1)-2=-3. ∴M(-1,-3).]2.A [y ′=4x 3-4x =4x(x 2-1),令y ′<0得x 的范围为(-∞,-1)∪(0,1), 故选A .]3.D [f ′(x)=3x 2+2ax +3.由f(x)在x =-3时取得极值, 即f ′(-3)=0,即27-6a +3=0,∴a =5.] 4.C [f ′(x)=3ax 2-2x +1,函数f(x)在(-∞,+∞)上有极大值,也有极小值, 等价于f ′(x)=0有两个不等实根,即⎩⎪⎨⎪⎧3a ≠0,Δ=4-12a>0.解得a<13且a ≠0.]5.C [由于F(x)与位移方向成30°角.如图:F 在位移方向上的分力F ′=F·cos 30°,W =ʃ21(5-x 2)·cos 30°d x =32ʃ21(5-x 2)d x =32⎝⎛⎭⎫5x -13x 3|21=32×83=433(J).] 6.B [∵y ′|x =1=n +1,∴切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =nn +1.所以log 2 010x 1+log 2 010x 2+…+log 2 010x 2 009 =log 2 010(x 1·x 2·…·x 2009)=log 2 010(12·23·…·2 0092 010)=log 2 01012 010=-1.]7.B [∵f(a)=(-cos x)|a 0=1-cos a , ∴f ⎝⎛⎭⎫π2=1-cos π2=1,∴f(1)=1-cos 1.] 8.A9.A [设圆柱横截面圆的半径为R ,圆柱的高为h ,则2R +h =2. ∵V =πR 2h =πR 2(2-2R)=2πR 2-2πR 3, ∴V ′=2πR(2-3R)=0.令V ′=0,则R =0(舍)或R =23.经检验,R =23时,圆柱体积最大,此时h =23,V max =π·49·23=827π.]10.D[如图所示,两阴影部分面积相等,所示两阴影面积之和等于0<x<π4阴影部分面积的2倍.故选D .]11.B [设F(x)=kx ,则200=k·0.1,∴k =2 000,∴W =ʃ0.102 000x d x =1 000x 2|0.1=10 (J ).]12.A [∵(-∞,-2)时,f′(x)<0,∴f(x)为减函数;同理f(x)在(-2,0)上为增函数, (0,+∞)上为减函数.] 13.a ≥3解析 由题意应有f ′(x)=-3x 2+a ≥0,在区间(-1,1)上恒成立,则a ≥3x 2,x ∈ (-1,1)恒成立,故a ≥3. 14.a<b解析 ∵a =-cos x|22=-cos 2,b =sin x|10=sin 1. 又∵-cos 2=cos(π-2)=sin(2-π2).在单位圆中利用三角函数线估算可知a<b. 15.(-2,15)解析 设P(x 0,y 0)(x 0<0),由题意知:y ′|x =x 0=3x 20-10=2,∴x 20=4. 又∵P 点在第二象限内,∴x 0=-2,∴y 0=15. ∴P 点的坐标为(-2,15). 16.13317.解 (1)f ′(x)=6x 2-6(a +1)x +6a. ∵f(x)在x =3处取得极值,∴f ′(3)=6×9-6(a +1)×3+6a =0, 解得a =3.∴f(x)=2x 3-12x 2+18x +8. (2)A 点在f(x)上,由(1)可知f ′(x)=6x 2-24x +18,f ′(1)=6-24+18=0,∴切线方程为y =16. 18.解 (1)依题意,铁路AM 上的运费为2(50-x), 公路MC 上的运费为4100+x 2,则由A 到C 的总运费为y =2(50-x)+4100+x 2(0≤x ≤50). (2)y ′=-2+4x100+x2(0≤x ≤50).令y ′=0,解得x 1=103,x 2=-103(舍).当0≤x<103时,y ′<0,当50≥x>103时,y ′>0.故当x =103时,y 取得最小值,即当在距离点B 为1033时的点M 处修筑公路至C 时总运费最小.19.解 函数f(x)的定义域为(0,2),f ′(x)=1x -12-x+a.(1)当a =1时,f ′(x)=-x 2+2x (2-x ),所以f(x)的单调递增区间为(0,2),单调递减区间为(2,2).(2)当x ∈(0,1]时,f ′(x)=2-2xx (2-x )+a >0,即f(x)在(0,1]上单调递增,故f(x)在(0,1]上的最大值为f(1)=a ,因此a =12.20.解 由V =πr 2h ,得h =Vπr 2.设盖的单位面积造价为a ,则储油罐的造价M =a πr 2+2a·2πrh +4a·πr 2=5a πr 2+4aVr ,M ′=10a πr -4aVr 2,令M ′=0,解得r =32V 5π,∴经验证,当r =32V 5π时,函数取得极小值,也是最小值,此时,h =V πr 2=325V4π.∴当rh =32V 5π325V 4π=25时,储油罐的造价最省. 21.解 f ′(x)=3ax 2-b.(1)由题意得⎩⎪⎨⎪⎧f ′(2)=12a -b =0f (2)=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13b =4,故所求函数的解析式为f(x)=13x 3-4x +4.(2)由(1)可得f ′(x)=x 2-4=(x -2)(x +2), 令f ′(x)=0,得x =2或x =-2.因此,当x =-2时,f(x)有极大值283,当x =2时,f(x)有极小值-43,所以函数f(x)=13x 3-4x +4的图象大致如右图所示.若f(x)=k 有3个不同的根,则直线y =k 与函数f(x)的图象有3个交点,所以-43<k<283.22.解 (1)当a =1时,f(x)=x 3-32x 2+1,f(2)=3.f ′(x)=3x 2-3x ,f ′(2)=6,所以曲线y =f(x)在点(2,f(2))处的切线方程为 y -3=6(x -2),即y =6x -9. (2)f ′(x)=3ax 2-3x =3x(ax -1).令f ′(x)=0,解得x =0或x =1a .以下分两种情况讨论:①若0<a ≤2,则1a ≥12.当x x (-12,0)0 (0,12)f ′(x) +0 -f(x)极大值当x ∈[-12,12]时,f(x)>0等价于⎩⎨⎧f (-12)>0,f (12)>0,即⎩⎪⎨⎪⎧5-a 8>0,5+a 8>0.解不等式组得-5<a<5.因此0<a ≤2.②若a>2,则0<1a <12.x (-12,0) 0 (0,1a )1a (1a ,12) f ′(x) +0 -0 +f(x)极大值极小值当x ∈[-12,12]时,f(x)>0等价于⎩⎨⎧f (-12)>0,f (1a )>0,即⎩⎪⎨⎪⎧5-a8>0,1-12a 2>0.解不等式组得22<a<5或a<-22.因此2<a<5.综合①②,可知a的取值范围为0<a<5.。

2021年高中数学 第一章 导数及其应用模块综合检测A 新人教版选修2-2

2021年高中数学 第一章 导数及其应用模块综合检测A 新人教版选修2-2

2021年高中数学 第一章 导数及其应用模块综合检测A 新人教版选修2-2一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z 满足(3-4i )z =|4+3i |,则z 的虚部为( )A .-4B .-45C .4D.452.求由曲线y =2x 2与直线x =0,x =t (t >0),y =0所围成的曲边梯形的面积时,将区间[0,t ]等分成n 个小区间,则第i 个区间为( )A .[i -1n ,in ] B .[i n ,i +1n]C .[t i -1n ,tin] D .[t i -2n ,t i -1n] 3.数列2,5,11,20,x ,47,…中的x 等于( )A .28B .32C .33D .274.已知z 1=a +bi ,z 2=c +di ,若z 1-z 2是纯虚数,则( ) A .a -c =0,且b -d ≠0 B .a -c =0,且b +d ≠0 C .a +c =0,且b -d ≠0 D .a +c =0,且b +d ≠0 .5.如图,阴影部分面积为( )A.⎠⎛a b [f (x )-g (x )]dxB.⎠⎛a c [g (x )-f (x )]dx +⎠⎛c b [f (x )-g (x )]dxC.⎠⎛ac [f (x )-g (x )]dx +⎠⎛cb [g (x )-f (x )]dxD.⎠⎛ab [g (x )-f (x )]dx6.用反证法证明命题:“若(a -1)(b -1)(c -1)>0,则a ,b ,c 中至少有一个大于1”时,下列假设中正确的是( )A .假设a ,b ,c 都大于1B .假设a ,b ,c 都不大于1C .假设a ,b ,c 至多有一个大于1D .假设a ,b ,c 至多有两个大于17.k 棱柱有f (k )个对角面,而k +1棱柱有对角面的个数为( ) A .2f (k ) B .k -1+f (k ) C .f (k )+k D .f (k )+28.函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)9.函数f (x )=x (1-x 2)在[0,1]上的最大值为( ) A.239 B.229C.329D.3810.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R =( )A.V S 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4 二、填空题(本大题共5小题,把答案填在题中横线上)11.复数z 1=c os θ+i ,z 2=sin θ-i ,则|z 1-z 2|的最大值为________.12.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系为________. 13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分⎠⎛01f (x )dx ,先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ),再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方案可得积分⎠⎛01f (x )dx 的近似值为________.14.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.15.自然数列按如图规律排列,若2 013在第m 行第n 个数,则n m=________. 1 3 2 4 5 6 10 9 8 711 12 13 14 15 …三、解答题(本大题共5小题,解答时应写出必要的文字说明、证明过程或演算步骤) 16.已知复数z =c os θ+i sin θ(0≤θ≤2π),求θ为何值时,|1-i +z |取得最值.并求出它的最值.17.已知sin α+c os α=1,求证:sin 6α+c os 6α=1.18.用数学归纳法证明122+132+142+…+1n 2<1-1n(n ≥2,n ∈N *).19. 如图,在正三棱柱ABC -A 1B 1C 1中,底面ABC 为正三角形,M 、N 、G 分别是棱CC 1、AB 、BC 的中点.且CC 1=2A C.求证:(1)C N ∥平面AM B 1; (2)B 1M ⊥平面AMG .20.设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.(1)求a ,b 的值;(2)证明:当0<x <2时,f (x )<9xx +6.参考答案一、选择题:1、解析:选D.∵(3-4i )z =|4+3i |,∴z =|4+3i |3-4i =42+323-4i =53+4i 25=35+45i ,∴z 的虚部为45.2、解析:选C.把区间[0,t ]等分成n 个小区间后,每个小区间的长度为t n,n 个小区间分别为[0,t n ],[t n ,2t n ],[2t n ,3t n ],…,[t i -1n ,ti n ],…,[n -1tn,t ](其中i =1,2,3,…,n ).故选C.3、解析:选B.由题中数字可发现:2+3=5,5+6=11,11+9=20,故20+12=32.4、解析:选A.∵z 1-z 2=a +bi -(c +di ) =(a -c )+(b -d )i 为纯虚数,∴⎩⎪⎨⎪⎧a -c =0b -d ≠05、解析:选B.∵在区间(a ,c )上g (x )>f (x ),而在区间(c ,b )上g (x )<f (x ). ∴S =⎠⎛a c [g (x )-f (x )]dx +⎠⎛cb [f (x )-g (x )]dx ,故选B.6、解析:选B.a ,b ,c 至少有一个大于1的否定为a ,b ,c 都不大于1.7、解析:选B.新增加的第k +1条棱与其不相邻的第k -2条棱构成k -2个对角面,与其相邻的两条棱构成一个对角面,这样共增加k -1个对角面.8、解析:选B.根据函数的导数小于0的解集就是函数的单调减区间求解.由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].9、解析:选A.f (x )=x -x 3,∴f ′(x )=1-3x 2,当x =33时,f ′(x )=0; 当x ∈⎣⎢⎡⎭⎪⎫0,33时,f ′(x )>0; 当x ∈⎝ ⎛⎦⎥⎤33,1时,f ′(x )<0.∴f ⎝ ⎛⎭⎪⎫33=239为极大值. 又f (0)=0,f (1)=0, ∴f (x )的最大值是f ⎝ ⎛⎭⎪⎫33=239. 10、解析:选C.设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和. 则四面体的体积为V S -ABC =13(S 1+S 2+S 3+S 4)R ,∴R =3VS 1+S 2+S 3+S 4,故选C.二、填空题:11、解析:|z 1-z 2|=|(c os θ-sin θ)+2i | = c os θ-s in θ2+4 =5-2s in θc os θ =5-s in 2θ≤ 6. 答案: 612、解析:要比较P 与Q 的大小,只需比较P 2与Q 2的大小,只需比较2a +7+2a ·a +7与2a +7+2a +3a +4的大小,只需比较a 2+7a 与a 2+7a +12的大小,即比较0与12的大小,而0<12.故P <Q .答案:P <Q13、解析:⎠⎛01f (x )dx 的几何意义是函数f (x )(其中0≤f (x )≤1)的图象与x 轴、直线x=0和直线x =1所围成图形的面积,根据几何概型易知⎠⎛01f (x )dx ≈N 1N.答案:N 1N14、解析:因为y =12x 2,所以y ′=x ,易知P (4,8),Q (-2,2),所以在P 、Q 两点处切线的斜率的值为4或-2.所以这两条切线的方程为l 1:4x -y -8=0,l 2:2x +y +2=0, 将这两个方程联立方程组求得y =-4. 答案:-415、解析:观察图中数字的排列规律,可知自然数的排列个数呈等差数列,所以其总个数之和与行数m 有关,为m m +12.而62×632<2 013<63×642,∴m =63.而2 013-62×632=60,∴n =60.答案:2021三、解答题:16、解:|1-i +z |=|c os θ+i sin θ+1-i | = c os θ+12+s in θ-12 =2c os θ-s in θ+3= 22c os θ+π4+3,当θ=7π4时,|1-i +z |max =2+1;当θ=3π4时,|1-i +z |min =2-1.17、证明:要证sin 6α+c os 6α=1,只需证(sin 2α+c os 2α)(sin 4α-sin 2αc os 2α+c os 4α)=1.即证sin 4α-sin 2αc os 2α+c os 4α=1,只需证(sin 2α+c os 2α)2-3sin 2αc os 2α=1,即证1-3sin 2αc os 2α=1,即证sin 2αc os 2α=0,由已知sin α+c os α=1,所以sin 2α+c os 2α+2sin αc os α=1,所以sin αc os α=0,所以sin 2αc os 2α=0,故sin 6α+c os 6α=1.18、证明:当n =2时,左式=122=14,右式=1-12=12,因为14<12,所以不等式成立.假设n =k (k ≥2,k ∈N *)时,不等式成立,即122+132+142+…+1k 2<1-1k,则当n =k +1时, 122+132+142+…+1k 2+1k +12<1-1k +1k +12=1-k +12-k k k +12=1-k 2+k +1k k +12<1-k k +1k k +12=1-1k +1, 所以当n =k +1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立.19、证明:(1)设AB 1的中点为P ,连结NP 、MP .∵C M 綊12AA 1,NP 綊12AA 1,∴C M 綊NP ,∴C NPM 是平行四边形, ∴C N ∥MP .∵C N ⊄平面AM B 1,MP ⊂平面AM B 1, ∴C N ∥平面AM B 1.(2)∵CC 1⊥平面ABC ,∴平面CC 1B 1B ⊥平面ABC ,∵AG ⊥BC ,∴AG ⊥平面CC 1B 1B ,∴B 1M ⊥AG .∵CC 1⊥平面ABC ,平面A 1B 1C 1∥平面ABC ,∴CC 1⊥A C ,CC 1⊥B 1C 1, 设A C =2a ,则CC 1=22a .在Rt △M CA 中,A M =CM 2+AC 2=6a . 同理,B 1M =6a .∵BB 1∥CC 1,∴BB 1⊥平面ABC ,∴BB 1⊥AB ,∴AB 1=B 1B 2+A B 2=C 1C 2+A B 2=23a ;∴A M 2+B 1M 2=AB 21,∴B 1M ⊥A M , 又AG ∩A M =A , ∴B 1M ⊥平面AMG .20、解:(1)由y =f (x )过(0,0)点,得b =-1.由y =f (x )在(0,0)点的切线斜率为32,又y ′⎪⎪⎪⎪⎪⎪x =0=⎝ ⎛⎭⎪⎫1x +1+12x +1+a x =0=32+a ,得a =0. (2)证明:法一:由均值不等式,当x >0时,2x +1·1<x +1+1=x +2,故x +1<x2+1.记h (x )=f (x )-9x x +6, 则h ′(x )=1x +1+12x +1-54x +62=2+x +12x +1-54x +62<x +64x +1-54x +62=x +63-216x +14x +1x +62. 令g (x )=(x +6)3-216(x +1),则当0<x <2时,g ′(x )=3(x +6)2-216<0. 因此g (x )在(0,2)内是递减函数.又由g (0)=0,得g (x )<0,所以h ′(x )<0. 因此h (x )在(0,2)内是递减函数.又h (0)=0,得h (x )<0.于是当0<x <2时,f (x )<9xx +6.法二:由(1)知f (x )=ln(x +1)+x +1-1. 由均值不等式,当x >0时,2x +1·1<x +1+1=x +2,故x +1<x2+1.①令k (x )=ln(x +1)-x ,则k (0)=0,k ′(x )=1x +1-1=-x x +1<0, 故k (x )<0,即ln(x +1)<x .②由①②得,当x >0时,f (x )<32x .记h (x )=(x +6)f (x )-9x ,则当0<x <2时,h ′(x )=f (x )+(x +6)f ′(x )-9<32x +(x +6)·⎝ ⎛⎭⎪⎫1x +1+12x +1-9=12x +1[3x (x+1)+(x+6)(2+x +1)-18(x +1)]<12x +1⎣⎢⎡⎦⎥⎤3x x +1+x +6⎝ ⎛⎭⎪⎫3+x 2-18x +1=x 4x +1(7x -18)<0. 因此h (x )在(0,2)内单调递减. 又h (0)=0,所以h (x )<0,即f (x )<9xx +6.21234 52F2 勲24891 613B 愻 27039 699F 榟E30249 7629 瘩29271 7257 牗40072 9C88 鲈p 20341 4F75 併 ?20064 4E60 习26762 688A 梊。

2014-2015学年人教a版数学选修2-2第1章《导数及其应用》综合检测(含答案)

2014-2015学年人教a版数学选修2-2第1章《导数及其应用》综合检测(含答案)

第一章综合检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2013·天津红桥区高二段测)二次函数y =f (x )的图象过原点且它的导函数y =f ′(x )的图象是如图所示的一条直线,y =f (x )的图象的顶点在( )A .第Ⅰ象限B .第Ⅱ象限C .第Ⅲ象限D .第Ⅳ象限[答案] A[解析] 设f (x )=ax 2+bx +c ,∵二次函数y =f (x )的图象过原点,∴c =0,∴f ′(x )=2ax +b ,由y =f ′(x )的图象可知,2a <0,b >0,∴a <0,b >0,∴-b 2a >0,4ac -b 24a =-b 24a>0,故选A.2.(2013·华池一中高二期中)曲线y =-1x 在点(12,-2)处的切线方程为( )A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x -4[答案] B[解析] ∵y ′=1x 2,∴y ′|x =12=4,∴k =4,∴切线方程为y +2=4(x -12),即y =4x -4.3.(2014·淄博市临淄区学分认定考试)下列函数中,x =0是其极值点的函数是( ) A .f (x )=-x 3B .f (x )=-cos xC .f (x )=sin x -xD .f (x )=1x[答案] B[解析] 对于A,f′(x)=-3x2≤0恒成立,在R上单调递减,没有极值点;对于B,f′(x)=sin x,当x∈(-π,0)时,f′(x)<0,当x∈(0,π)时,f′(x)>0,故f(x)=-cos x在x=0的左侧区间(-π,0)内单调递减,在其右侧区间(0,π)内单调递增,所以x=0是f(x)的一个极小值点;对于C,f′(x)=cos x-1≤0恒成立,在R上单调递减,没有极值点;对于D,f(x)=1x在x=0没有定义,所以x=0不可能成为极值点,综上可知,答案选B.4.(2013·北师大附中高二期中)已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值范围是( )A.(-∞,-3),∪(3,+∞) B.(-3,3)C.(-∞,-3]∪[3,+∞) D.[-3,3][答案] D[解析] f′(x)=-3x2+2ax-1,∵f(x)在(-∞,+∞)上是单调函数,且f′(x)的图象是开口向下的抛物线,∴f′(x)≤0恒成立,∴Δ=4a2-12≤0,∴-3≤a≤3,故选D.5.(2013·武汉实验中学高二期末)设函数f(x)在定义域内可导,y=f(x)的图象如下图所示,则导函数y=f′(x)的图象可能是( )[答案] A[解析] f(x)在(-∞,0)上为增函数,在(0,+∞)上变化规律是减→增→减,因此f′(x)的图象在(-∞,0)上,f′(x)>0,在(0,+∞)上f′(x)的符号变化规律是负→正→负,故选A.6.(2012·陕西文,9)设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点[答案] D[解析] 由f ′(x )=-2x 2+1x =1x (1-2x)=0可得x =2.当0<x <2时,f ′(x )<0,f (x )单调递减,当x >2时f ′(x )>0,f (x )单调递增.所以x =2为极小值点.7.(2014·天门市调研)已知函数f (x )=a sin x -b cos x 在x =π4时取得极值,则函数y=f (3π4-x )是( )A .偶函数且图象关于点(π,0)对称B .偶函数且图象关于点(3π2,0)对称C .奇函数且图象关于点(3π2,0)对称D .奇函数且图象关于点(π,0)对称 [答案] D[解析] ∵f (x )的图象关于x =π4对称,∴f (0)=f (π2),∴-b =a ,∴f (x )=a sin x -b cos x =a sin x +a cos x =2a sin(x +π4),∴f (3π4-x )=2a sin(3π4-x +π4)=2a sin(π-x )=2a sin x .显然f (3π4-x )是奇函数且关于点(π,0)对称,故选D.8.(2013·武汉实验中学高二期末)定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x +1的x 的集合为( )A .{x |-1<x <1}B .{x |x <1}C .{x |x <-1或x >1}D .{x |x >1}[答案] B[解析] 令g (x )=2f (x )-x -1,∵f ′(x )>12,∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数,∵f(1)=1,∴g(1)=2f(1)-1-1=0,∴当x <1时,g (x )<0,即2f (x )<x +1,故选B.9.(2013·华池一中高二期中)若关于x 的方程x 3-3x +m =0在[0,2]上有根,则实数m 的取值范围是( )A .[-2,2]B .[0,2]C .[-2,0]D .(-∞,-2)∪(2,+∞)[答案] A[解析] 令f (x )=x 3-3x +m ,则f ′(x )=3x 2-3=3(x +1)(x -1),显然当x <-1或x >1时,f ′(x )>0,f (x )单调递增,当-1<x <1时,f ′(x )<0,f (x )单调递减,∴在x =-1时,f (x )取极大值f (-1)=m +2,在x =1时,f (x )取极小值f (1)=m -2.∵f (x )=0在[0,2]上有解,∴⎩⎪⎨⎪⎧f1<0,f 2>0,∴⎩⎪⎨⎪⎧m -2≤0,2+m ≥0,∴-2≤m ≤2.10.(2013·河南安阳中学高二期末)f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a )[答案] A[解析] 令F (x )=xf (x ),(x >0),则F ′(x )=xf ′(x )+f (x )≤0,∴F (x )在(0,+∞)上为减函数,∵0<a <b ,∴F (a )>f (b ),即af (a )>bf (b ),与选项不符; 由于xf ′(x )+f (x )≤0且x >0,f (x )≥0,∴f ′(x )≤-f xx≤0,∴f (x )在(0,+∞)上为减函数,∵0<a <b ,∴f (a )>f (b ), ∴bf (a )>af (b ),结合选项知选A.11.(2014·天门市调研)已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )[答案] D[解析] 由导函数图象可知,当x <0时,函数f (x )递减,排除A ,B ;当0<x <x 1时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.12.(2013·泰安一中高二段测)已知函数f (x )的导函数的图象如图所示,若△ABC 为锐角三角形,则一定成立的是( )A .f (sin A )>f (cosB ) B .f (sin A )<f (cos B )C .f (sin A )>f (sin B )D .f (cos A )<f (cos B )[答案] A[解析] 由导函数图象可知,x >0时,f ′(x )>0,即f (x )单调递增,又△ABC 为锐角三角形,则A +B >π2,即π2>A >π2-B >0,故sin A >sin(π2-B )>0,即sin A >cos B >0,故f (sin A )>f (cos B ),选A.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2013·华池一中高二期中)已知f (x )=x 3+3x 2+a (a 为常数),在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.[答案] 57[解析] f ′(x )=3x 2+6x =3x (x +2),当x ∈[-3,-2)和x ∈(0,3]时,f ′(x )>0,f (x )单调递增,当x ∈(-2,0)时,f ′(x )<0,f (x )单调递减,∴极大值为f (-2)=a +4,极小值为f (0)=a ,又f (-3)=a ,f (3)=54+a ,由条件知a =3,∴最大值为f (3)=54+3=57.14.(2014·湖北重点中学高二期中联考)已知函数f (x )=13ax 3+12ax 2-2ax +2a +1的图象经过四个象限,则实数a 的取值范围是________.[答案] (-65,-316)[解析] f ′(x )=ax 2+ax -2a =a (x -1)(x +2), 由f (x )的图象经过四个象限知,若a >0,则⎩⎪⎨⎪⎧f-2>0,f 1<0,此时无解;若a <0,则⎩⎪⎨⎪⎧f-2<0,f 1>0,6 5<a<-316,综上知,-65<a<-316.∴-15.(2014·泉州实验中学期中)已知函数f (x )=x 3-3x ,若过点A (1,m )(m ≠-2)可作曲线y =f (x )的三条切线,则实数m 的取值范围为________.[答案] (-3,-2)[解析] f ′(x )=3x 2-3,设切点为P (x 0,y 0),则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),∵切线经过点A (1,m ),∴m -(x 30-3x 0)=(3x 20-3)(1-x 0),∴m =-2x 30+3x 20-3,m ′=-6x 20+6x 0,∴当0<x 0<1时,此函数单调递增,当x 0<0或x 0>1时,此函数单调递减,当x 0=0时,m =-3,当x 0=1时,m =-2,∴当-3<m <-2时,直线y =m 与函数y =-2x 30+3x 20-3的图象有三个不同交点,从而x 0有三个不同实数根,故过点A (1,m )可作三条不同切线,∴m 的取值范围是(-3,-2).16.如图阴影部分是由曲线y =1x、y 2=x 与直线x =2、y =0围成,则其面积为______.[答案] 23+ln2[解析] 由⎩⎪⎨⎪⎧y 2=x ,y =1x ,得交点A (1,1)由⎩⎪⎨⎪⎧x =2y =1x得交点B ⎝ ⎛⎭⎪⎫2,12.故所求面积S =⎠⎛01x d x +⎠⎛121xd x=23x 32| 10+ln x | 21=23+ln2. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.[解析] 函数f(x)的定义域为(0,2),f ′(x )=1x -12-x+a ,(1)当a =1时,f ′(x )=-x 2+2x 2-x ,∴当x ∈(0,2)时,f ′(x )>0,当x ∈(2,2)时,f ′(x )<0,所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx 2-x+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.18.(本题满分12分)(2014·韶关市曲江一中月考)已知函数f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,当x =1时,f (x )取得极值-2.(1)求函数f (x )的解析式;(2)求函数f (x )的单调区间和极大值;(3)证明:对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立. [解析] (1)∵f (x )是R 上的奇函数, ∴f (-x )=-f (x ),即-ax 3-cx +d =-ax 3-cx -d ,∴d =-d , ∴d =0(或由f (0)=0得d =0). ∴f (x )=ax 3+cx ,f ′(x )=3ax 2+c , 又当x =1时,f (x )取得极值-2,∴⎩⎪⎨⎪⎧f 1=-2,f ′1=0,即⎩⎪⎨⎪⎧a +c =-2,3a +c =0,解得⎩⎪⎨⎪⎧a =1,c =-3.∴f (x )=x 3-3x .(2)f ′(x )=3x 2-3=3(x +1)(x -1),令f ′(x )=0,得x =±1, 当-1<x <1时,f ′(x )<0,函数f (x )单调递减; 当x <-1或x >1时,f ′(x )>0,函数f (x )单调递增;∴函数f (x )的递增区间是(-∞,-1)和(1,+∞);递减区间为(-1,1). 因此,f (x )在x =-1处取得极大值,且极大值为f (-1)=2.(3)由(2)知,函数f (x )在区间[-1,1]上单调递减,且f (x )在区间[-1,1]上的最大值为M =f (-1)=2.最小值为m =f (1)=-2.∴对任意x 1、x 2∈(-1,1),|f (x 1)-f (x 2)|<M -m =4成立.即对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立.19.(本题满分12分)(2014·北京海淀期中)已知函数f (x )=x 2-2(a +1)x +2a ln x (a >0).(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求f(x)的单调区间;(3)若f(x)≤0在区间[1,e]上恒成立,求实数a的取值范围.[解析] (1)∵a =1,∴f (x )=x 2-4x +2ln x , ∴f ′(x )=2x 2-4x +2x(x >0),f (1)=-3,f ′(1)=0,所以切线方程为y =-3.(2)f ′(x )=2x 2-2a +1x +2a x=2x -1x -ax(x >0),令f ′(x )=0得x 1=a ,x 2=1,当0<a <1时,在x ∈(0,a )或x ∈(1,+∞)时,f ′(x )>0,在x ∈(a,1)时,f ′(x )<0,∴f (x )的单调递增区间为(0,a )和(1,+∞),单调递减区间为(a,1);当a =1时,f ′(x )=2x -12x≥0,∴f (x )的单调增区间为(0,+∞);当a >1时,在x ∈(0,1)或x ∈(a ,+∞)时,f ′(x )>0,在x ∈(1,a )时,f ′(x )<0,∴f (x )的单调增区间为(0,1)和(a ,+∞),单调递减区间为(1,a ).(3)由(2)可知,f (x )在区间[1,e]上只可能有极小值点,∴f (x )在区间[1,e]上的最大值必在区间端点取到,∴f (1)=1-2(a +1)≤0且f (e)=e 2-2(a +1)e +2a ≤0,解得a ≥e 2-2e2e -2.20.设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x, f ′(x )≥m 恒成立,求m 的最大值; (2)若方程f (x )=0有且仅有一个实根,求a 的取值范围. [解析] (1)f ′(x )=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞).f ′(x )≥m ,即3x 2-9x +(6-m )≥0恒成立. 所以Δ=81-12(6-m )≤0,得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时f ′(x )>0. 所以当x =1时,f (x )取极大值f (1)=52-a ,当x =2时,f (x )取极小值f (2)=2-a .故当f (2)>0或f (1)<0时,方程f (x )=0仅有一个实根,解得a <2或a >52.21.(本题满分12分)(2014·荆州中学、龙泉中学、宜昌一中、襄阳四中期中联考)已知函数f (x )=ln x +ax +1,a 为常数.(1)若a =92,求函数f (x )在[1,e ]上的值域;(e 为自然对数的底数,e ≈2.72)(2)若函数g(x)=f(x)+x在[1,2]上为单调减函数,求实数a的取值范围.[解析] (1)由题意f ′(x )=1x-a x +12,当a =92时,f ′(x )=1x -92x +12=x -22x -12x x +12. ∵x ∈[1,e ],∴f (x )在[1,2)上为减函数,[2,e ]上为增函数, 又f (2)=ln2+32,f (1)=94,f (e )=1+92e +2,比较可得f (1)>f (e ),∴f (x )的值域为[ln2+32,94].(2)由题意得g ′(x )=1x-a x +12+1≤0在x ∈[1,2]上恒成立,∴a ≥x +12x+(x +1)2=x 2+3x +1x+3恒成立,设h (x )=x 2+3x +1x+3(1≤x ≤2),∴当1≤x ≤2时,h ′(x )=2x +3-1x2>0恒成立,∴h (x )max =h (2)=272,∴a ≥272,即实数a 的取值范围是[272,+∞).22.(本题满分14分)(2014·北京海淀期中)如图,已知点A (11,0),直线x =t (-1<t <11)与函数y =x +1的图象交于点P ,与x 轴交于点H ,记△APH 的面积为f (t ).(1)求函数f (t )的解析式; (2)求函数f (t )的最大值.[解析] (1)由已知AH =11-t ,PH =t +1,所以△APH 的面积为f (t )=12(11-t )t +1,(-1<t <11).(2)解法1:f ′(t )=33-t 4t +1,由f ′(t )=0得t =3,函数f (t )与f ′(t )在定义域上的情况如下表:t (-1,3) 3 (3,11)所以当t =3时,函数f (t )取得最大值8. 解法2.由f (t )=12(11-t )t +1=1211-t2t +1,-1<t <11,设g (t )=(11-t )2(t +1),-1<t <11,则g ′(t )=-2(11-t )(t +1)+(11-t )2=(t -11)(t -11+2t +2)=3(t -3)(t -11).g (t )与g ′(t )在定义域上的情况见下表:t (-1,3) 3 (3,11) g ′(t ) + 0 - g (t )单调递增极大值单调递减所以当t =3所以当t =3时,函数f (t )取得最大值12g3=8.一、选择题1.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1[答案] A[解析] y ′=2x +a ,∴y ′|x =0=(2x +a )|x =0=a =1, 将(0,b )代入切线方程得b =1.2.(2014·浙江杜桥中学期中)已知函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a =( )A .2B .3C .4D .5[答案] D[解析] f ′(x )=3x 2+2ax +3,由条件知,x =-3是方程f ′(x )=0的实数根,∴a =5.3.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值,最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15D .5,-16[答案] A[解析] ∵y ′=6x 2-6x -12=0,得x =-1(舍去)或x =2,故函数y =f (x )=2x 3-3x2-12x +5在[0,3]上的最值可能是x 取0,2,3时的函数值,而f (0)=5,f (2)=-15,f (3)=-4,故最大值为5,最小值为-15,故选A.4.⎠⎛241xd x 等于( )A .-2ln2B .2ln2C .-ln2D .ln2[答案] D[解析] 因为(ln x )′=1x,所以 ⎠⎛241xd x =ln x |42=ln4-ln2=ln2.5.(2013·吉林白山一中高二期末)已知定义在R 上的函数f (x )的导函数f ′(x )的大致图象如图所示,则下列结论一定正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e)C .f (c )>f (b )>f (a )D .f (c )>f (e)>f (d )[答案] C[解析] 由图可知f ′(x )在(-∞,c )和(e ,+∞)上取正值,在(c ,e)上取负值,故f (x )在(-∞,c )和(e ,+∞)上单调递增,在(c ,e)上单调递减,∵a <b <c ,∴f (a )<f (b )<f (c ),故选C.6.已知函数f (x )=4x +3sin x ,x ∈(-1,1),如果f (1-a )+f (1-a 2)<0成立,则实数a 的取值范围为( )A .(0,1)B .(1,2)C .(-2,-2)D .(-∞,-2)∪(1,+∞)[答案] B[解析] ∵f (x )=4x +3sin x ,x ∈(-1,1),∴f ′(x )=4+3cos x >0在x ∈(-1,1)上恒成立,∴f (x )在(-1,1)上是增函数,又f (x )=4x +3sin x ,x ∈(-1,1)是奇函数,∴不等式f (1-a )+f (1-a 2)<0可化为f (1-a )<f (a 2-1),从而可知,a 须满足⎩⎪⎨⎪⎧-1<1-a <1,-1<a 2-1<1,1-a <a 2-1.解得1<a < 2.7.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一个直角坐标系中,不可能正确的是( )[答案] D[解析] A 中,当f (x )为二次函数时,f ′(x )为一次函数,由单调性和导数值的符号关系知A 可以是正确的,同理B 、C 都可以是正确的,但D 中f (x )的单调性为增、减、增,故f ′(x )的值应为正负正,因此D 一定是错误的.8.函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )[答案] D[解析] 由f (x )的图象知,f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴在(0,+∞)上f ′(x )≤0,在(-∞,0)上f ′(x )≥0,故选D.9.如果1N 能拉长弹簧1cm ,为了将弹簧拉长6cm ,所耗费的功为( ) A .0.18J B .0.26J C .0.12JD .0.28J[解析] 设F(x)=kx,当F(x)=1时,x=0.01m,则k=100,∴W=∫0.060100x d x=5010.(2014·甘肃省金昌市二中、临夏中学期中)已知函数f (x )=ln x ,则函数g (x )=f (x )-f ′(x )的零点所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[答案] B[解析] 由题可知g (x )=ln x -1x ,∵g (1)=-1<0,g (2)=ln2-12=ln2-ln e>0,∴选B.11.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确[答案] D[解析] f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意得x 2-2(4m -1)x +15m 2-2m -7≥0恒成立,∴Δ=4(4m -1)2-4(15m 2-2m -7) =64m 2-32m +4-60m 2+8m +28 =4(m 2-6m +8)≤0, ∴2≤m ≤4,故选D.12.(2014·浙江省五校联考)已知函数f (x )=13x 3+12mx 2+m +n2x 的两个极值点分别为x 1、x 2,且0<x 1<1<x 2,点P (m ,n )表示的平面区域内存在点(x 0,y 0)满足y 0=log a (x 0+4),则实数a 的取值范围是( )A .(0,12)∪(1,3)B .(0,1)∪(1,3)C .(12,1)∪(1,3]D .(0,1)∪[3,+∞)[答案] B[解析] f ′(x )=x 2+mx +m +n2,由条件知,方程f ′(x )=0的两实根为x 1、x 2且0<x 1<1<x 2,∴⎩⎪⎨⎪⎧f ′0>0,f ′1<0,∴⎩⎪⎨⎪⎧m +n2>0,1+m +m +n2<0,∴⎩⎪⎨⎪⎧m +n >0,3m +n <-2,由⎩⎪⎨⎪⎧m +n =0,3m +n =-2,得⎩⎪⎨⎪⎧m =-1,n =1,∴⎩⎪⎨⎪⎧x 0<-1,y 0>1.由y 0=log a (x 0+4)知,当a >1时,1<y 0<log a 3,∴1<a <3;当0<a <1时,y 0=log a (x 0+4)>loga3,由于y 0>1,log a 3<0,∴对∀a ∈(0,1),此式都成立,从而0<a <1,综上知0<a <1或1<a <3,故选B.二、填空题13.(2014·杭州七校联考)若函数f (x )=x 3-3bx +b 在区间(0,1)内有极值,则实数b 的取值范围是________.[答案] (0,1)[解析] f ′(x )=3x 2-3b ,∵f (x )在(0,1)内有极值, ∴f ′(x )=0在(0,1)内有解,∴0<b <1.14.(2013·泰州二中高二期中)函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =________.[答案] 5[解析] f ′(x )=3x 2+2ax +3,由条件知,x =-3是f ′(x )=0的根,即f ′(-3)=0,∴27-6a +3=0,∴a =5.15.对正整数n ,设曲线y =x n(1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和是__________________. [答案] 2n +1-2[解析] ∵y =x n(1-x ),∴y ′=(x n)′(1-x )+(1-x )′·x n=n ·x n -1(1-x )-x n.f ′(2)=-n ·2n -1-2n =(-n -2)·2n -1.在点x =2处点的纵坐标为y =-2n. ∴切线方程为y +2n=(-n -2)·2n -1(x -2).令x =0得,y =(n +1)·2n, ∴a n =(n +1)·2n,∴数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为22n-12-1=2n +1-2.16.(2014·哈六中期中)已知函数f (x +2)是偶函数,x >2时f ′(x )>0恒成立(其中f ′(x )是函数f (x )的导函数),且f (4)=0,则不等式(x +2)f (x +3)<0的解集为________.[答案] (-∞,-3)∪(-2,1)[解析] ∵函数y =f (x +2)是偶函数,∴其图象关于y 轴对称,∵y =f (x +2)的图象向右平移两个单位得到y =f (x )的图象,∴函数y =f (x )的图象关于直线x =2对称,∵x >2时,f ′(x )>0,∴f (x )在(2,+∞)上单调递增,在(-∞,2)上单调递减,又f (4)=0,∴f (0)=0,∴0<x <4时,f (x )<0,x <0或x >4时,f (x )>0,由(x +2)f (x +3)<0得⎩⎪⎨⎪⎧x +2<0,fx +3>0,(1)或⎩⎪⎨⎪⎧x +2>0,f x +3<0.(2)由(1)得⎩⎪⎨⎪⎧x <-2,x +3<0或x +3>4,∴x <-3;由(2)得⎩⎪⎨⎪⎧x >-2,0<x +3<4.∴-2<x <1,综上知,不等式的解集为(-∞,-3)∪(-2,1) 三、解答题17.(2013·四川达州诊断)已知函数f (x )=x 3+ax 2-3bx +c (b >0),且g (x )=f (x )-2是奇函数.(1)求a 、c 的值;(2)若函数f (x )有三个零点,求b 的取值范围. [解析] (1)∵g (x )=f (x )-2是奇函数, ∴g (-x )=-g (x )对x ∈R 成立, ∴f (-x )-2=-f (x )+2对x ∈R 成立, ∴ax 2+c -2=0对x ∈R 成立, ∴a =0且c =2.(2)由(1)知f (x )=x 3-3bx +2(b >0), ∴f ′(x )=3x 2-3b =3(x -b )(x +b ), 令f ′(x )=0得x =±b ,x (-∞,-b )-b (-b ,b )b(b ,+∞)f ′(x ) + 0 - 0 + f (x )增极大值减极小值增依题意有⎩⎨⎧f -b >0,fb <0,∴b >1,故正数b 的取值范围是(1,+∞).18.在曲线y =x 3(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴围成图形的面积为112,试求过切点A 的切线方程. [解析] 设切点A (x 0,x 30),切线斜率k =y ′|x =x 0=3x 20.∴切线的方程为y -x 30=3x 20(x -x 0). 令y =0,得x =2x 03.依题意S =∫x 00x 3d x -12×(x 0-2x 03)·x 3=14x 40-16x 40=112x 40=112, ∵x 0≥0,∴x 0=1.∴切线方程为y -1=3(x -1),即3x -y -2=0.19.(2014·福建安溪一中、养正中学联考)已知函数f (x )=x 3+ax 2+bx +5,若曲线f (x )在点(1,f (1))处的切线斜率为3,且x =23时,y =f (x )有极值.(1)求函数f (x )的解析式;(2)求函数f (x )在[-4,1]上的最大值和最小值. [解析] f ′(x )=3x 2+2ax +b ,(1)由题意得,⎩⎪⎨⎪⎧f ′23=3×232+2a ×23+b =0,f ′1=3×12+2a ×1+b =3.解得⎩⎪⎨⎪⎧a =2,b =-4.经检验得x =23时,y =f (x )有极小值,所以f (x )=x 3+2x 2-4x +5.(2)由(1)知,f ′(x )=3x 2+4x -4=(x +2)(3x -2). 令f ′(x )=0,得x 1=-2,x 2=23,f ′(x ),f (x )的值随x 的变化情况如下表: x -4 (-4,-2)-2 (-2,23)23 (23,1) 1 f ′(x ) + 0 - 0 + f (x )单调递增极大值 单调递减极小值 单调递增函数值-111395274∵f (3)=27,f (-2)=13,f (-4)=-11,f (1)=4,∴f (x )在[-4,1]上的最大值为13,最小值为-11.20.(2013·海淀区高二期中)已知函数f (x )=a 23x 3-2ax 2+bx ,其中a 、b ∈R ,且曲线y=f (x )在点(0,f (0))处的切线斜率为3.(1)求b的值;(2)若函数f(x)在x=1处取得极大值,求a的值.[解析] (1)f′(x)=a2x2-4ax+b,由题意f′(0)=b=3.(2)∵函数f (x )在x =1处取得极大值, ∴f ′(1)=a 2-4a +3=0,解得a =1或a =3. ①当a =1时,f ′(x )=x 2-4x +3=(x -1)(x -3),x 、f ′(x )、f (x )的变化情况如下表:x (-∞,1)1 (1,3) 3 (3,+∞)f ′(x ) +0 -0 + f (x )极大值极小值②当a =3时,f ′(x )=9x 2-12x +3=3(3x -1)(x -1),x 、f ′(x )、f (x )的变化情况如下表:x (-∞,13)13 (13,1) 1 (1,+∞)f ′(x ) +0 -0 + f (x )极大值极小值综上所述,若函数f (x )在x =1处取得极大值,a 的值为1.21.(2013·武汉实验中学高二期末)已知曲线f (x )=ax 2+2在x =1处的切线与直线2x -y +1=0平行.(1)求f (x )的解析式;(2)求由曲线y =f (x )与y =3x 、x =0、x =1、x =2所围成的平面图形的面积. [解析] (1)由已知得:f ′(1)=2,求得a =1, ∴f (x )=x 2+2.(2)由题意知阴影部分的面积是:S =⎠⎛01(x 2+2-3x )d x +⎠⎛12(3x -x 2-2)d x=(13x 3+2x -32x 2)|10+(32x 2-13x 3-2x )|21=1. 22.(2013·福州文博中学高二期末)设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值; (2)讨论g (x )与g (1x)的大小关系;(3)求a 的取值范围,使得g (a )-g (x )<1a对任意x >0成立.[解析] (1)由题设知g (x )=ln x +1x,∴g ′(x )=x -1x 2,令g ′(x )=0,得x =1. 当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调递减区间. 当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的单调递增区间,因此,x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g (1)=1.(2)g (1x)=-ln x +x ,设h (x )=g (x )-g (1x )=2ln x -x +1x,则h ′(x )=-x -12x 2.当x =1时,h (1)=0,即g (x )=g (1x).当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0, 因此,h (x )在(0,+∞)内单调递减.文档可能无法思考全面,请浏览后下载!19 / 31 当0<x <1时,h (x )>h (1)=0,即g (x )>g (1x), 当x >1时,h (x )<h (1)=0,即g (x )<g (1x). (3)由(1)知g (x )的最小值为1,所以g (a )-g (x )<1a 对任意x >0成立⇔g (a )-1<1a, 即ln a <1,从而得0<a <e ,即a 的取值范围为(0,e).。

数学人教A选修2-2第一章 导数及其应用单元检测.docx

数学人教A选修2-2第一章 导数及其应用单元检测.docx

高中数学学习材料鼎尚图文*整理制作数学人教A 选修2-2第一章 导数及其应用单元检测(时间:60分钟,满分:100分)一、选择题(每小题6分,共48分)1.一点沿直线运动,如果由始点起经过t s 后走过的路程为43215243s t t t =-+,那么速度为0的时刻是( )A .1 s 末B .0 sC .4 sD .0 s 末,1 s 末,4 s 末2.当x 在(-∞,+∞)上变化时,导函数f ′(x )的符号变化如下表:x (-∞,1) 1 (1,4) 4 (4,+∞) f ′(x ) - 0 + 0 -则函数f (x )的图象的大致形状为( )3.当x =a 时,函数y =ln(x +2)-x 取到极大值b ,则ab 等于( ) A .-1 B .0 C .1 D .24.π4π41cos 2d 3x x -⎰=( )A .13 B .23C .23D .23-5.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则实数b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1)6.一物体在力F (x )=3x 2-2x +5(力的单位:N ,位移单位:m)的作用下沿与力F (x )相同的方向由x =5 m 运动到x =10 m 时F (x )做的功为( )A .925 JB .850 JC .825 JD .800 J7.已知f (x )=(x +a )2,且1'32f ⎛⎫=- ⎪⎝⎭,则a 的值为( ) A .-1 B .-2 C .1 D .28.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( ) A .0≤a ≤21 B .a =0或a =7 C .a <0或a >21 D .a =0或a =21 二、填空题(每小题6分,共18分)9.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是__________. 10.已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B 1,52⎛⎫ ⎪⎝⎭,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为__________.11.若函数()241xf x x =+在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围是________..三、解答题(共34分)12.(10分)已知函数f (x )=ax 2+bx +4ln x 的极值点为1和2. (1)求实数a ,b 的值;(2)求函数f (x )在区间(0,3]上的最大值.13.(10分)甲、乙两村合用一个变压器,如图所示,若两村用同型号线架设输电线路,问:变压器设在输电干线何处时,所需电线最短?14.(14分)已知a ∈R ,f (x )=(x 2-4)(x -a ). (1)求f ′(x );(2)若f ′(1)=0,求f (x )在[-2,2]上的最大值和最小值;(3)若f (x )在(-∞,-2]和[2,+∞)上是单调递增的,求实数a 的取值范围.参考答案1答案:D 解析:s ′=t 3-5t 2+4t ,令s ′=0得t =0,1,4.2答案:C 解析:从表中可知f (x )在(-∞,1)上单调递减,在(1,4)上单调递增,在(4,+∞)上单调递减.3答案:A 解析:y ′=[ln(x +2)-x ]′=112x -+.令y ′=0,得x =-1,此时y =ln 1+1=1,即a =-1,b =1,故ab =-1.4答案:A 解析:ππ44ππ441111cos 2d sin 23323x x x--=⨯=⎰. 5答案:C 解析:f ′(x )=2bx x -++.∵f (x )在(-1,+∞)上是减函数,∴f ′(x )在(-1,+∞)上小于零恒成立, 即2bx x -++≤0恒成立, ∴b ≤x (x +2)在(-1,+∞)上恒成立.又∵x (x +2)=(x +1)2-1<-1,∴b ≤-1. 6答案:C 解析:依题意F (x )做的功是 W =105⎰F (x )d x =105⎰(3x 2-2x +5)d x=(x 3-x 2+5x )105=825(J).7答案:B 解析:∵f (x )=(x +a )2,∴f ′(x )=2x +2a ,依题意有2×12+2a =-3,解得a =-2.8答案:A 解析:f ′(x )=3x 2+2ax +7a ,当Δ=4a 2-84a ≤0,即0≤a ≤21时,f ′(x )≥0恒成立,函数不存在极值点.故选A .9答案:a <0 解析:f ′(x )=3ax 2+1x (x >0),若函数存在垂直于y 轴的切线,则曲线f (x )上存在导数为0的点,即3ax 2+1x =0有解,313a x=-,∵x >0,∴3103x-<.∴a <0.10答案:54 解析:由题意f (x )=110,0,211010,1,2x x x x ⎧≤≤⎪⎪⎨⎪-+<≤⎪⎩则xf (x )=22110,0,211010, 1.2x x x x x ⎧≤≤⎪⎪⎨⎪-+<≤⎪⎩∴xf (x )与x 轴围成图形的面积为120⎰10x 2d x +112⎰(-10x 2+10x )d x =1323120121010533x x x ⎛⎫+- ⎪⎝⎭=101105101553834384⎛⎫⎛⎫⨯+---⨯= ⎪ ⎪⎝⎭⎝⎭.11答案:-1<m ≤0 解析:由已知得f ′(x )=22244(1)x x -+在(m ,2m +1)上有f ′(x )≥0,即1-x 2≥0,-1≤x ≤1,∴1,211,2 1.m m m m ≥-⎧⎪+≤⎨⎪<+⎩∴-1<m ≤012答案:解:f ′(x )=2ax +b +4x =224ax bx x ++,x ∈(0,+∞),由y =f (x )的极值点为1和2,∴2ax 2+bx +4=0的两根为1和2,∴240,8240,a b a b ++=⎧⎨++=⎩解得1,6.a b =⎧⎨=-⎩答案:由(1)得f (x )=x 2-6x +4ln x ,∴f ′(x )=2x -6+4x=22642(1)(2)x x x x x x-+--=,x ∈(0,3].当x 变化时,f ′(x )与f (x )的变化情况如下表: x (0,1) 1 (1,2) 2(2,3) 3 f ′(x ) + 0 - 0+f (x )单调递增 -5 单调递减 4ln 2-8 单调递增4ln 3-9∵f (3)=4ln 3-9>f (1)=-5>f (2)=4ln 2-8, ∴f (x )max =f (3)=4ln 3-9.13答案:解:设CD =x (km),则CE =3-x (km). 由题意得所需电线的长为l =AC +BC =2221 1.5(3)x x +++-(0≤x ≤3). ∴22222(3)'212 1.5(3)x x l xx --=+++-.令l ′=0,则222301 1.5(3)x xx x --=++-,即22231 1.5(3)x x x x -=++-,平方, 得22222(3)1 1.5(3)x x x x -=++-, 即1.52x 2+x 2(3-x )2=(3-x )2+x 2(3-x )2, ∴1.52x 2=(3-x )2,∴1.5x =±(3-x ),解得x =1.2或x =-6(舍去),经检验x =1.2为函数的最小值点,故当CD =1.2 km 时所需电线最短.14答案:解:f ′(x )=(x 2-4)′(x -a )+(x 2-4)(x -a )′ =2x (x -a )+x 2-4=3x 2-2ax -4.答案:由f ′(1)=0,得3-2a -4=0,∴12a =-. 此时f (x )=(x 2-4)12x ⎛⎫+⎪⎝⎭,f′(x)=3x2+x-4=(x-1)(3x+4).∴x=1和43x=-是函数f(x)的极值点.∵9(1)2f=-,450327f⎛⎫-=⎪⎝⎭,f(2)=f(-2)=0,∴f(x)max=5027,f(x)min=92-.答案:f′(x)=3x2-2ax-4,如图,设f′(x)>0的解集为(-∞,x1)∪(x2,+∞),其中x1<x2,则有'(2)0,'(2)0,22223ffa⎧⎪-≥⎪≥⎨⎪⎪-≤≤⨯⎩⇒223(2)440,32440,66aaa⎧⨯-+-≥⎪⨯--≥⎨⎪-≤≤⎩⇒2,2,66,aaa≥-⎧⎪≤⎨⎪-≤≤⎩∴-2≤a≤2,即实数a的取值范围为{a|-2≤a≤2}.。

人教A版选修2-2章末综合测评(一) 导数及其应用.docx

人教A版选修2-2章末综合测评(一) 导数及其应用.docx

高中数学学习材料马鸣风萧萧*整理制作章末综合测评(一) 导数及其应用(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若函数y =f (x )在区间(a ,b )内可导,且x 0∈(a ,b ),则lim h →0f (x 0+h )-f (x 0-h )h 的值为( )A .f ′(x 0)B .2f ′(x 0)C .-2f ′(x 0)D .0【解析】 lim h →0f (x 0+h )-f (x 0-h )h=2lim h →0f (x 0+h )-f (x 0-h )2h=2f ′(x 0),故选B .【答案】 B2.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1【解析】 y ′=2ax ,于是切线斜率k =y ′|x =1=2a ,由题意知2a =2,∴a =1. 【答案】 A3.下列各式正确的是( ) A .(sin a )′=cos a (a 为常数) B .(cos x )′=sin x C .(sin x )′=cos xD .(x -5)′=-15x -6【解析】 由导数公式知选项A 中(sin a )′=0;选项B 中(cos x )′=-sin x ;选项D 中(x -5)′=-5x -6.【答案】 C4.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4)D .(2,+∞)【解析】 f ′(x )=(x -2)e x ,由f ′(x )>0,得x >2,所以函数f (x )的单调递增区间是(2,+∞).【答案】 D5.若函数f (x )=13x 3-f ′(1)·x 2-x ,则f ′(1)的值为( ) A .0 B .2 C .1 D .-1【解析】 f ′(x )=x 2-2f ′(1)·x -1,则f ′(1)=12-2f ′(1)·1-1,解得f ′(1)=0. 【答案】 A6.如图1所示,图中曲线方程为y =x 2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )图1A.⎪⎪⎪⎪⎠⎛02(x 2-1)d x B.⎠⎛02(x 2-1)d x C.⎠⎛02|x 2-1|d x D.⎠⎛01(x 2-1)d x -⎠⎛12(x 2-1)d x 【解析】 S =⎠⎛01[-(x 2-1)]d x +⎠⎛12(x 2-1)d x =⎠⎛02|x 2-1|d x .【答案】 C7.函数f(x)=x3+3x2+3x-a的极值点的个数是()A.2 B.1C.0 D.由a确定【解析】f′(x)=3x2+6x+3=3(x2+2x+1)=3(x+1)2≥0,∴函数f(x)在R 上单调递增,无极值.故选C.【答案】C8.若函数f(x)=-x3+3x2+9x+a在区间[-2,-1]上的最大值为2,则它在该区间上的最小值为()A.-5 B.7C.10 D.-19【解析】∵f(x)′=-3x2+6x+9=-3(x+1)(x-3),所以函数在[-2,-1]内单调递减,所以最大值为f(-2)=2+a=2.∴a=0,最小值f(-1)=a-5=-5.【答案】 A9.已知y=f(x)是定义在R上的函数,且f(1)=1,f′(x)>1,则f(x)>x的解集是()A.(0,1) B.(-1,0)∪(0,1)C.(1,+∞) D.(-∞,-1)∪(1,+∞)【解析】不等式f(x)>x可化为f(x)-x>0,设g(x)=f(x)-x,则g′(x)=f′(x)-1,由题意g′(x)=f′(x)-1>0,∴函数g(x)在R上单调递增,又g(1)=f(1)-1=0,∴原不等式⇔g(x)>0⇔g(x)>g(1).∴x>1,故选C.【答案】 C10.已知函数f(x)=x2+2x+a ln x,若函数f(x)在(0,1)上单调,则实数a的取值范围是()A.a≥0 B.a<-4C.a≥0或a≤-4 D.a>0或a<-4【解析】 f ′(x )=2x +2+ax ,x ∈(0,1), ∵f (x )在(0,1)上单调,∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,∴2x +2+a x ≥0或2x +2+ax ≤0在(0,1)上恒成立, 即a ≥-2x 2-2x 或a ≤-2x 2-2x 在(0,1)上恒成立.设g (x )=-2x 2-2x =-2⎝ ⎛⎭⎪⎫x +122+12,则g (x )在(0,1)上单调递减,∴g (x )max =g (0)=0,g (x )min =g (1)=-4. ∴a ≥g (x )max =0或a ≤g (x )min =-4. 【答案】 C11.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离为( ) A. 5 B .2 5 C .3 5D .2【解析】 设曲线上的点A (x 0,ln(2x 0-1))到直线2x -y +3=0的距离最短, 则曲线上过点A 的切线与直线2x -y +3=0平行. 因为y ′=12x -1·(2x -1)′=22x -1, 所以y ′|x =x 0=22x 0-1=2,解得x 0=1. 所以点A 的坐标为(1,0).所以点A 到直线2x -y +3=0的距离为d =|2×1-0+3|22+(-1)2=55= 5. 【答案】 A12.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,且对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为( ) 【导学号:62952063】A .3 B.52 C .2D.32【解析】 由题意,得f ′(x )=2ax +b .由对任意实数x ,有f (x )≥0,知图象开口向上,所以a >0,且Δ=b 2-4ac ≤0,所以ac ≥b 24.因为f ′(0)>0,所以b >0,且在x =0处函数递增. 由此知f (0)=c >0.所以f (1)f ′(0)=a +b +c b ≥b +2ac b ≥b +2b 24b=2.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.⎠⎜⎛π2 (3x +sin x )d x =__________. 【解析】 ⎠⎜⎛0π2 (3x +sin x )d x =⎝ ⎛⎭⎪⎫3x 22-cos x ⎪⎪⎪π20=⎣⎢⎡⎦⎥⎤32×⎝ ⎛⎭⎪⎫π22-cos π2-(0-cos 0)=3π28+1.【答案】 3π28+114.若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.【解析】 设P (x 0,y 0),∵y =e -x ,∴y ′=-e -x , ∴点P 处的切线斜率为k =-e -x 0=-2, ∴-x 0=ln 2,∴x 0=-ln 2, ∴y 0=e ln 2=2,∴点P 的坐标为(-ln 2,2). 【答案】 (-ln 2,2)15.直线y =a 与函数f (x )=x 3-3x 的图象有三个相异的公共点,则a 的取值范围是__________.【导学号:62952064】【解析】 令f ′(x )=3x 2-3=0,得x =±1,可求得f (x )的极大值为f (-1)=2, 极小值为f (1)=-2,如图所示,-2<a <2时,恰有三个不同公共点.【答案】 (-2,2)16.周长为20 cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________cm 3.【解析】 设矩形的长为x ,则宽为10-x (0<x <10),由题意可知所求圆柱的体积V =πx 2(10-x )=10πx 2-πx 3,∴V ′(x )=20πx -3πx 2.由V ′(x )=0,得x =0(舍去),x =203, 且当x ∈⎝ ⎛⎭⎪⎫0,203时,V ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫203,10时,V ′(x )<0,∴当x =203时,V (x )取得最大值为4 00027π cm 3. 【答案】 4 00027π三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限,(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 【解】 (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知得3x 2+1=4,解得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又因为点P0在第三象限,所以切点P0的坐标为(-1,-4).(2)因为直线l⊥l1,l1的斜率为4,所以直线l的斜率为-1 4,因为l过切点P0,点P0的坐标为(-1,-4),所以直线l的方程为y+4=-14(x+1),即x+4y+17=0.18.(本小题满分12分)已知函数f(x)=a ln(x+1)+12x2-ax+1(a>0).(1)求函数y=f(x)在点(0,f(0))处的切线方程;(2)当a>1时,求函数y=f(x)的单调区间和极值.【解】(1)f(0)=1,f′(x)=ax+1+x-a=x(x-a+1)x+1,f′(0)=0,所以函数y=f(x)在点(0,f(0))处的切线方程为y=1.(2)函数的定义域为(-1,+∞),令f′(x)=0,即x(x-a+1)x+1=0.解得x=0或x=a-1.当a>1时,f(x),f′(x)随x变化的变化情况为x(-1,0) 0 (0,a-1) a-1 (a-1,+∞) f′(x) +0 -0 +f(x) 单调递增↗极大值单调递减↘极小值单调递增↗可知f(x)的单调减区间是(0,a-1),单调增区间是(-1,0)和(a-1,+∞),极大值为f(0)=1,极小值为f(a-1)=a ln a-12a2+32.19.(本小题满分12分)已知函数f(x)=x2-m ln x,h(x)=x2-x+a,(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)-h(x)在区间[1,3]上恰有两个不同零点,求实数a的取值范围.【解】(1)由f(x)≥h(x)在(1,+∞)上恒成立,得m≤xln x在(1,+∞)上恒成立,令g(x)=xln x,则g′(x)=ln x-1(ln x)2,故g′(e)=0,当x∈(1,e)时,g′(x)<0;x∈(e,+∞)时,g′(x)>0.故g(x)在(1,e)上单调递减,在(e,+∞)上单调递增,故当x=e时,g(x)的最小值为g(e)=e.所以m≤e.(2)由已知可知k(x)=x-2ln x-a,函数k(x)在[1,3]上恰有两个不同零点,相当于函数φ(x)=x-2ln x与直线y=a有两个不同的交点,φ′(x)=1-2x=x-2x,故φ′(2)=0,所以当x∈[1,2)时,φ′(x)<0,所以φ(x)单调递减,当x∈(2,3]时,φ′(x)>0,所以φ(x)单调递增.所以φ(1)=1,φ(3)=3-2ln 3,φ(2)=2-2ln 2,且φ(1)>φ(3)>φ(2)>0,所以2-2ln 2<a≤3-2ln 3.所以实数a的取值范围为(2-2ln 2,3-2ln 3].20.(本小题满分12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V m3.假设建造成本仅与表面积有关,侧面的建造成本为100元/m2,底面的建造成本为160元/m2,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.【解】(1)因为蓄水池侧面的总成本为100·2πrh=200πrh(元),底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元.又根据题意200πrh+160πr2=12 000π,所以h=15r(300-4r2),从而V(r)=πr2h=π5(300r-4r3).因为r >0,又由h >0可得r <53, 故函数V (r )的定义域为(0,53). (2)因为V (r )=π5(300r -4r 3), 所以V ′(r )=π5(300-12r 2).令V ′(r )=0,解得r 1=5,r 2=-5(因为r 2=-5不在定义域内,舍去). 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数; 当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数. 由此可知,V (r )在r =5处取得最大值,此时h =8. 即当r =5,h =8时,该蓄水池的体积最大.21.(本小题满分12分)抛物线y =ax 2+bx 在第一象限内与直线x +y =4相切.此抛物线与x 轴所围成的图形的面积记为S .求使S 达到最大值的a ,b 值,并求S 的最大值.【解】 由题设可知抛物线为凸形,它与x 轴交点的横坐标分别为x 1=0,x 2=-b a ,所以S =⎠⎛0-ba (ax 2+bx )d x =16a 2b 3, ①又直线x +y =4与抛物线y =ax 2+bx 相切,即它们有唯一的公共点, 由方程组⎩⎨⎧x +y =4,y =ax 2+bx ,得 ax 2+(b +1)x -4=0,其判别式Δ=0, 即(b +1)2+16a =0.于是a =-116(b +1)2,代入①式得: S (b )=128b 33(b +1)4(b >0),S ′(b )=128b 2(3-b )3(b +1)5;令S ′(b )=0,得b =3,且当0<b <3时,S ′(b )>0; 当b >3时,S ′(b )<0.故在b =3时,S (b )取得极大值,也是最大值,即a =-1,b =3时,S 取得最大值,且S max =92. 22.(本小题满分12分)已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)求证:当x >0,且x ≠1时,f (x )>ln xx -1. 【导学号:62952065】【解】 (1)f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x(x +1)2-bx 2,由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎪⎨⎪⎧f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12,解得⎩⎨⎧a =1,b =1,(2)证明:由(1)知,f (x )=ln x x +1+1x, 所以f (x )-ln x x -1=11-x 2⎝ ⎛⎭⎪⎫2ln x -x 2-1x . 设函数h (x )=2ln x -x 2-1x (x >0),则h ′(x )=2x -2x 2-(x 2-1)x 2=-(x -1)2x 2.所以当x ≠1时,h ′(x )<0,而h (1)=0, 所以当x ∈(0,1)时,h (x )>0,得f (x )>ln xx -1; 当x ∈(1,+∞)时,h (x )<0,得f (x )>ln xx -1. 故当x >0,且x ≠1时,f (x )>ln xx -1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )
A.1π
B.2π
C.3π
D.π
4
二、填空题:本大题共4小题,每小题5分,共20分. 9.⎠⎛0
2(2x -e x )dx =________.
10..已知2()2(1)f x x xf '=+,则(0)f '等于
11. 函数32()39f x x ax x =++-在3x =-时有极值10,则a 的值为
12.若函数y =a (x 3-x )的单调递减区间为(-
33,3
3
),则a 的取值范围是________. 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 13.(本小题满分15分)已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1.
(1)试求常数a ,b ,c 的值;
(2)试判断x =±1是函数的极小值点还是极大值点,并说明理由.
14.(本小题满分15分)已知F (x )=
1
x
-⎰
t (t -4)dt ,x ∈(0,+∞).。

相关文档
最新文档