2019年天长中学高考数学选择题专项训练(一模)

合集下载

(word完整版)2019年高考数学模拟试题含答案,推荐文档

(word完整版)2019年高考数学模拟试题含答案,推荐文档

FDCBA 2019年高考数学模拟试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并收回。

一.选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ⋂)(=A .}3,2{B .}4,3,2{C .}2{D .φ2.已知i 是虚数单位,iz +=31,则z z ⋅= A .5B .10C .101D .51 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为A .3B .4C .5D .6(第3题) (第4题)4.如图,ABCD 是边长为8的正方形,若13DE EC =,且F 为BC 的中点,则EA EF ⋅=u u u r u u u rA .10B .12C .16D .205.若实数y x ,满足⎪⎩⎪⎨⎧≥≤-≤+012y x y y x ,则yx z 82⋅=的最大值是A .4B .8C .16D .326.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+C.32216+ D .32216516++7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A .101 B .51 C .103 D .548.设n S 是数列}{n a 的前n 项和,且11-=a ,11++⋅=n n n S S a ,则5a = A .301 B .031- C .021 D .201- 9. 函数()1ln1xf x x-=+的大致图像为10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥ABCD P -的外接球体积最小值是A .π625 B .π125 C .π6251 D .π25 11. 已知抛物线()220y px p =>,过焦点且倾斜角为30°的直线交抛物线于A,B 两点,以AB为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为 A .1x =- B .3x =-C .3x =- D .3x =- 12. 已知函数x x x f ln )(2-=(22≥x ),函数21)(-=x x g ,直线t y =分别与两函数交于B A ,两点,则AB 的最小值为A .21B .1C .23D .2二.填空题:本大题共4小题,每小题5分,共20分.13. 设样本数据1x ,2x ,...,2018x 的方差是5,若13+=i i x y (2018,...,2,1=i ),则1y ,2y ,...,2018y 的方差是________14. 已知函数x x x f ωωcos 3sin )(-=(0>ω),若3=ω,则方程1)(-=x f 在),0(π的实数根个数是_____15. 我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯ 的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…, 2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则5N =_______16.已知ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且1c =,π3C =.若sin sin()sin 2C A B B +-=,则ABC ∆的面积为三、解答题:本大题共6小题,其中17-21小题为必考题,每小题12分,第22—23题为选考题,考生根据要求做答,每题10分. 17.(本小题满分12分)设数列}{n a 是公差为d 的等差数列. (Ⅰ) 推导数列}{n a 的通项公式;(Ⅱ) 设0≠d ,证明数列}1{+n a 不是等比数列.18.(本小题满分12分)某中学为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图.(Ⅰ)写出女生组频率分布直方图中a 的值;(Ⅱ)在抽取的40名学生中从月上网次数不少于20的学生中随机抽取2人,并用X 表示随机抽取的2人中男生的人数,求X 的分布列和数学期望.19.(本小题满分12分)在直三棱柱111C B A ABC -中,21===AA AC AB ,CA BA ⊥。

2019年高三第一次模拟考试数学含答案

2019年高三第一次模拟考试数学含答案

2019年高三第一次模拟考试数学含答案本试卷共4页,满分150分,考试时间120分钟。

注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题纸指定位置上。

2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。

3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题纸上每题对应的答题区域内,答在试题卷上无效。

一、选择题:本大题共12小题,每小题5分,共60分。

每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合,,若,则( )A. B. C. D. 2、已知,则( )A. B. C. D. 3、已知函数,则下列结论正确的是( ) A. B. C. D.4、设,则“”是“”的( )A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 5、若,,则( )A. B. C. D.6、等差数列中,则310122log (2222)aaaa⋅⋅⋅⋅=…( ) A. B. C. D.7、在不等式组00x y x y y a -≤⎧⎪+≥⎨⎪≤⎩确定的平面区域中,若的最大值为,则的值为( )A. B. C. D. 8、若,则( )A. B. C. D.9、小王从甲地到乙地往返的时速分别为,其全程的平均时速为,则( ) A. B. C. D.10、已知关于的方程的解集为,则中所有元素的和可能是( ) A. B. C. D.11、已知点是直线上的动点,点为圆上的动点,则的最小值为( ) A. B. C. D.12、已知定点,是圆上的任意一点,点关于点的对称点为,线段的中垂线与直线相交于点,则点的轨迹是( )A. 椭圆 B. 双曲线 C. 抛物线 D. 圆第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.13、已知满足,则 。

14、已知递增的等差数列满足,则 。

15、设是线段的中点,点在直线外,,,则 。

2019届高三第一次模拟考试数学(理)试卷.docx

2019届高三第一次模拟考试数学(理)试卷.docx

第I 卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分)1. 已知集合 A = |x|log 2(x+1)<1|,B = * xA ・(-1,0) B. (-oo,0) C.(0,1) D. (1,-Ko) 2. 下列函数中,既是偶函数,又在区间(0,+oo)单调递减的函数是()4. 设d>0且GH1,则“函数/(x)=/在/?上是减函数”是“函数g(x) =(2 — dX 在R 上 递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4 2 \_ 5. 已知a = 2§# = 46c = 25§,则( )A. c <a<bB. a <b <cC. b <a <cD. b <c < a6. 若实数满足2" =3,3〃 =2,则函数f{x) = a x +x-b 的零点所在的区间是()A. (-2,-1)B. (-1,0) C ・(0,1) D ・(1,2)7. 已知命题p : " 3x () e 7?,使得谕+2% + l<0成立”为真命题,则实数d 满足()A. [-1,1)B. (—00,—1)kJ(l,4-oo)C. (1,+ oo)D. (—oo,—1)8. 定义在上的奇函数/(x)满足/(x-4) = -/(x),且在区间[0,2]上递增,则()A. /(—25) < /(11) < /(80)B. /(80) < /(11) < /(—25)C. /(-25)</(80)</(11)D. /(11)</(80)</(-25)9. 己知函数y = f{x+1)是定义域为/?的偶函数,且/(x)在[l, + oo)上单调递减,则不等式 /(2x-l)>/(x + 2)的解集为()盯,则A B=()A. y = -x 3B. y = }n xC. y = cosxD. y = 2 一卜cin X3•函数的图象可能是()DA.[B. [1,3)C. <D.10.若曲线G =(无 >())与曲线C 2:y = e x 存在公共点,则Q 的取值范围是() ( 2 ' ( 2' 、 「A. 0,— < 8_ B. C. e ——,+ooD. e —,+oo _4丿 11. 函数 /(x ) = 2加彳一3凡/+10(加>()/>())有两个不同的零点,则 5(lg m )2 +9(lg/i )2 的最小值是()< 5 13 1A. 6B. —C. —D. l 9 9 12. 函数于(兀)是定义在(0,+oc )上的可导函数,导函数记为/(X ),当兀>0且兀Hl 时, 2/(兀)+ 〃(兀)>0,若曲线歹=于(切在x = l 处的切线斜率为-土,则/⑴二() x-1 52 3 4 A. — B. — C. — D. I 5 5 5第II 卷 (非选择题 满分90分)二、填空题(每小题5分,共20分)13. 任意幕函数都经过定点,则函数/'(兀)=卅+log “ (x-7?z )(6z >0且a 丰1)经过定 点 _____ •14. __________________________________________________ 函数/G ) = lnx-a 兀在[1, + oo )上递减,则a 的取值范围是 ___________________________ .— x — 2 r 〉0 '-的零点个数为 X 2+2X ,X <0+ r +116. __________________ 若函数/(兀)满足:V XG /?, /(x ) + /(-x ) = 2,则函数g (x ) = —j- + /(x )的最大 值与最小值的和为 • 三、解答题(本大题共6个小题,共70分) 17. (本小题满分10分)己知命题°:方程x 2^ax^ — = 0有两个不相等的负实数根;命题q :关于Q 的不等式 16丄〉1.如果“ p 或q”为真命题,“ p Hq ”为假命题,求实数°的取值范围. a18. (本小题满分12分)1-%2已知函数f(x)=—. 1 + X⑴判断/(兀)的奇偶性;(2) /令 + /(|) + + /(|) + /(0) + /(I) + /(2) + + /(9) + /(10)的值.19.(本小题满分12分)己知函数/(x) = 2V的定义域是[0,3],设g(x) = /(2x)-/(x + 2)・(1)求g(x)的解析式及定义域;(2)求函数g(x)的最大值和最小值.20.(本小题满分12分)已知函数/(x) = log, (x2— 2祇+ 3)・2(1)若函数/(X)的定义域为/?,值域为(-00,-1],求实数Q的值;⑵若函数/(兀)在(Y0,l]上为增函数,求实数d的取值范围.21.(本小题满分12分)已知函数f\x) = e x(ca-^b)-x2-4x,曲线y二f(x)在点(0,/(0))处的切线方程为y = 4x + 4.(1)的值;(2)讨论/(兀)的单调性,并求/(兀)的极大值.22.(本小题满分12分)已知a > 0,函数f(x) = ax2 -x9g(x) = lnx.(1)若a =-,求函数y = f(x)-2g(x)的极值.2(2)是否存在实数①使得f(x)>g(ax)成立?若存在求出a的取值集合,若不存在,说明理由.理科答案ADAAC BBCDD BA(2,1) a>\ 2 417. 0 v a S —或a 21 21&偶函数;119. g(x) = 22X - 2v+2,x G [0,1];最大值为-3,最小值为-4 20.a = ±1 ; 1 < a < 2(1)当a =—时,y = f(x)-2g(x) = — x 2 -x-21nx 2 2 (兀+1)(兀 - 2)当兀 G (0,2)1 寸,y < 0;当x e (2,+oo )0寸,y >0 .•・在兀=2处取得极小值几2) - 2g ⑵=-In 4 (2 冷/心)=2/(x ) 一 g{ax ) = 6rx 2 一兀一 In (a 兀),即力(尤)罰-0 /.^(x ) = 0有两个不等慚,兀2,(西<0<x 2), /.力(兀旌(0,兀2 )递减k X 2,+°°)递增,/. /z (x J=么才一无2 -ln (a 吃)> 0成立, /. x 2 — 1 代入2°牯—x 2 — 1 = 0得 a = 1 /. a G {1} 21 • Q = 4" = 4; (-OO ,-2),(in 丄 递增, -2,% 递减;极大值为4 - 4幺 •/ 2ax^ -x 2 -1 = 0/. k(x 2) < k(V) = 0。

安徽省天长中学2025届高考冲刺数学模拟试题含解析

安徽省天长中学2025届高考冲刺数学模拟试题含解析

安徽省天长中学2025届高考冲刺数学模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1F ,2F 分别为双曲线22221x y a b -=(a >0,b >0)的左、右焦点,过点1F 作圆222x y b += 的切线与双曲线的左支交于点P ,若212PF PF =,则双曲线的离心率为( )A .2B .3C .5D .62.已知数列{}n a 中,121,2a a ==,且当n 为奇数时,22n n a a +-=;当n 为偶数时,()2131n n a a ++=+.则此数列的前20项的和为( )A .1133902-+ B .11331002-+ C .1233902-+ D .12331002-+ 3.设,则"是""的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 4.已知a >0,b >0,a +b =1,若 α=11a b a b β+=+,,则αβ+的最小值是( ) A .3 B .4 C .5 D .65. “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是( )A .165B .325C .10D .185 6.函数3()cos ln ||f x x x x x =+在[,0)(0,]ππ-的图象大致为( )A .B .C .D .7.过直线0x y +=上一点P 作圆()()22152x y ++-=的两条切线1l ,2l ,A ,B 为切点,当直线1l ,2l 关于直线0x y +=对称时,APB ∠=( )A .30B .45︒C .60︒D .90︒8.某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A .8B .83C .82+D .842+9.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .MN N = B .()U M N =∅ C .M N U = D .()U M N ⊆10.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中,点P 是平面1111D C B A 内一点,则三棱锥P BCD -的正视图与侧视图的面积之和为( )A .2B .3C .4D .511.执行如图所示的程序框图后,输出的值为5,则P 的取值范围是( ).A .37,48⎛⎤ ⎥⎝⎦B .59,610⎛⎤ ⎥⎝⎦C .715,816⎛⎤ ⎥⎝⎦D .1531,1632⎛⎤ ⎥⎝⎦ 12.若复数()12()()z m m i m R =+-∈+是纯虚数,则63i z+=( ) A .3 B .5 C 5D .35二、填空题:本题共4小题,每小题5分,共20分。

安徽省滁州市天长第一中学2019年高一数学文上学期期末试题含解析

安徽省滁州市天长第一中学2019年高一数学文上学期期末试题含解析

安徽省滁州市天长第一中学2019年高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 直线l将圆x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l的方程是()A.x﹣y+1=0,2x﹣y=0 B.x﹣y﹣1=0,x﹣2y=0C.x+y+1=0,2x+y=0 D.x﹣y+1=0,x+2y=0参考答案:C【考点】圆的一般方程.【专题】计算题;方程思想;数形结合法;直线与圆.【分析】求出圆的圆心坐标,利用直线在两坐标轴上的截距相等,即可求解直线l的方程.【解答】解:圆x2+y2﹣2x+4y=0化为:圆(x﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l将圆x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,∴直线l的方程是:y+2=﹣(x﹣1),2x+y=0,即x+y+1=0,2x+y=0.故选:C.【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.2. 与函数相同的函数是A. B.C. D.参考答案:D3. 设,b∈R,且≠0,b≠0,那么的可能取的值组成的集合是A{1,-1} B {1,0,-1} C {2,0, -2} D { 2,1,0,-1,-2}参考答案:C4. 函数,若f(a)=1,则a的值是()A.2 B.1 C.1或2 D.1或﹣2参考答案:A【考点】函数的零点;函数的值.【专题】函数的性质及应用.【分析】根据分段函数,直接解方程即可得到结论.【解答】解:若a<2,则由f(a)=1得,3a﹣2=1,即a﹣2=0,∴a=2.此时不成立.若a≥2,则由f(a)=1得,log=1,得a2﹣1=3,即a2=4,∴a=2,故选:A.【点评】本题主要考查函数值的计算,要对应对a进行分类讨论.5. 在中,已知,,,则角( )A. B. C. 或D. 或参考答案:A略6. 第一届世界杯足球赛于1930年在乌拉圭举办,每隔4年举办一次,曾因二战影响于1942年、1946年停办两届(1938年举办第三届,1950年举办第四届),下表列出了1974年联邦德国第十届世界杯足球赛以来的几届世界杯举办地:则2010年南非世界杯应是第()届A. 18B.19 C.20D.21参考答案:B略7. 已知且是关于x的方程x2-ax+a=0(a∈R)的两实根,下列命题正确的是()A. B.C. D.参考答案:C【分析】,,根据计算得到,再依次判断每个选项得到答案【详解】根据题意:,解得,,,,解得.,故,故错误;,正确;,故,,,故,错误;故选:C.【点睛】本题考查了三角恒等变换,韦达定理,意在考查学生的计算能力和综合应用能力.8. 设集合A={5,log2(a2-3a+6)},集合B={1,a,b},若A∩B={2},则集合A∪B的真子集的个数是()A.3 B.7C.12 D.15参考答案:D9. 某班有60名学生,学号为1~60号,现从中抽取5位同学参加一项活动,用系统抽样的方法确定的抽样号码可能为()A.5,10,15,20,25 B.5,12,31,39,57C.6,16,26,36,46 D.6,18,30,42,54参考答案:D【考点】系统抽样方法.【分析】根据系统抽样的定义,求出样本间隔即可.【解答】解:样本间隔为60÷5=12,则满足条件的编号为6,18,30,42,54,故选:D.10. 某正弦型函数的图象的一部分如图所示,则与它对应的一个函数解析式是()参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数,,若直线与函数的图象有四个不同的交点,则实数k的取值范围是_____.参考答案:(0,1)【分析】画出函数f(x)在以及直线y=k的图象,数形结合可得k的取值范围.【详解】解:画出函数y=cosx+2|cosx|=,以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【点睛】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.12. 若函数f(x)既是幂函数又是反比例函数,则这个函数是f(x)=参考答案:【考点】幂函数的性质;函数的表示方法.【专题】计算题.【分析】根据幂函数和反比例函数的定义确定出函数的解析式,从而问题解决.【解答】解:∵函数f(x)既是幂函数∴y=xα,又是反比例函数∴,∴k=1,故答案为:.【点评】本题主要考查了幂函数的性质、函数的表示方法等,属于基础题.13. 已知、是不同的两个平面,直线,命题无公共点;命题,则的条件。

2019年数学高考一模试卷(带答案)

2019年数学高考一模试卷(带答案)

2019年数学高考一模试卷(带答案)一、选择题1.已知2a ib i i+=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1 B .1C .2D .32.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③3.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15B .20C .30D .354.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144+AB AC D .1344+AB AC 5.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( ) A .40 B .60 C .80 D .1006.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .107.已知向量a ,b 满足2a =,||1b =,且2b a +=,则向量a 与b 的夹角的余弦值为( ) A .2 B .23C .28D .248.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .9.已知a 为函数f (x )=x 3–12x 的极小值点,则a= A .–4B .–2C .4D .210.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定11.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( )A .B .C .D .12.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______. 15.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.16.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=_______________. 17.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45︒,乙同学在B 地测得树尖D 的仰角为30,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则ACB =∠______________.18.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.19.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 1cos2cos 1cos2b C Cc B B+=+,C 是锐角,且27a =,1cos 3A =,则ABC △的面积为______. 20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 22.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,2,求三棱锥C 一A 1DE 的体积.23.已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =25. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过椭圆C 的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ=,求12λλ+的值.24.已知0,0a b >>.(1)211a b≥+ ; (2)若a b >,且2ab =,求证:224a b a b+≥-.25.在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,5π4⎛⎫ ⎪⎝⎭,,曲线C 的方程为r ρ=(0r >).(1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值. 26.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈,且{}n a 为正项等比数列,12a =,324b b =+. (1)求数列{}n a 与{}n b 的通项公式; (2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果. 【详解】因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.3.C解析:C 【解析】 【分析】利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得2x 的系数. 【详解】根据二项式定理展开式通项为1C r n r rr n T a b -+=()()()66622111111x x x x x ⎛⎫++=++⋅+ ⎪⎝⎭则()61x +展开式的通项为16r rr T C x +=则()62111x x ⎛⎫++ ⎪⎝⎭ 展开式中2x 的项为22446621C x C x x ⎛⎫+⋅ ⎪⎝⎭ 则()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为2466151530C C +=+= 故选:C【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.4.A解析:A 【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BC =+,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+,之后将其合并,得到3144BE BA AC =+,下一步应用相反向量,求得3144EB AB AC =-,从而求得结果. 详解:根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+, 所以3144EB AB AC =-,故选A. 点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.5.A解析:A【解析】解:三个小球放入盒子是不对号入座的方法有2 种,由排列组合的知识可得,不同的放法总数是: 36240C = 种.本题选择A 选项.6.C解析:C 【解析】 【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案. 【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9. 故选:C . 【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.7.D解析:D 【解析】 【分析】根据平方运算可求得12a b ⋅=,利用cos ,a b a b a b ⋅<>=求得结果. 【详解】由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=,解得:12a b ⋅=cos ,422a b a b a b⋅∴<>===本题正确选项:D 【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.8.D解析:D 【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.9.D解析:D 【解析】试题分析:()()()2312322f x x x x ==+'--,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 的极小值点为2,即2a =,故选D.【考点】函数的导数与极值点【名师点睛】本题考查函数的极值点.在可导函数中,函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这个点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点.10.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.11.D解析:D 【解析】 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1xy a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.12.C解析:C 【解析】 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。

2019年数学高考一模试卷(带答案)

2019年数学高考一模试卷(带答案)一、选择题1.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ) A .0.4 2.3y x =+ B .2 2.4y x =- C .29.5y x =-+ D .0.3 4.4y x =-+ 2.设函数()()21,04,0xlog x x f x x ⎧-<=⎨≥⎩,则()()233f f log -+=( )A .9B .11C .13D .153.若角α的终边在第二象限,则下列三角函数值中大于零的是( )A .sin(+)2πα B .s(+)2co πα C .sin()πα+ D .s()co πα+ 4.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5} 5.数列2,5,11,20,x ,47...中的x 等于( )A .28B .32C .33D .276.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )A .2B .3C .22D .32 8.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是,若0cAC aPA bPB ++=,则△ABC 的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形.9.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-<D .228a b +>10.在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .011.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于( ) A .1318B .322C .1322D .31812.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( )A .B .C .D .二、填空题13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.14.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.15.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.16.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 1cos2cos 1cos2b C Cc B B+=+,C是锐角,且27a =,1cos 3A =,则ABC △的面积为______. 17.已知1OA =,3OB =,0OA OB •=,点C 在AOB ∠内,且AOC 30∠=,设OC mOA nOB =+,(,)m n R ∈,则mn=__________. 18.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.19.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.20.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)三、解答题21.已知平面直角坐标系xoy .以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为23,6π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为223sin 1ρρθ+= (1)写出点P 的直角坐标及曲线C 的普通方程;(2)若Q 为C 上的动点,求PQ 中点M 到直线32:2x tl y t=+⎧⎨=-+⎩(t 为参数)距离的最小值.22.已知函数()3f x ax bx c =++在点2x =处取得极值16c -.(1)求,a b 的值;(2)若()f x 有极大值28,求()f x 在[]3,3-上的最小值.23.如图,边长为2的正方形ABCD 中,E 、F 分别是AB 、BC 边的中点,将AED ,DCF 分别沿DE ,DF 折起,使得A ,C 两点重合于点M .(1) 求证:MD EF ⊥; (2) 求三棱锥M EFD -的体积.24.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥; (2)若E 在线段BC 上,且14EC BC =,能否在棱PC 上找到一点G ,使平面DEG ⊥平面ABCD ?若存在,求四面体D CEG -的体积. 25.已知函数()1f x ax lnx =--,a R ∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.26.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:因为与正相关,排除选项C 、D ,又因为线性回归方程恒过样本点的中心,故排除选项B ;故选A . 考点:线性回归直线.2.B解析:B 【解析】 【分析】根据自变量所在的范围代入相应的解析式计算即可得到答案. 【详解】∵函数2log (1),0()4,0xx x f x x -<⎧=⎨≥⎩, ∴()2l 23og 2(3)log 3log 44f f -+=+=2+9=11.故选B . 【点睛】本题考查函数值的求法,考查指对函数的运算性质,是基础题.3.D解析:D 【解析】 【分析】利用诱导公式化简选项,再结合角α的终边所在象限即可作出判断. 【详解】解:角α的终边在第二象限,sin +2πα⎛⎫⎪⎝⎭=cos α<0,A 不符; s +2co πα⎛⎫ ⎪⎝⎭=sin α-<0,B 不符;()sin πα+=sin α-<0,C 不符; ()s co πα+=s co α->0,所以,D 正确故选D 【点睛】本题主要考查三角函数值的符号判断,考查了诱导公式,三角函数的符号是解决本题的关键.4.B解析:B 【解析】 【分析】先求出A B ⋃,阴影区域表示的集合为()UA B ⋃,由此能求出结果.【详解】全集{1,U =3,5,7},集合{}1,3A =,{}3,5B =,{1,A B ∴⋃=3,5},∴如图所示阴影区域表示的集合为:(){}7UA B ⋃=.故选B . 【点睛】本题考查集合的求法,考查并集、补集、维恩图等基础知识,考查运算求解能力,考查集合思想,是中等题.5.B解析:B 【解析】 【分析】通过观察,得出该数列从第二项起,后一项与前一项的差分别是3的倍数,由此可求得x 的值. 【详解】因为数列的前几项为2,5,11,20,,47x , 其中5213,11523,201133-=⨯-=⨯-=⨯, 可得2043x -=⨯,解得32x =,故选B. 【点睛】本题主要考查了数列的概念及其应用,其中解答中根据题意发现数列中数字的排布规律是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.D解析:D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得. 【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角, 故选:D 【点睛】本题考查了三角函数的符号法则,属于基础题.7.C解析:C 【解析】 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为2d =, 所以公共弦长为:22222l r d =-=. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.8.C解析:C 【解析】 【分析】 【详解】 解答: 由已知条件得;根据共面向量基本定理得:∴△ABC 为等边三角形。

安徽省滁州市天长铜城中学2019-2020学年高三数学文测试题含解析

安徽省滁州市天长铜城中学2019-2020学年高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在平面直角坐标系中,若两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q两点关于直线y=x对称,则称点对P,Q是函数y=f(x)的一对“和谐点对”(注:点对{P,Q}与{Q,P}看作同一对“和谐点对”)已知函数f(x)=,则此函数的“和谐点对”有( )A.0对B.1对C.2对D.3对参考答案:C【考点】进行简单的合情推理;奇偶函数图象的对称性;反函数.【专题】新定义.【分析】作出f(x)=log2x(x>0)关于直线y=x对称的图象C,判断C与函数f(x)=x2+3x+2(x≤0)的图象交点个数,可得答案.【解答】解:作出函数f(x)的图象,然后作出f(x)=log2x(x>0)关于直线y=x对称的图象C,如下图所示:由C与函数f(x)=x2+3x+2(x≤0)的图象有2个不同交点,所以函数的“和谐点对”有2对.故选C【点评】本题考查的知识点是函数零点个数及判断,数形结合思想是解答本题的关键,而解答的核心在于将问题转化为函数图象的交点个数问题.2. 执行如图的程序框图,输入N=2018,则输出的S=()A.B. C. D.参考答案:B由题意结合流程图可知该算法的功能为计算输出值:,裂项求和有:.本题选择B选项.3. 已知函数,若对于任意,都有成立,则实数a的取值范围是A. B. C. D.参考答案:D4. 抛物线的焦点为,已知点为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为()A. B. C.D.参考答案:A5. 已知曲线的焦点F,曲线上三点A,B,C满足,则。

A.2B.4C.6D.8参考答案:C6. 已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C.6 D.8参考答案:D【考点】平面向量的基本定理及其意义.【分析】求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.【解答】解:∵向量=(1,m),=(3,﹣2),∴+=(4,m﹣2),又∵(+)⊥,∴12﹣2(m﹣2)=0,解得:m=8,故选:D.7. (理科)已知圆O:,点P是椭圆C:上一点,过点P作圆O 的两条切线PA、PB,A、B为切点,直线AB分别交轴、轴于点M、N,则的面积的最小值是A. B.1 C. D.参考答案:A8. 已知函数y=sin(ωx+φ)(ω>0,0<φ≤)的部分图象如图所示,φ=()A.B.C.D.参考答案:A9. 若不等式, ,对于一切正数、恒成立,则实数的最小值为________ .参考答案:略10. 已知集合则的子集共有()A.2个B.4个C.6个D.8个参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11. 已知复数,是z的共轭复数,则___________.参考答案:12. 某几何体的三视图如图所示,当a+b取最大值时,该几何体的表面积是;参考答案:略13. 如果实数满足,若直线将可行域分成面积相等的两部分,则实数的值为______.参考答案:考点:1、二元一次不等式组表示的平面区域;2、直线的方程.14. 有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1,2和3,现任取出3面,它们的颜色与号码均不相同的概率是 .参考答案:1/1415. 若的展开式中的系数的6倍,则_____________;参考答案:11略16. 若存在实数使成立,则实数的取值范围是.参考答案:17. 如图,是⊙的直径,是⊙的切线,与的延长线交于点,为切点.若,,则的长为 .参考答案:略三、解答题:本大题共5小题,共72分。

天长市第一中学2018-2019学年上学期高三数学10月月考试题

天长市第一中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力. 2. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log xx y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 3. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.4. 已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则s i n :s i n C A =( ) A .2︰3 B .4︰3 C .3︰1 D .3︰2【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.5. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .36. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞-- C .),3[]1,35[+∞-- D .),3()1,2(+∞-- 7.不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]8. 设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)9. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④D .①③10.已知是虚数单位,若复数)(3i a i +-(R a ∈)的实部与虚部相等,则=a ( )A .1-B .2-C .D . 11.如图所示,阴影部分表示的集合是( )A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B )12.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)二、填空题13.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.14.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .15.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.16.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________.【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.三、解答题17.(本小题满分14分)设函数2()1cos f x ax bx x =++-,0,2x π⎡⎤∈⎢⎥⎣⎦(其中a ,b R ∈).(1)若0a =,12b =-,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.18.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点,求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .19.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.20.(本小题满分10分)已知函数f (x )=|x -a |+|x +b |,(a ≥0,b ≥0). (1)求f (x )的最小值,并求取最小值时x 的范围; (2)若f (x )的最小值为2,求证:f (x )≥a +b .21.设定义在(0,+∞)上的函数f(x)=,g(x)=,其中n∈N*(Ⅰ)求函数f(x)的最大值及函数g(x)的单调区间;(Ⅱ)若存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值.(参考数据:ln4≈1.386,ln5≈1.609)22.已知在等比数列{a n}中,a1=1,且a2是a1和a3﹣1的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1+2b2+3b3+…+nb n=a n(n∈N*),求{b n}的通项公式b n.天长市第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】C.【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C. 2. 【答案】C【解析】由||)(x a x f =始终满足1)(≥x f 可知1>a .由函数3||log x x y a =是奇函数,排除B ;当)1,0(∈x 时,0||log <x a ,此时0||log 3<=xx y a ,排除A ;当+∞→x 时,0→y ,排除D ,因此选C . 3. 【答案】B4. 【答案】C【解析】由已知等式,得3cos 3cos c b C c B =+,由正弦定理,得sin 3(sin cos sin cos )C B C C B =+,则sin 3sin()3sin C B C A =+=,所以sin :sin 3:1C A =,故选C .5. 【答案】D 【解析】考点:简单线性规划. 6. 【答案】C【解析】由已知,圆1O 的标准方程为222(1)()(4)x y a a ++-=+,圆2O 的标准方程为 222()()(2)x a y a a ++-=+,∵2->a ,要使两圆恒有公共点,则122||26O O a ≤≤+,即 62|1|2+≤-≤a a ,解得3≥a 或135-≤≤-a ,故答案选C7. 【答案】D【解析】解:依题意,不等式化为,解得﹣1<x ≤2, 故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.8. 【答案】【解析】选C.f (x )的定义域为x ∈R ,由f (x )=(e -x -e x )(12x +1-12)得f (-x )=(e x -e -x )(12-x +1-12)=(e x -e -x )(-12x +1+12)=(e -x -e x )(12x +1-12)=f (x ),∴f (x )在R 上为偶函数,∴不等式f (x )<f (1+x )等价于|x |<|1+x |,即x 2<1+2x +x 2,∴x >-12,即不等式f (x )<f (1+x )的解集为{x |x >-12},故选C.9. 【答案】B【解析】解:由m 、n 是两条不同的直线,α,β,γ是三个不同的平面: 在①中:若m ⊥α,n ∥α,则由直线与平面垂直得m ⊥n ,故①正确; 在②中:若α∥β,β∥γ,则α∥γ,∵m ⊥α,∴由直线垂直于平面的性质定理得m ⊥γ,故②正确;在③中:若m ⊥α,n ⊥α,则由直线与平面垂直的性质定理得m ∥n ,故③正确; 在④中:若α⊥β,m ⊥β,则m ∥α或m ⊂α,故④错误. 故选:B .10.【答案】A考点:复数运算. 11.【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A ,但不属于集合B 的元素构成, ∴对应的集合表示为A ∩∁U B . 故选:A .12.【答案】D【解析】解:∵方程x 2+ky 2=2,即表示焦点在y 轴上的椭圆∴故0<k <1故选D .【点评】本题主要考查了椭圆的定义,属基础题.二、填空题13.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点12,33A ⎛⎫⎪⎝⎭处取得最大值为73.考点:线性规划.14.【答案】.【解析】解:∵直线l 过原点且平分平行四边形ABCD 的面积,则直线过BD 的中点(3,2),故斜率为=,∴由斜截式可得直线l 的方程为,故答案为.【点评】本题考查直线的斜率公式,直线方程的斜截式.15.【答案】【解析】解:(1)证明:l 1的斜率显然存在,设为k ,其方程为y -2pt 2=k (x -2pt ).①将①与拋物线x 2=2py 联立得,x 2-2pkx +4p 2t (k -t )=0,解得x 1=2pt ,x 2=2p (k -t ),将x 2=2p (k -t )代入x 2=2py 得y 2=2p (k -t )2,∴P 点的坐标为(2p (k -t ),2p (k -t )2).由于l 1与l 2的倾斜角互补,∴点Q 的坐标为(2p (-k -t ),2p (-k -t )2), ∴k PQ =2p (-k -t )2-2p (k -t )22p (-k -t )-2p (k -t )=-2t ,即直线PQ 的斜率为-2t .(2)由y =x 22p 得y ′=xp,∴拋物线C 在M (2pt ,2pt 2)处的切线斜率为k =2ptp =2t .其切线方程为y -2pt 2=2t (x -2pt ), 又C 的准线与y 轴的交点T 的坐标为(0, -p2). ∴-p2-2pt 2=2t (-2pt ).解得t =±12,即t 的值为±12.16.【答案】±.【解析】分析题意得,问题等价于264x ax ++≤只有一解,即220x ax ++≤只有一解,∴280a a ∆=-=⇒=±,故填:±.三、解答题17.【答案】【解析】(1)∵0a =,12b =-, ∴1()1cos 2f x x x =-+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦.(2分) 令()0f x '=,得6x π=.当06x π<<时,()0f x '<,当62x ππ<<时,()0f x '>,所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤⎢⎥⎣⎦. (5分)若112a -<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫⎪⎝⎭上单调减.又(0)0f =,2()124f a ππ=+. 故当2142a -<≤-π时,2()1024f a ππ=+≤,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=+>,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上只有一个零点.18.【答案】【解析】证明:(1)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF 不在平面PCD 中,PD ⊂平面PCD 所以直线EF ∥平面PCD .(2)连接BD .因为AB=AD ,∠BAD=60°.所以△ABD 为正三角形.因为F 是AD 的中点,所以BF ⊥AD . 因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD , 平面PAD ∩平面ABCD=AD ,所以BF ⊥平面PAD . 又因为BF ⊂平面EBF ,所以平面BEF ⊥平面PAD .【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.19.【答案】(1) 2a = (2) a ≥2(3)两个零点. 【解析】试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:241x a x +≥的最大值,根据分式函数求最值方法求得()241x F x x =+最大值2(3)先利用导数研究函数()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数试题解析:(1) ()2af x x x=-′由已知,(1)0f =′即: 20a -=, 解得:2a = 经检验 2a = 满足题意 所以 2a = ………………………………………4分因为(]0,1x ∈,所以[)11,x ∈+∞,所以2min112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以()max 2F x =,所以a ≥2 ……………………………………10分(3)函数()()()6m x f x g x =--有两个零点.因为()22ln 6m x x x x =--+所以())()1222221x m x x x x=--==′ ………12分当()1,0∈x 时,()'x m ,当()+∞∈,1x 时,()0>'x m所以()()min 140m x m ==-<, ……………………………………14分3241-e)(1+e+2e )(=0e m e -<() ,8424812(21))0e e e me e -++-=>( 4442()1)2(7)0m e e e e =-+->( 故由零点存在定理可知:函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分 考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性 【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.20.【答案】【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|=|a+b|得,当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.(2)证明:由(1)知a+b=2,(a+b)2=a+b+2ab≤2(a+b)=4,∴a+b≤2,∴f(x)≥a+b=2≥a+b,即f(x)≥a+b.21.【答案】【解析】解:(Ⅰ)函数f(x)在区间(0,+∞)上不是单调函数.证明如下,,令f′(x)=0,解得.x f x f x所以函数f(x)在区间上为单调递增,区间上为单调递减.所以函数f(x)在区间(0,+∞)上的最大值为f()==.g′(x)=,令g′(x)=0,解得x=n.x g′x g x(Ⅱ)由(Ⅰ)知g (x )的最小值为g (n )=,∵存在直线l :y=c (c ∈R ),使得曲线y=f (x )与曲线y=g (x )分别位于直线l 的两侧,∴≥,即en+1≥n n ﹣1,即n+1≥(n ﹣1)lnn ,当n=1时,成立,当n ≥2时,≥lnn ,即≥0,设h (n )=,n ≥2,则h (n )是减函数,∴继续验证, 当n=2时,3﹣ln2>0, 当n=3时,2﹣ln3>0,当n=4时,,当n=5时,﹣ln5<﹣1.6<0, 则n 的最大值是4.【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题.22.【答案】 【解析】解:(1)设等比数列{a n }的公比为q ,由a 2是a 1和a 3﹣1的等差中项得:2a 2=a 1+a 3﹣1,∴,∴2q=q 2,∵q ≠0,∴q=2,∴;(2)n=1时,由b 1+2b 2+3b 3+…+nb n =a n ,得b 1=a 1=1.n ≥2时,由b 1+2b 2+3b 3+…+nb n =a n ① b 1+2b 2+3b 3+…+(n ﹣1)b n ﹣1=a n ﹣1②①﹣②得:.,∴.【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.。

2019年天长市铜城中学高考数学选择题专项训练(一模)

2019年天长市铜城中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。

第 1 题:来源:内蒙古乌兰察布市2015_2016学年高一数学下学期期末考试试题()A. B. C.D.【答案】B第 2 题:来源:四川省广安市邻水县2017_2018学年高一数学上学期第一次月考试题试卷及答案函数的最值情况为( )(A)最小值0,最大值1 (B)最小值0,无最大值(C)最小值0,最大值5 (D)最小值1,最大值5【答案】B.x∈[-1,0],f(x)的最大值为1,最小值为0;x∈(0,1]时,f(x)∈[1,+∞)无最大值,有最小值1,所以f(x)有最小值0,无最大值.第 3 题:来源: 2019高考数学一轮复习第9章平面解析几何第8讲圆锥曲线的弦分层演练文201809101134过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则|AF|·|BF|的最小值是( )A.2 B.C.4 D.2【答案】C.第 4 题:来源: 2017年河南省濮阳市高考数学一模试卷(理科)含答案解析在利用最小二乘法求回归方程时,用到了如表中的5组数据,则表格a中的值为()x 10 20 30 40 50y 62 a 75 81 89A.68 B.70 C.75 D.72【答案】A【考点】线性回归方程.【分析】由题意回归直线方程,过样本点的中心点,即可得a的值.【解答】解:由题意可得=(10+20+30+40+50)=30, =(62+a+75+81+89),因为回归直线方程,过样本点的中心点,所以(a+307)=0.67×30+54.9,解得a=68故选A.【点评】本题考查线性回归方程,利用回归直线过样本点的中心点是解决问题的关键,属基础题.第 5 题:来源:河北省承德市第一中学2018_2019学年高一数学下学期期中试题从某电视塔的正东方向的A处,测得塔顶仰角是60°;从电视塔的西偏南30°的B处,测得塔顶仰角为45°,A、B间距离是35 m,则此电视塔的高度是 ( )A.35 m B.10 mC.m D. 5 m【答案】D第 6 题:来源: 2017年河南省高考数学适应性试卷(理科)含答案解析已知集合A={x|x2﹣2x﹣3>0},B={x|lg(x﹣2)≤1},则(∁RA)∪B=()A.(﹣1,12) B.(2,3) C.(2,3] D.[﹣1,12]【答案】D【考点】交、并、补集的混合运算.【分析】首先化简集合A,B,进而算出∁RA,然后根据并集的定义进行求解.【解答】解:∵集合A={x|x2﹣2x﹣3>0}={x|x<﹣1或x>3}∴∁RA={x|﹣1≤x≤3}=[﹣1,3]∵B={x|lg(x﹣2)≤1},∴,解得2<x≤12,∴B=(2,12]∴(∁RA)∪B=[﹣1,12]故选:D.第 7 题:来源: 2017届四川省成都外国语学校高三数学上学期期末考试试题试卷及答案文,则实数a取值范围为()A B [-1,1] C D (-1,1]【答案】B第 8 题:来源:山东省潍坊市2019年高考数学模拟训练试题理在的展开式中,所有项的二项式系数之和为4096,则其常数项为A. B.110 C.220 D.【答案】D第 9 题:来源:河北省唐山市2017_2018学年高一数学12月月考试题试卷及答案定义域为的函数满足以下条件:①;②;③.则不等式的解集是( )A.B.C.D.【答案】D第 10 题:来源:高中数学第三章导数及其应用本章测评新人教B版选修1_120171101257已知函数f(x)在x=1处的导数为3,则f(x)的解析式可能为( )A.f(x)=(x-1)2+3(x-1)B.f(x)=2(x-1)C.f(x)=2(x-1)2 D.f(x)=x-1 【答案】A第 11 题:来源:四川省成都外国语学校2018_2019学年高一数学下学期入学考试试题已知集合,,则().A. B. C. D.【答案】A第 12 题:来源:重庆市忠县三汇中学2018_2019学年高二数学上学期期中试题.一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“?”处的数字是()A.6 B.3 C.1 D.2 【答案】C第 13 题:来源:宁夏2017-2018学年高二数学12月月考试题理若命题“p∧(¬q)”为真命题,则( )A.p∨q为假命题 B.q为假命题C.q为真命题 D.(¬p)∧(¬q)为真命题【答案】B第 14 题:来源: 2016_2017学年四川省三台县高二数学下学期半期补练试题试卷及答案若△ABC的内角A,B,C所对的边分别为a,b,c,且,则∠C=()A. B. C. D.【答案】C 解:∵a2=c2-b2+ba,即a2+b2-c2=ab,∴cosC==,∵C为三角形内角,∴C=.故选:C.第 15 题:来源:河北省唐山市2017_2018学年高二数学上学期期中试题理试卷及答案已知是椭圆上的一点,是的两个焦点,若,则的取值范围是()【答案】A第 16 题:来源:重庆市2016_2017学年高二数学下学期期中试卷理(含解析).设过曲线f(x)=﹣ex﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为()A.[﹣1,2] B.(﹣1,2) C.[﹣2,1] D.(﹣2,1)【答案】A.第 17 题:来源:广西陆川县2017_2018学年高一数学9月月考试题理若函数y=ax与y=在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是()A.增函数B.减函数 C.先增后减 D.先减后增【答案】B第 18 题:来源: 2019高考数学一轮复习第7章不等式第2讲不等式的性质与基本不等式分层演练文已知0<a<b<1,则( )A.> B.C.(lg a)2<(lg b)2 D.【答案】D.因为0<a<b<1,所以-=<0,可得 (lg a)2>(lg b)2;因为lg a<lg b<0,所以,综上可知D正确,另解:取a=,b=,排除验证,知D正确,故选D.第 19 题:来源:山东省泰安市2019届高三数学一轮复习质量检测试卷理(含解析)若复数的实部与虚部互为相反数,则实数A. 3B.C.D.【答案】D【解析】【分析】利用复数乘法的运算法则化简复数,然后利用复数的实部与虚部的和为零,列方程求解即可.【详解】因为,且复数的实部与虚部互为相反数,所以,,解得,故选D.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查乘法/除法运算,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.第 20 题:来源:河北省武邑中学2018_2019学年高二数学上学期第二次月考试题文椭圆的通径长为A. B. C. D.【答案】D第 21 题:来源:宁夏银川市孔德2016_2017学年高一数学下学期第一次(3月)月考试题某客运公司为了解客车的耗油情况,现采用系统抽洋方法按的比例抽取一个样本进行检测,将所辆客车依次编号为,则其中抽取的辆客车的编号可能是()A. B. C. D.【答案】C【解析】试题分析:系统抽样的规则是等距离抽样,根据题意把整体分为段,每段辆,所以分段间隔为,抽出的辆客车的编号尾号应该相同,所以抽出的辆客车的编号可能是,故选C.考点:系统抽样.第 22 题:来源:湖北省荆州市2018届高三数学上学期第一次双周考试题理试卷及答案下列选项中,说法正确的是A.若,则B. 向量共线的充要条件是C. 命题“”的否定是“”D. 已知函数在区间上的图象是连续不断的,则命题“若,则在区间内至少有一个零点”的逆命题为假命题【答案】D第 23 题:来源:黑龙江省大庆市2017_2018学年高一数学上学期期中试题试卷及答案已知集合,,则集合中所有元素之和为()A. B. C. D.【答案】B第 24 题:来源:云南省玉溪市2017_2018学年高二数学上学期期中试题理试卷及答案从装有数十个红球和数十个白球的罐子里任取两个球,下列情况中是互斥而不是对立的两个事件是()A.至少有一个红球,至少有一个白球 B.至少有一个红球,都是白球C.恰有一个红球,都是白球 D.至多有一个红球,都是红球【答案】C第 25 题:来源:云南省民族大学附属中学2018_2019学年高一数学上学期期中试题当时,恒成立,则的取值范围是()A. B. C. D.【答案】C第 26 题:来源:吉林省长春市2017年高考数学三模试卷(文科)含答案解析对,23x≤logax+1恒成立,则实数a的取值范围是()A. B. C. D.【答案】C【考点】函数恒成立问题;全称命题.【分析】先构造函数f(x)=x2+x,g(x)=﹣logax.h(x)=f(x)+g(x),将问题等价转化为函数h(x)在区间(0,)上恒有h(x)≤0,又函数为增函数,故可求答案.【解答】解:构造函数f(x)=23x,g(x)=﹣logax﹣1.h(x)=f(x)+g(x).(0<x<)易知,在区间(0,)上,函数f(x),g(x)均是递增函数,∴函数h(x)=f(x)+g(x)在区间(0,)上是递增函数.由题设可知,函数h(x)在区间(0,)上恒有h(x)≤0.∴必有h()≤0.即有2﹣loga()﹣1≤0.整理就是logaa=1≤loga(),∴实数a的取值范围是≤a<1.故选C.第 27 题:来源:福建省长汀、连城、上杭、武平、永定、漳平六校2016_2017学年高一数学年下学期期中联考试题(含解析)下列函数中,图象的一部分符合右图的是A. B.C. D.【答案】D【解析】由图象,得函数的周期为,,故排除选项A,因为函数图象过点,则,解得;故选D.第 28 题:来源: 2018届高考数学文科总复习课时跟踪检测试卷(14)导数与函数的单调性试卷及答案函数f(x)=x-ln x的单调递减区间为( )A.(0,1) B.(0,+∞)C.(1,+∞) D.(-∞,0)∪(1,+∞)【答案】A 函数的定义域是(0,+∞),且f′(x)=1-=,令f′(x)<0,得0<x<1.第 29 题:来源:宁夏石嘴山市2018届高三数学下学期入学考试试题文设集合,集合是函数的定义域;则()A. B. C. D.【答案】B第 30 题:来源:江西省奉新县2017_2018学年高二数学上学期第二次月考试题理试卷及答案.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. B. C. D .1【答案】A第 31 题:来源:江西省赣州市2016_2017学年高一数学下学期第二次(5月)月考试题已知是正数,且,则的最小值是()A.6B.12C.16D.24 【答案】C第 32 题:来源:河北省博野县2016_2017学年高一数学3月月考试题试卷及答案设公比大于零的等比数列的前项和为,且,数列的通项公式A B.an=3n C.2D..an=5n【答案】A第 33 题:来源:甘肃省兰州市2016_2017学年高一数学下学期期末考试试题试卷及答案当非零向量不共线时,与的位置关系是( )A.平行B.垂直C.相交D.相等【答案】C第 34 题:来源:辽宁省凌源二中2018届高三数学三校联考试题理(含解析)已知曲线在点处的切线的倾斜角为,则()A. B. C. 2 D.【答案】B【解析】由题意可得:,则:,结合同角三角函数基本关系可得:.第 35 题:来源:福建省厦门市2016_2017学年高二数学下学期期中试题试卷及答案理函数的单调递增区间是 ( ) .A. B. C.D.【答案】D第 36 题:来源:湖南省衡阳市2017_2018学年高二数学上学期第一次月考试题(实验班)理试卷及答案设M是圆O:x2+y2=9上动点,直线l过M且与圆O相切,若过A(﹣2,0),B(2,0)两点的抛物线以直线l为准线,则抛物线焦点F的轨迹方程是()A.﹣=1(y≠0) B.﹣=1(y≠0)C. +=1(y≠0) D. +=1(y≠0)【答案】C第 37 题:来源:宁夏银川市2017_2018学年高二数学上学期第二次月考试题理已知的顶点B、C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则的周长是( )A. B.6 C. D.12【答案】C第 38 题:来源:宁夏银川市孔德2016_2017学年高二数学下学期第一次(3月)月考试题理曲线与两坐标轴及所围成的图形的面积为()A、 B、 C、 D、【答案】B第 39 题:来源:山东省2018届高三数学第一次诊断性考试试题理试卷及答案一个二元码是由0和1组成的数字串,其中称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0.已知某种二元码的码元满足如下校验方程组:其中运算定义为.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于A.3B.4C.5D.6【答案】C第 40 题:来源:黑龙江省大庆实验中学2018_2019学年高二数学下学期第二次月考试题文(含解析)直线与曲线相切于点,则的值为()A. B. C.D.【答案】A【解析】【分析】先求出函数的导数,再由导数的几何意义、把切点坐标代入曲线和切线方程,列出方程组进行求解.【详解】由题意得,y′=3x2+a,∴k=3+a ①∵切点为A(1,3),∴3=k+1 ②3=1+a+b ③由①②③解得,a=﹣1,b=3,∴2a+b=1,故选:A.【点睛】本题考查了导数的几何意义,即一点处的切线斜率是该点出的导数值,以及切点在曲线上和切线上的应用.第 41 题:来源:湖南省衡阳县第四中学2018_2019学年高一数学上学期期中试题已知,那么的值是()A.3 B.2 C.1 D.0【答案】A第 42 题:来源:河南省滑县2017_2018学年高二数学上学期期中试题理试卷及答案已知有序实数对(x,y)满足条件x≤y≤,则x+y的取值范围是()A.[﹣2,] B.[﹣,] C.[﹣1,] D.(﹣∞,] 【答案】A【解答】解:有序实数对(x,y)满足条件x≤y≤,表示的平面区域如图阴影部分:令z=x+y,如图红色直线,显然,z=x+y经过A时取得最小值,经过B时取得最大值.A(﹣1,﹣1),B(,).x+y∈[﹣2,].故选:A.第 43 题:来源:云南省玉溪市2018届高三数学上学期第一次月考试题文(含解析)某校有高级教师90人,一级教师120人,二级教师170人,现按职称用分层抽样的方法抽取38人参加一项调查,则抽取的一级教师人数为()A. 10B. 12C. 16D. 18【答案】B第 44 题:来源:宁夏银川市2016_2017学年高二数学下学期第一次月考试题试卷及答案理函数的一个单调递增区间是()A. B. C. D.【答案】D第 45 题:来源:湖南省长沙市2017_2018学年高二数学上学期第一次模块检测试题理试卷及答案设不等式组所表示的平面区域为,函数的图象与轴所围成的区域,向内随机投一个点,则该点落在内的概率为()A. B. C. D.【答案】B第 46 题:来源:湖北省宜城市第二中学2016-2017学年高二数学下学期开学考试试题试卷及答案理在的展开式中,常数项是A.-28 B.-7 C.7 D.28【答案】 C第 47 题:来源:江西省樟树中学2019届高三数学上学期第一次月考试题(复读班)理下面四组函数中,与表示同一个函数的是A. B.C. D.【答案】C第 48 题:来源: 2017届四川省成都市双流区高三数学下学期4月月考试题试卷及答案理A. B. C. D.【答案】B第 49 题:来源:江西省南昌市2018届高三数学上学期第三次月考试题理试卷及答案设函数f(x)=x3+x,x∈R.若当0<θ<时,不等式f(msinθ)+f(1﹣m)>0恒成立,则实数m的取值范围是()A.(﹣∞,1] B.[1,+∞)C.(,1) D .(,1]【答案】A第 50 题:来源:江西省赣州市十四县(市)2017_2018学年高二数学上学期期中联考试题理试卷及答案已知是某几何体的三视图,则该几何体的体积为()A. B. C. D.【答案】 B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年天长中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。

第 1 题:来源: 2017年江西省南昌市六校高二数学5月联考试题(理)及答案以图中的8个点为顶点的三角形的个数是()A.56个B.48个C.45个D.42个【答案】D第 2 题:来源: 2017_2018学年高中数学第三章直线与方程3.2.1直线的点斜式方程学业分层测评试卷及答案新人教A版必修过点(-3,2),倾斜角为60°的直线方程为( )A.y+2=(x-3)B.y-2=(x+3)C.y-2=(x+3)D.y+2=(x+3)【答案】 C第 3 题:来源:西藏林芝市2017_2018学年高二数学上学期期中试题试卷及答案在等差数列中,,那么()A.12 B.24 C.36D.48【答案】B第 4 题:来源:重庆市长寿一中2018_2019学年高二数学上学期第一次月考试题已知特称命题p:则命题p的否定是()(A) (B)(C) (D)【答案】 D第 5 题:来源:辽宁省大连市2017_2018学年高一数学上学期期中试题试卷及答案已知定义在上的奇函数和偶函数满足,则()A. B. C.D.【答案】A第 6 题:来源:四川省资阳市2019届高三数学第一次诊断性考试试题理(含解析)已知偶函数在(-∞,0]上单调递增,令,,,则a,b,c满足A. a<b<c B. b<a<c C. c<a<b D. c<b<a【答案】C【解析】【分析】化简,可得,根据单调性与奇偶性可得结果. 【详解】偶函数在上单调递增,在上单调递减,,,,即,故选C.第 7 题:来源:山西省太原市小店区2017_2018学年高二数学上学期9月月考试题试卷及答案已知向量,则()A. B. C. D.【答案】C第 8 题:来源:河南省开封市、商丘市九校2018_2019学年高一数学下学期期中联考试题若非零向量满足,则()A. B. C. D.【答案】D第 9 题:来源:贵州省湄江中学2016-2017学年高二数学上学期期末考试试题理试卷及答案要得到函数y=sin的图象,只需将函数y=sin 4x的图象( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】B第 10 题:来源:山东省夏津一中2019届高三数学10月月考试题理若,且,则等于()A. B. C.D.【答案】B第 11 题:来源: 2016_2017学年内蒙古乌兰察布高二数学下学期期末考试试题试卷及答案理已知F1,F2是双曲线E的左,右焦点,点M在E上,M F1与轴垂直,sin ,则E的离心率为()(A)(B)(C)(D)2【答案】A第 12 题:来源:西藏日喀则市南木林高级中学2018_2019学年高二数学上学期期中试题等差数列{an}中,a2+a5+a8=9,则a4+a6的值等于( )A.3 B.6 C.9 D.12【答案】B第 13 题:来源:山东省济南市2017_2018学年高二数学上学期期中试题试卷及答案.在中,则A. B. C. 或 D.或【答案】B第 14 题:来源:湖南省常德市2019届高三数学上学期检测考试试题理(含解析).已知复数是虚数单位,则z的实部为A. B. C.D.【答案】B【解析】【分析】利用复数的除法运算化简复数z,从而得到其实部.【详解】∵,∴z的实部为.故应选B.【点睛】数的运算,难点是乘除法法则,设,则,.第 15 题:来源:江西省九江市2019届高三数学第一次模拟统一考试试题理(含解析)设变量满足约束条件,若目标函数的最小值为,则得到最小值为()A. B. C. D.【答案】D【解析】【分析】作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.【详解】变量x,y满足约束条件的可行域如图,当直线z=ax+by(a>0,b>0)过直线y=1和2x﹣y﹣3=0的交点(2,1)时,有最小值为1;∴2a+b=1,(2a+b)()=33+23+2.故选:D.【点睛】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.第 16 题:来源:广东省普宁市华侨中学2016-2017学年高二数学下学期开学考试试题试卷及答案理集合,集合,则()A. B. C. D.【答案】 D第 17 题:来源:新疆维吾尔自治区阿克苏市2017_2018学年高一数学上学期第二次月考试题试卷及答案若满足,满足,则+= ()【答案】A第 18 题:来源:江西省南昌市实验中学2016-2017学年高一数学上学期期末考试试题试卷及答案下列函数中,最小正周期为,且图象关于直线对称的是()A. B.C. D.【答案】B第 19 题:来源:安徽省合肥一六八中学2018_2019学年高二数学下学期期中试题理(含解析)已知函数图象上任一点处的切线方程为,那么函数的单调减区间是()A. B. C.D.【答案】D【解析】【分析】根据导数几何意义得导数,再解不等式得结果.【详解】由题意得,因此由得或,选D.【点睛】本题考查导数几何意义,考查基本分析求解能力,属基础题.第 20 题:来源:内蒙古杭锦后旗2017_2018学年高一数学上学期期中试题试卷及答案已知函数,若,则的取值范围是( )A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]【答案】D第 21 题:来源:宁夏六盘山2018届高三数学上学期第一次月考试题理已知定义在上的奇函数满足当时,,则关于的函数的所有零点之和为()A. B. C. D.【答案】D第 22 题:来源:湖南省邵东县2018届高三数学第一次月考试卷及答案理定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)·[f(x2)-f(x1)]>0,则当n∈N*时,有( )A.f(-n)<f(n-1)<f(n+1) B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1) D.f(n+1)<f(n-1)<f(-n)【答案】C第 23 题:来源:重点班2017届高三数学一轮复习阶段检测试题三理试卷及答案设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,….若b1>c1,b1+c1=2a1.an+1=an,bn+1=,cn+1=,则( )(A){Sn}为递减数列(B){Sn}为递增数列(C){S2n-1}为递增数列,{S2n}为递减数列(D){S2n-1}为递减数列,{S2n}为递增数列【答案】B解析:由bn+1=,cn+1=得,bn+1+cn+1=an+(bn+cn),①bn+1-cn+1=-(bn-cn),②由an+1=an得an=a1,代入①得bn+1+cn+1=a1+(bn+cn),所以bn+1+cn+1-2a1=(bn+cn-2a1),因为b1+c1-2a1=2a1-2a1=0,所以bn+cn=2a1>|BnCn|=a1,所以点An 在以Bn,Cn 为焦点且长轴长为2a1的椭圆上(如图). 由b1>c1得b1-c1>0, 所以|bn+1-cn+1|=·(bn-cn), 即|bn-cn|=(b1-c1)·()n-1, 所以当n 增大时|bn-cn|变小,即点An 向点A 处移动,即边BnCn 上的高增大, 又|BnCn|=an=a1不变, 所以{Sn}为递增数列.第 24 题: 来源: 宁夏2017-2018学年高二数学12月月考试题 理 若命题“p ∧(¬q)”为真命题,则( )A .p ∨q 为假命题B .q 为假命题C .q 为真命题D .(¬p)∧(¬q)为真命题 【答案】B第 25 题: 来源: 甘肃省武威市2016_2017学年高一数学下学期期末考试试题试卷及答案 任取一个3位正整数n ,则对数log2n 是一个正整数的概率为( )A .B .C . D.以上全不对 【答案】B第 26 题: 来源: 2017届江西省南昌市十所省重点中学高三第二次模拟突破冲刺数学理科试题(三)含答案已知数列为等差数列,且满足,若,点为直线外一点,则(A ) (B ) (C )(D )【答案】A 【解析】∵, ∴,即, 又∵,∴, ∴.第 27 题: 来源: 广东省韶关市新丰一中2017_2018学年高一数学上学期第一次月考试题(含解析)下列六个关系式:①;②;③;④;⑤;⑥,其中正确的个数为( )A. 个B. 个C. 个D. 少于个【答案】C【解析】根据集合自身是自身的子集,可知①正确;根据集合无序性可知②正确;根据元素与集合只有属于与不属于关系可知③⑤不正确;根据元素与集合之间的关系可知④正确;根据空集是任何集合的子集可知⑥正确,即正确的关系式个数为个,故选C.第 28 题:来源:河北省衡水中学2018届高三数学上学期一轮复习周测试题理试卷及答案设,若是的充分不必要条件,则实数的取值范围是()A.B. C.D.【答案】A第 29 题:来源:辽宁省大石桥市2018届高三数学上学期期初考试试题理宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.右图是源于其思想的一个程序框图,若输入的、分别为、,则输出的 A.B.C.D.【答案】C第 30 题:来源:河北省唐山一中2016_2017学年高二数学3月月考试题理观察下列一组数据a1=1,a2=3+5,a3=7+9+11,a4=13+15+17+19,……则a10从左到右第一个数是()A.91B.89C.55D.45【答案】A第 31 题:来源:河南省鲁山县2017_2018学年高二数学上学期第一次月考试题理试卷及答案设不等式组所表示的平面区域是,平面区域与关于直线对称,对于中的任意一点与中的任意一点, 则的最小值为 ( )A. B. C.4 D.2【答案】C第 32 题:来源:福建省龙海市2017_2018学年高二数学上学期第二次月考试题理试卷及答案已知椭圆上一点与椭圆的两个焦点,的连线的夹角为直角,则=( )A.16B.18C.24D.36【答案】B第 33 题:来源:广东省中山市普通高中2017_2018学年高一数学11月月考试题试卷及答案07函数满足,且,,则下列等式不成立的是A B C D【答案】B第 34 题:来源:贵州省思南中学2018_2019学年2018_2019学年高一数学下学期期中试题已知数列满足a1=1,且,则an=()A.【答案】B第 35 题:来源:安徽省阜阳市第三中学2018_2019学年高二数学下学期开学考试试题(竞培中心)理由的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后,所得图象对应的函数解析式为A. B.C. D.【答案】A第 36 题:来源: 2016_2017学年高中数学每日一题(2月27日_3月5日)试卷及答案新人教A 版必修3已知数据,,,…,是某县普通职工(,)个人的年收入,设个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是A.年收入平均数大大增加,中位数一定变大,方差可能不变B.年收入平均数大大增加,中位数可能不变,方差变大C.年收入平均数大大增加,中位数可能不变,方差也不变D.年收入平均数可能不变,中位数可能不变,方差可能不变【答案】B第 37 题:来源:河北省唐山市2017_2018学年高一数学上学期期中试题试卷及答案函数在上是奇函数,且单调递减函数,若,那么的取值范围为A. B. C. D.【答案】A第 38 题:来源:湖南省常德市2019届高三数学上学期检测考试试题理(含解析)阅读如图程序框图,运行相应的程序,若输入,,则输出的值为()A. B. C.D.【答案】B【解析】【分析】运行程序进行计算,当时,退出程序,输出的值.【详解】运行程序,,,判断否,,判断否,,判断是,输出,故选B.【点睛】本小题主要考查计算程序框图输出结果,考查运算求解能力,属于基础题.第 39 题:来源:山东省潍坊市临朐县2017届高三数学上学期阶段性质量检测(12月月考)试题理已知,则=A. B. C. D.【答案】 C第 40 题:来源:河北省井陉县2017_2018学年高二数学10月月考试题试卷及答案设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为( )A.y=x-1或y=-x+1 B.y=(x-1)或y=-(x-1)C.y=(x-1)或y=-(x-1) D.y=(x-1)或y=-(x-1)【答案】C第 41 题:来源:山东省潍坊市2019年高考数学模拟训练试题理抛物线的焦点为F,已知点A,B为抛物线上的两个动点,且满足.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为A. B. C.1D.【答案】A第 42 题:来源:广东省深圳市耀华实验学校2018_2019学年高二数学上学期第一次月考试题理在ABC中,角A、B、C所对的边分别为a、b、c,若,则ABC的形状为( ) A.正三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.直角三角形【答案】D第 43 题:来源:江西省南昌市两校联考2017届高三数学下学期期中试卷文(含解析)下列命题是真命题是()①如果命题“p且q是假命题”,“非p”为真命题,则命题q一定是假命题;②已知命题P:∃x∈(﹣∞,0),2x<3x;命题,tanx>sinx.则(¬p)∧q为真命题;③命题p:若,则与的夹角为钝角是真命题;④若p:|x+1|>2,q:x>2,则¬p是¬q成立的充分不必要条件;⑤命题“存在x0∈R,2≤0”的否定是“不存在x0∈R,2>0”A.①③ B.②④ C.③④ D.②⑤【答案】B【考点】2K:命题的真假判断与应用.【分析】①,如果命题“p且q是假命题”,“非p”为真命题,则p为假命题,命题q可能是假命题,也可能是真命题;②,只需判定命题P,q真假即可;③,若,则与的夹角为钝角或π;④,由q是p的充分不必要条件,则¬p是¬q成立的充分不必要条件;⑤,命题“存在x0∈R,2≤0”的否定是“∀x0∈R,2>0”.【解答】解:对于①,如果命题“p且q是假命题”,“非p”为真命题,则p为假命题,命题q可能是假命题,也可能是真命题,故错;对于②,当x∈(﹣∞,0),⇒2x>3x,故命题P是假命题;命题,tanx=>sinx.则故命题q是假命题,故(¬p)∧q为真命题,正确;对于③,命题p:若,则与的夹角为钝角或π,故③错;对于④,若p:|x+1|>2,q:x>2,⇒q是p的充分不必要条件,则¬p是¬q成立的充分不必要条件,故正确;对于⑤,命题“存在x0∈R,2≤0”的否定是“∀x0∈R,2>0”,故错.故选:B.第 44 题:来源: 2019高考数学一轮复习第7章不等式章末总结分层演练文设实数x,y满足条件若目标函数z=ax+by(a>0,b>0)的最大值为8,则+的最小值为( )A.2 B.3 C.4 D.6 【答案】C.画出不等式组表示的平面区域如图中阴影部分(包括边界)所示,当直线z=ax+by(a>0,b>0)过直线2x-3y=6与直线x-6y=-6的交点(6,2)时,目标函数z=ax+by(a>0,b>0)取得最大值8,即6a+2b=8,所以3a+b=4,所以(3a+b)=10+3≥16.所以+≥4.当且仅当a=b =1时,取等号.故选C.第 45 题:来源:河南省开封市、商丘市九校2018_2019学年高一数学下学期期中联考试题在△中,为线段上的一点,,且,则( )A. B. C. D.【答案】C第 46 题:来源:安徽省黄山市屯溪第一中学2018_2019学年高二数学下学期入学摸底考试试题理如图,在四面体ABCD中,E、F分别是棱AD、BC的中点,则向量与、的关系是A. B.C. D.【答案】C第 47 题:来源: 2017年广东省汕头市高考数学一模试卷(文科)含答案已知a∈(,π),sinα=,则tan(α+)=()A. B.7 C. D.﹣7【答案】C【考点】两角和与差的正切函数;同角三角函数基本关系的运用.【分析】由已知利用同角三角函数基本关系式可求cosα,tanα的值,进而利用两角和的正切函数公式即可计算得解.【解答】解:∵a∈(,π),sinα=,∴cosα=﹣=﹣,可得:tanα=﹣,∴tan(α+)===.故选:C.【点评】本题主要考查了同角三角函数基本关系式,两角和的正切函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.第 48 题:来源: 2016_2017学年高中数学每日一题(3月13日_3月19日)试卷及答案新人教A 版必修3掷一枚骰子的试验中,出现各点的概率均为.事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+(表示事件B的对立事件)发生的概率为A.B.C.D.【答案】C【解析】由题意可知表示“大于等于5的点数出现”,事件A与事件互斥.由概率的加法公式可得P(A+)=P(A)+P()=+=.第 49 题:来源: 2017届江西省南昌市十所省重点中学高三第二次模拟突破冲刺数学理科试题(三)含答案函数是(A)最小正周期为的偶函数(B)最小正周期为的奇函数(C)最小正周期为的偶函数(D)最小正周期为的奇函数【答案】A【解析】∵,∴是最小正周期为的偶函数.第 50 题:来源:重点班2017届高三数学一轮复习阶段检测试题三理试卷及答案设变量x,y满足约束条件则z=x-3y的最小值为( )(A)-2 (B)-4 (C)-6 (D)-8【答案】D解析:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(-2,2)取最小值-8.。

相关文档
最新文档