(完整)高一二次函数的性质经典练习题

合集下载

二次函数的性质精选题35道

二次函数的性质精选题35道

二次函数的性质精选题35道一.选择题(共10小题)1.对于二次函数y=﹣x2+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与x轴有两个交点2.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2B.或C.D.13.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤34.已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是()A.3B.4C.5D.65.对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是26.关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣37.二次函数y=ax2+bx+c(a≠0)的大致图象如图,与x轴交点为(﹣1,0)和(2,0),关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>08.已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣29.抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)10.抛物线y=x2﹣6x+4的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)二.填空题(共18小题)11.二次函数y=x2﹣2x+3图象的顶点坐标为.12.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.13.如果函数y=b的图象与函数y=x2﹣3|x﹣1|﹣4x﹣3的图象恰有三个交点,则b的可能值是.14.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.15.已知函数y=的图象如图所示,若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为.16.对于实数p,q,且(p≠q),我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}=;若min{(x﹣1)2,x2}=1,则x=.17.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.18.已知函数y=﹣x2﹣2x,当时,函数值y随x的增大而增大.19.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A 作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为.20.二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.21.如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=﹣(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=AB,则k 的值为.22.抛物线y=3(x﹣1)2+8的顶点坐标为.23.二次函数y=x2+2x﹣4的图象的对称轴是,顶点坐标是.24.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0.其中,正确结论的有.25.已知二次函数y=ax2﹣bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是;若a+b的值为非零整数,则b的值为.26.已知抛物线y=+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为,P是抛物线y=+1上一个动点,则△PMF周长的最小值是.27.已知抛物线y=x2+mx+9的顶点在x轴上,则m的值为.28.抛物线y=x2﹣6x+1的顶点坐标是.三.解答题(共7小题)29.如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.30.在平面直角坐标系xOy中,直线y=2x﹣3与y轴交于点A,点A与点B关于x轴对称,过点B作y轴的垂线l,直线l与直线y=2x﹣3交于点C.(1)求点C的坐标;(2)如果抛物线y=nx2﹣4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.31.如图,已知抛物线y=x2﹣(k+1)x+1的顶点A在x轴的负半轴上,且与一次函数y=﹣x+1交于点B和点C.(1)求k的值;(2)求△ABC的面积.32.设二次函数y 1,y 2的图象的顶点分别为(a ,b )、(c ,d ),当a =﹣c ,b =2d ,且开口方向相同时,则称y 1是y 2的“反倍顶二次函数”.(1)请写出二次函数y =x 2+x +1的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y 1=x 2+nx 和二次函数y 2=nx 2+x ,函数y 1+y 2恰是y 1﹣y 2的“反倍顶二次函数”,求n .33.在平面直角坐标系xOy 中,抛物线G :y =mx 2+2mx +m ﹣1(m ≠0)与y 轴交于点C ,抛物线G 的顶点为D ,直线:y =mx +m ﹣1(m ≠0).(1)当m =1时,画出直线和抛物线G ,并直接写出直线被抛物线G 截得的线段长.(2)随着m 取值的变化,判断点C ,D 是否都在直线上并说明理由.(3)若直线被抛物线G 截得的线段长不小于2,结合函数的图象,直接写出m 的取值范围.34.在平面直角坐标系xOy 中,抛物线y =ax 2+bx 经过点(3,3).(1)用含a 的式子表示b ;(2)直线y =x +4a +4与直线y =4交于点B ,求点B 的坐标(用含a 的式子表示);(3)在(2)的条件下,已知点A (1,4),若抛物线与线段AB 恰有一个公共点,直接写出a (a <0)的取值范围.35.小明根据学习函数的经验,对函数y =x 4﹣5x 2+4的图象与性质进行了探究. 下面是小明的探究过程,请补充完整:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应数值如下表:x … ﹣2 ﹣10 1 2 …y … 4.3 3.2 0 ﹣﹣0 2.8 3.7 4 3.7 2.8 0 ﹣﹣m 3.2 4.3 …2.2 1.4 1.4 2.2其中m=;(2)如图,在平面直角坐标系xOy中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质;(4)进一步探究函数图象发现:①方程x4﹣5x2+4=0有个互不相等的实数根;②有两个点(x1,y1)和(x2,y2)在此函数图象上,当x2>x1>2时,比较y1和y2的大小关系为:y1y2(填“>”、“<”或“=”);③若关于x的方程x4﹣5x2+4=a有4个互不相等的实数根,则a的取值范围是.。

二次函数性质练习题

二次函数性质练习题

秦观《裴秀才跋尾》“裴本秦之别姓”文言文阅读理解及译文阅读下面的文言文,完成下面小题。

裴秀才跋尾①秦观裴本秦之别姓,自汉以来,世有显者,在唐尤为望族..,五房之裴为宰相者,十有七人。

裴氏衣冠..于斯为盛。

而东眷房晋公度实唐第一等人。

君,晋公之裔孙也。

少笃学,锋气锐甚,颇有志于天下之事。

已而举进士屡不中,乃叹曰:“人生如寄耳,用是区区者为哉!”于是退居许之阳翟,葛巾藜杖,日阅佛书,惟以专精神养寿命为事。

.元祐三年冬,君之弟朝散君通判蔡州,君自阳翟篮輿过.之,逾月而去。

将行,谓朝散君曰:“吾绝意世间事久矣,比阅簏中故人书札,见麻温故郎中昔所赠诗,怃然.感心,不能自己。

闻秦少游方为此郡学官..,愿因弟丐.一言,庶几异时有知我者。

”余闻而叹之。

昔马援南征,谓官属曰:“吾从弟少游,常哀吾慷慨多大志,日:‘士生一世但取衣食裁足乘下泽车驭款段马为郡掾吏守坟墓乡里称善人斯可矣。

致.求赢余,但自苦耳!’当吾在浪泊、西里,虏未灭之时,下潦上雾,毒气薰蒸,仰视飞鸢跕跕堕水中,卧念少游平生时语,何可得也?”朝散君起家四十为郎,声闻籍甚,所谓功名富贵,盖未易量。

而君羸老疾病,卧于衡茅..之下,气息奄奄仅属。

既不求人知,人亦莫君知者。

弟兄出处异矣!然以二马观之,二裴之事,孰为得失哉?麻君博雅君子,其所以称道君者,宜不谬。

后之君子读其诗者,可以知君少时之志;而读余文者,可以识君莫.年之心云。

注:跋尾,一种文体,写在书籍或文章的后面,多用以评价内容或说明写作经过等。

1.对下列加点词的解释,不正确的一项是()A.君自阳翟篮輿过.之过:拜访B.愿因弟丐.一言丐:乞求C.致.求赢余致:导致D.可以识君莫.年之心云莫:同“暮”2.下列对文中画波浪线部分的断句,正确的一项是()A.士生一世/但取衣食/裁足乘下/泽车驭款/段马为郡/掾吏守坟墓/乡里称善/人斯可矣B.士生一世/但取衣/食裁足/乘下泽车/驭款段马/为郡掾吏守坟墓/乡里称善/人斯可矣C.士生一世/但取衣/食裁足/乘下泽/车驭款/段马为郡/掾吏守坟墓/乡里称善人/斯可矣D.士生一世/但取衣食裁足/乘下泽车/驭款段马/为郡掾吏/守坟墓/乡里称善人/斯可矣3.下列对文中加点词语相关内容的解说,不正确的一项是()A.望族,有名望的家族,古人重视门第与门风,以先祖功绩激励族中子弟。

高中一年级数学二次函数练习题

高中一年级数学二次函数练习题

高中一年级数学二次函数练习题在高中一年级的数学学习中,二次函数是一个非常重要的知识点。

为了帮助同学们更好地掌握这部分内容,下面为大家准备了一些二次函数的练习题。

一、选择题1、函数\(y = x^2 2x + 3\)的对称轴是()A \(x = 1\)B \(x =-1\)C \(y\)轴D \(x = 2\)2、二次函数\(y = 2(x 3)^2 + 1\)的图像的顶点坐标是()A \((3, 1)\)B \((-3, 1)\)C \((3, -1)\)D \((-3, -1)\)3、已知二次函数\(y = ax^2 + bx + c\)的图像经过点\((0, 3)\),\((1, 0)\),\((2, 5)\),则这个二次函数的解析式是()A \(y = x^2 2x + 3\)B \(y = x^2 + 2x 3\)C \(y =x^2 + 2x + 3\) D \(y = x^2 2x + 3\)4、对于二次函数\(y =-2(x + 1)^2 3\),下列说法正确的是()A 图像开口向上B 图像的对称轴是\(x = 1\)C 当\(x <-1\)时,\(y\)随\(x\)的增大而增大D 图像的顶点坐标是\((1, -3)\)5、二次函数\(y = ax^2 + bx + c\)的图像如图所示,则下列结论正确的是()A \(a > 0\),\(b > 0\),\(c > 0\)B \(a < 0\),\(b < 0\),\(c > 0\)C \(a < 0\),\(b > 0\),\(c < 0\)D \(a < 0\),\(b < 0\),\(c < 0\)二、填空题1、二次函数\(y = 2x^2 4x + 5\)的最小值是_____。

2、抛物线\(y =-3(x 1)^2 + 5\)的开口方向是_____,顶点坐标是_____。

3、把二次函数\(y = x^2 2x 3\)化成\(y = a(x h)^2 + k\)的形式是_____。

二次函数的图像与性质经典练习题(11套)附带详细答案

二次函数的图像与性质经典练习题(11套)附带详细答案

练习一21.二次函数的图像开口向____,对称轴是____,顶点坐标是___yax_,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。

12222.关于,yx,y3x的图像,下列说法中不正确的是()yx3A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同223.两条抛物线yx与在同一坐标系内,下列说法中不正确的是()yxA.顶点相同B.对称轴相同C.开口方向相反D.都有最小值24.在抛物线上,当y<0时,x的取值范围应为()yxA.x>0B.x<0C.x≠0D.x≥0225.对于抛物线yx与yx下列命题中错误的是()xA.两条抛物线关于轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点26.抛物线y=-bx+3的对称轴是___,顶点是___。

127.抛物线y=-(x2)-4的开口向___,顶点坐标___,对称轴___,x_2__时,y随x的增大而增大,x___时,y随x的增大而减小。

28.抛物线y2(x1)3的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)为()9.已知抛物线的顶点为(1,2),且通过达式(1,10),则这条抛物线的表22A.y=3(x1)-2B.y=3(x1)+222C.y=3-2D.y=-3-2(x1)(x1)210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达yax式为()22A.y=a+3B.y=a-3(x2)(x2)22C.y=a(x2)+3D.y=a(x2)-324411.抛物线的顶点坐标是()yxxA.(2,0)B.(2,-2)C.(2,-8)D.(-2,-8)2212.对抛物线y=2(x2)-3与y=-2(x2)+4的说法不正确的是()A.抛物线的形状相同B.抛物线的顶点相同C.抛物线对称轴相同D.抛物线的开口方向相反213.函数y=a+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的()x243243214.化yxx为y=xx为ya(x h)k的形式是____,图像的开口向____,顶点是____,对称轴是____。

高一数学二次函数试题(有详细解答)

高一数学二次函数试题(有详细解答)

高一数学二次函数试题一.选择题(共23小题)1.如果函数f (x)=x2+bx+c对任意实数t都有f(2+t)=f(2﹣t),那么()A.f(2)<f(1)<f (4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)考点:二次函数的图象;二次函数的性质.专题:压轴题;数形结合.分析:先从条件“对任意实数t都有f (2+t)=f (2﹣t)”得到对称轴,然后结合图象判定函数值的大小关系即可.解答:解:∵对任意实数t都有f (2+t)=f (2﹣t)∴f(x)的对称轴为x=2,而f(x)是开口向上的二次函数故可画图观察可得f(2)<f(1)<f(4),故选A.点评:本题考查了二次函数的图象,通过图象比较函数值的大小,数形结合有助于我们的解题,形象直观.2.二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1,图象与x轴的两个交点中,一个交点的横坐标x1∈(2,3),则有()A.a bc>0 B.a+b+c<0 C.a+c>b D.3b<2c考点:二次函数的图象;二次函数的性质.专题:计算题.分析:由二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1,可以知道a<0,b=﹣2a,交点的横坐标x1∈(2,3),可得到,从而可得答案.解答:解:∵二次函数f(x)=ax2+bx+c的图象开口向下,∴a<0,又对称轴为x=1,∴x=﹣=1,∴b=﹣2a;∴f(x)=ax2﹣2ax+c.又与x轴的两个交点中,一个交点的横坐标x1∈(2,3),a<0,∴即:,∴,∴a+c>﹣2a=b.C符合.又a<0,b=﹣2a>0,c>0,∴abc<0,排出A,∵二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1,∴f(1)=a+b+c>0,排出B,f(﹣1)=f(3),图象与x轴的两个交点中一个交点的横坐标x1∈(2,3),∴f(﹣1)=f(3)<0,而f(﹣1)=a﹣b+c=﹣b+c<0,∴3b>2c,排出D.故选C.点评:本题考查了二次函数图象与性质,关键在于准确把握题目信息的意图,合理转化,特别是分析与应用是难点.属于中档题.3.(2011•厦门模拟)已知函数,这两个函数图象的交点个数为()A.1B.2C.3D.4考点:二次函数的图象;一次函数的性质与图象.专题:综合题.分析:本题考查的知识点是指数函数的图象,要求函数y=f(x)的图象与函数y=3x的图象的交点个数,我们画出函数的图象后,利用数形结合思想,易得到答案.解答:解:在同一坐标系下,画出函数y=f(x)的图象与函数y=3x的图象如下图:由图可知,两个函数图象共有2个交点故选B.点评:求两个函数图象的交点个数,我们可以使用数形结合的思想,在同一坐标系中,做出两个函数的图象,析图象后,即可等到答案.4.已知函数f(x)=mx2+(m﹣3)x+1的图象与x轴的交点至少有一个在原点右侧,则实数m的取值范围是()A.[0,1]B.(0,1)C.(﹣∞,1)D.(﹣∞,1]考点:二次函数的图象.专题:常规题型;计算题;压轴题;分类讨论.分析:本题考查的是函数的图象问题.在解答时,应先结合m是否为零对函数是否为二次函数进行区别,对于二次函数情况下充分结合图形的特点利用判别式和对称轴即可获得问题解答.解答:解:由题意可知:当m=0时,由f(x)=0 知,﹣3x+1=0,∴>0,符合题意;当m>0时,由f(0)=1可知:,解得0<m≤1;当m<0时,由f(0)=1可知,函数图象恒与X轴正半轴有一个交点综上可知,m的取值范围是:(﹣∞,1].故选D.点评:本题考查的是二次函数的图象问题.在解答的过程当中充分体现了数形结合的思想、函数与方程的思想以及问题提转化的能力.值得同学们体会和反思.5.已知,若|f(x)|≥ax在x∈[﹣1,1]上恒成立,则实数a的取值范围()B.[﹣1,0]C.[0,1]D.[﹣1,0)A.(﹣∞﹣1]∪[0,+∞)考点:二次函数的图象;一次函数的性质与图象.专题:计算题;压轴题;数形结合.分析:先画出函数和|f(x)|的图象;利用图象再结合答案即可解决本题.解答:解:函数的图象如图:|f(x)|的图象如图:因为|f(x)|≥ax在x∈[﹣1,1]上恒成立,所以y=ax的图象应在y=|f(x)|的图象的下方,故须斜率为负,或为0.当斜率为负时,排除答案A,C;当a=0,y=0满足要求,排除D.故选B.点评:本题主要考查函数的图象.其中涉及到二次函数,一次函数,分段函数以及带绝对值的函数的图象,是对函数的大汇总,在画整体带绝对值的函数图象时,注意起翻折原则是X轴上方的保持不变,X轴下方的沿x轴对折.6.已知二次函数f(x)=x2﹣ax+4,若f(x+1)是偶函数,则实数a的值为()A.﹣1 B.1C.﹣2 D.2考点:二次函数的图象.专题:计算题.分析:根据f(x)求出f(x+1),由f(x+1)是偶函数得到f(x+1)=f(﹣x+1)即可得到关于a的方程,求出集即可得到a的值.解答:解:∵f(x)=x2﹣ax+4,∴f(x+1)=(x+1)2﹣a(x+1)+4=x2+2x+1﹣ax﹣a+4=x2+(2﹣a)x+5﹣a,f(1﹣x)=(1﹣x)2﹣a(1﹣x)+4=x2﹣2x+1﹣a+ax+4=x2+(a﹣2)x+5﹣a.∵f(x+1)是偶函数,∴f(x+1)=f(﹣x+1),∴a﹣2=2﹣a,即a=2.故选D点评:本题考查学生灵活运用函数的奇偶性解决实际问题.是一道基础题.7.已知m>2,点(m﹣1,y1),(m.y2),(m+1,y3)都在二次函数y=x2﹣2x的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y1<y3考点:二次函数的图象.专题:函数的性质及应用.分析:根据二次函数的解析式,可判断出二次函数y=x2﹣2x的图象形状,进而判断出函数的单调性,结合m>2可得1<m﹣1<m<m+1,结合函数的单调性可判断出y1,y2,y3的大小.解答:解:∵二次函数y=x2﹣2x的图象是开口朝上且以直线x=1为对称轴的抛物线故二次函数y=x2﹣2x在区间[1,+∞)上为增函数又∵m>2∴1<m﹣1<m<m+1∴y1<y2<y3故选A点评:本题考查的知识点是二次函数的图象和性质,其中根据函数的解析式分析出函数的单调性是解答的关键.8.已知,若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值集合是()A.{c|c≤﹣5或c=﹣1或c=3} B.{c|c<﹣5或c=﹣1或c=3}C.{c|2<c<3或c>4} D.{c|2<c≤3或c≥4}考点:二次函数的图象.专题:函数的性质及应用.分析:作出函数y=f(x)的图象,然后根据图象确定实数c的取值集合.解答:解:作出函数的图象如图:由y=f(x)﹣c=0得f(x)=c,所以由图象可知要使方程f(x)=c,恰有两个公共点,则有c=﹣1或c=3或c<﹣5.故选B.点评:本题主要考查二次函数的图象,以及两个图象的交点问题,利用数形结合是解决这类问题常见的方法.9.(2011•渭南三模)设函数若f(﹣4)=f(0),f(﹣2)=0,则关于x的不等式f(x)≤1的解集为()A.(﹣∞,﹣3]∪[﹣1,+∞)B.[﹣3,﹣1]C.[﹣3,﹣1]∪(0,+∞)D.[﹣3,+∞)考点:二次函数的性质;一元二次不等式的解法.专题:计算题.分析:利用f(﹣4)=f(0),f(﹣2)=0,建立方程组,解得b=c=4,由此能求出关于x的不等式f(x)≤1的解集.解答:解:∵函数,f(﹣4)=f(0),f(﹣2)=0,∴,解得b=c=4,∴,∴当x>0时,f(x)=﹣2≤1;当x≤0时,由f(x)=x2+4x+4≤1,解得﹣3≤x≤﹣1.综上所述,x的不等式f(x)≤1的解集为{x|x>0,或﹣3≤x≤﹣1}.故选C.点评:本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答,注意一元二次不等式的性和应用.10.(2011•湖北模拟)设函数f(x)=ax2+bx+c,若f(x)>0的解集为{x|x<﹣2或x>4},则()A.f(5)<f(2)<f (﹣1)B.f(﹣1)<f(2)<f(5)C.f(2)<f(﹣1)<f(5)D.f(2)<f(5)<f(﹣1)考点:二次函数的性质.专题:计算题.分析:由于函数f(x)=ax2+bx+c,若f(x)>0的解集为{x|x<﹣2或x>4},利用不等式与函数之间的联系及二次函数的对称性即可求解.解答:解:因为函数f(x)=ax2+bx+c且f(x)>0的解集为{x|x<﹣2或x>4},利用不等式与函数的联系可以知道:﹣2,4应为方程ax2+bx+c=0的两个根,∴利用二次函数的韦达定理可以知道:由此得次二次函数为开口向上,对称轴x=﹣=1,利用二次函数的图象关于对称轴对称可以知道:f(5)>f(﹣1)>f(2)故选C点评:此题考查了函数与不等式之间的联系,二次函数的对称性及利用对称性比较函数值的大小.11.(2010•大连模拟)已知函数y=x2﹣4|x|+5在(﹣∞,a)内单调递减,则实数a的取值范围是()A.a≥﹣2 B.a≤﹣2 C.a≥0 D.a≤2考点:二次函数的性质.专题:计算题;数形结合.分析:先对函数y=x2﹣4|x|+5取绝对值,画出其对应的图象,利用图象来找实数a的取值范围即可.解答:解:因为y=x2﹣4|x|+5=其图象如图.由图得,函数y=x2﹣4|x|+5在(﹣∞,a)内单调递减区间为(﹣∞,﹣2],故实数a的取值范围是a≤﹣2.故选B.点评:本题考查了二次函数的图象,通过图象来找函数的单调区间,数形结合有助于我们的解题,形象直观.12.若函数f(x)=x2+2(a+1)x+2在区间(﹣∞,4]上是减函数,则实数a的取值范围是()A.a<﹣5 B.a≤﹣5 C.a>﹣5 D.a≥﹣5考点:二次函数的性质.专题:计算题;函数的性质及应用.分析:由题意可得﹣(a+1)≥4,由此解得a的取值范围.解答:解:由题意可得,﹣(a+1)≥4∴a≤﹣5故选B点评:本题主要考查求二次函数的单调性,属于基础题.13.已知二次函数f(x)=a(x﹣m)(x﹣n)(m<n),若不等式f(x)>0的解集是(m,n)且不等式f(x)+2>0的解集是(α,β),则实数m、n、α、β的大小关系是()A.m<α<β<n B.α<m<n<βC.m<α<n<βD.α<m<β<n考点:二次函数的性质.专题:计算题.分析:令g(x)=f(x)+2,因f(x)=a(x﹣m)(x﹣n)>0的解集是(m,n),说明a为负数,再根据图象变换的性质可知f(x)的图象是由g(x)向下平移得来的,α、β是g(x)=0的两根,m和n是f(x)=0的两根,画出图象,则可得到答案.解答:解:令g(x)=f(x)+2=a(x﹣α)(x﹣β),f(x)=a(x﹣m)(x﹣n)则f(x)的图象是由g(x)向下平2个单位长度移得来的,依题意可知a,b是g(x)=0的两根,m和n是f(x)=0的两根,α、β是g(x)=0的两根作出图象如图,可得α<m<n<β,故选B.点评: 本题主要考查了一元二次方程根的分布与系数的关系,采用数形结合的方法是解决本题的关键.考查了生分析问题和解决的能力,不失为一道成功的考题.14.已知函数f (x )=﹣x 2+ax+b 2﹣b+1,(a ,b ∈R )对任意实数x 都有f (1﹣x )=f (1+x )成立,若当x ∈[﹣1,1]时,f (x )>0恒成立,则b 的取值范围是( )A . ﹣1<b <0B . b >2C . b >2或b <﹣1D . b <﹣1考点:二次函数的性质;函数的图象. 专题:计算题. 分析:先根据条件“对任意实数x 都有f (1﹣x )=f (1+x )成立”得到对称轴,求出a ,再研究函数f (x )在[﹣1,1]上的单调性,求出函数的最小值,使最小值大于零即可.解答:解:∵对任意实数x 都有f (1﹣x )=f (1+x )成立, ∴函数f (x )的对称轴为x=1=,解得a=2,∵函数f (x )的对称轴为x=1,开口向下,∴函数f (x )在[﹣1,1]上是单调递增函数,而f (x )>0恒成立,f (x )min =f (﹣1)=b 2﹣b ﹣2>0,解得b <﹣1或b >2,故选C点评:本题主要考查了函数恒成立问题,二次函数在给定区间上恒成立问题必须从开口方向,对称轴,判别式及端点的函数值符号4个角度进行考虑.15.已知函数,若f (2a+1)>f (a ),则实数a 的取值范围是( ) A . B . (﹣∞,﹣3)∪(﹣1,+∞) C . D . (﹣3,﹣1)考点: 二次函数的性质.专题: 函数的性质及应用.分析: 先判断函数f (x )的奇偶性和单调性,求参数的取值范围.解答: 解:因为函数,所以作出函数f (x )的图象,则函数f (x )为偶函数,且在(+∞)上单调递增.则f (2a+1)>f (a ),等价为f (|2a+1|)>f (|a|),所以|2a+1|>|a|,平方得4a2+4a+1>a2,即3a2+4a+1>0,解得.故选A.点评:本题主要考查二次函数的图象和性质,以及函数单调性的应用.16.不等式(m﹣2)x2+2(m﹣2)x﹣4≤0对一切实数x都成立,则实数m的取值范围是()A.﹣2<m<2 B.﹣2≤m≤2 C.﹣2≤m<2 D.﹣2<m≤2考点:二次函数的性质.分析:等式(m﹣2)x2+2(m﹣2)x﹣4≤0对一切实数x都成立,包括两种情况,一是二次项及一次项系数全为0,常数项小于等于0,而是二次项系数小于0,△小于等于0,分类讨论后,综合讨论结果,即可得到答案.解答:解:当m=2时,不等式(m﹣2)x2+2(m﹣2)x﹣4≤0可化为﹣4≤0对一切实数x都成立,故m=2满足条件;当m<2时,若不等式(m﹣2)x2+2(m﹣2)x﹣4≤0对一切实数x都成立,则解得﹣2≤m<2综上满足条件的实数m的取值范围是﹣2≤m≤2故选B点评:本题考查的知识点是二次函数的性质,其中解答时容易忽略m=2时,不等式(m﹣2)x2+2(m﹣2)x﹣4≤0可化为﹣4≤0对一切实数x都成立,而错选C17.f(x)=ax2+bx+c,不等式f(x)>0的解集是{x|x1<x<x2},f(0)>0,则f(x1+x2)的值()A.小于0 B.大于0C.等于0 D.以上三种情况都有可能考点:二次函数的性质.专题:计算题.分析:根据已知条件得到a<0且x1,x2是ax2+bx+c=0的两个根,由韦达定理得到x1+x2=﹣,因为f(0)>0,得到c>0,得到f(x1+x2)=.解答:解:因为不等式f(x)>0的解集是{x|x1<x<x2},所以a<0且x1,x2是ax2+bx+c=0的两个根,所以x1+x2=﹣,又因为f(0)>0,所以c>0,所以f(x1+x2)=故选B.点评:本题考查二次不等式的解集形式、与相应的二次方程的根的关系;考查二次方程的韦达定理,属于基础题.18.(2012•山西模拟)二次函数f(x)满足f(4+x)=f(﹣x),且f(2)=1,f(0)=3,若f(x)在[0,m]上有最小值1,最大值3,则实数m的取值范围是()A.[2,4]B.(0,2]C.(0,+∞)D.[2,+∞)考点:二次函数的性质.专题:计算题.分析:由f(4+x)=f(﹣x)可知f(4)=f(0)=3是最大值,f(2)=1是最小值,而f(x)在[0,m]上有最小值1,最大值3,说明m至少得是2,进而可得到答案.解答:解:由f(4+x)=f(﹣x),可知f(4)=f(0)=3是最大值,而f(2)=1是最小值,而f(x)在[0,m]上有最小值1,最大值3,则m必须得有2,又f(4)=f(0)=3,故m也可等于4,故答案选A.点评:本题主要考查二次函数的值域和单调性.19.(2011•绵阳一模)已知函数f(x)=ax2+2ax+4(a>0),若x1<x2,x1+x2=0,则()A.f(x1)<f(x2)B.f(x1)=f(x2)C.f(x1)>f(x2)D.f(x1)与f(x2)的大小不能确定考点:二次函数的性质.分析:函数值作差进行比较大小,根据条件判f(x1)﹣f(x2)的正负即可.解答:解:由题意,可有f(x1)﹣f(x2)=(ax12+2ax1+4)﹣(ax22+2ax2+4)=a(x1﹣x2)(x1+x2)+2a(x1﹣x2)=a(x1﹣x2)(x1+x2+2)因为a>0,x1<x2,x1+x2=0所以a>0,x1﹣x2<0,x1+x2+2>0所以f(x1)﹣f(x2)<0即f(x1)<f(x2).故选A.点评:本题主要考查:函数值作差进行比较大小,根据条件判式子的正负.20.二次函数f(x)=ax2﹣2(a﹣1)x+2在区间(4,+∞)内是减函数,则实数a的取值范围为()D.a=﹣3A.B.C.且a≠0考点:二次函数在闭区间上的最值.专题:综合题;分类讨论.分析:考虑两种情况:当a大于0时,得出二次函数的图象为开口向上的抛物线,根据二次函数的增减性得到函数在区间(4,+∞)内是减函数不可能;当a小于0时,得出二次函数的图象为开口向下的抛物线,根据二次函数的顶点坐标公式求出此函数的顶点坐标,因为二次函数f(x)=ax2﹣2(a﹣1)x+2在区间(4,+∞)内是减函数,经过判断得出关于a的不等式,求出不等式的解集即可得到实数a的取值范围.解答:解:当a>0时,得到二次函数为开口向上的抛物线,与二次函数在区间(4,+∞)内是减函数矛盾,a取空集;当a<0时,二次函数f(x)=ax2﹣2(a﹣1)x+2在区间(4,+∞)内是减函数,得到x=≤4,解得:a≤﹣.故选B点评:此题考查学生灵活运用二次函数的图象与性质解决实际问题,考查了分类讨论的数学思想,是一道综合题.21.函数y=﹣x2﹣4x+1,x∈[﹣3,3]的值域为()A.[﹣∞,5]B.[5,+∞]C.[﹣20,5]D.[﹣4,5]考点:二次函数在闭区间上的最值.专题:计算题.分析:先求出函数的对称轴方程,根据到对称轴距离的远近即可求出其值域.解答:解:∵f(x)=y=﹣x2﹣4x+1=﹣(x+2)2+5对称轴为x=﹣2,开口向下.所以在[﹣3,﹣2]上递增,在[﹣2,3]上递减.且3离对称轴距离远.所以当x=3时,有最小值为f(3)=﹣20.当x=﹣2时,函数有最大值为f(2)=5.即值域为[﹣20,5].故选C.点评:本题主要考查二次函数在闭区间上的最值问题.二次函数在闭区间上的最值问题,一定要讨论对称轴和间的位置关系.22.实数x、y满足3x2+2y2=6x,则x2+y2的最大值为()A.B.4C.D.5考点:二次函数在闭区间上的最值.专题:计算题.分析:把3x2+2y2=6x化为y2=3x﹣x2,求出x的取值范围,并代入x2+y2中消去y,然后根据二次函数的性质求出它的最值即可.解答:解:∵实数x、y满足3x2+2y2=6x,∴y2=3x﹣x2≥0,因此0≤x≤2,∴x2+y2=3x﹣x2=(x﹣3)2,0≤x≤2,∴当x=2时,x2+y2的最大值为4.故选B.点评:本题主要考查二次函数在闭区间上的最值的知识点,解答本题的关键是熟练掌握二次函数的性质,此题难度不大.属中档题.23.已知函数f(x)=x2﹣2x+5,x∈[2,4],若存在实数x∈[2,4]使m﹣f(x)>0成立,则m的取值范围为()A.(5,+∞)B.(13,+∞)C.(4,+∞)D.(﹣∞,13)考点:二次函数在闭区间上的最值.专题:计算题.分析:存在实数x∈[2,4],使m﹣f(x)>0成立,等价于x∈[2,4],m>f(x)min.利用配方法求二次函数的最小值,即可得结论.解答:解:存在实数x∈[2,4],使m﹣f(x)>0成立,等价于x∈[2,4],m>f(x)min.∵函数f(x)=x2﹣2x+5=(x﹣1)2+4∴函数的图象开口向上,对称轴为直线x=1∵x∈[2,4],∴x=2时,f(x)min=f(2)=22﹣2×2+5=5∴m>5故选A.点评:本题考查的重点是存在性问题,解题的关键是求二次函数的最小值,存在实数x∈[2,4],使m﹣f(x)成立,等价于x∈[2,4],m>f(x)min.易错点是与对于任意实数x∈[2,4],使m﹣f(x)>0成立问题混淆.二.解答题(共7小题)24.已知函数f(x)=|x2﹣2x|﹣1(1)在坐标系中画出函数f(x)的简图;(2)观察图象,写出函数f(x)的单调增区间及函数f(x)的零点个数;(3)利用图象,写出使方程f(x)+a=0有四个不同解的实数a的取值范围.考点:二次函数的图象.专题:数形结合;分类讨论.分析:(1)分类讨论,去掉绝对值,化简函数的解析式,结合函数的解析式画出函数的图象.(2)结合图象写出函数的单调增区间,以及函数的零点个数.(3)要使方程f(x)+a=0有四个不同解,需函数f(x)的图象和y=﹣a 有4个交点,结合图象列出不等式,求得实数a的取值范围.解答:解:(1)∵函数f(x)=|x2﹣2x|﹣1,当x<0或x>2时,函数f(x)=x2﹣2x﹣1,当0≤x≤2时,f(x)=﹣x2 +2x﹣1,如右图所示.(2)由函数的图象可得,增区间为[0,1],[2,+∞),函数f(x)有三个零点.(3)要使方程f(x)+a=0有四个不同解,需函数f(x)的图象和y=﹣a 有4个交点,∴﹣1<﹣a<0,∴0<a<1.点评:本题考查由函数的解析式做出函数图象的方法,体现了分类讨论、数形结合的数学思想.25.(2011•徐汇区三模)已知函数f(x)=|x|•(a﹣x),a∈R.(1)当a=4时,画出函数f(x)的大致图象,并写出其单调递增区间;(2)若函数f(x)在x∈[0,2]上是单调递减函数,求实数a的取值范围;(3)若不等式|x|•(a﹣x)≤6对x∈[0,2]恒成立,求实数a的取值范围.考点:二次函数的图象;函数单调性的性质;函数恒成立问题.专题:计算题.分析:(1)首先对x分类讨论,去掉绝对值符号;然后根据二次函数的图象特征,即可画出其草图;而其单调性,观察图象显而易见.(2)由x∈[0,2]易于把函数f(x)化简为二次函数,再把其单调减区间表示出来,进而根据f(x)在x∈[0,2]上是单调递减函数,可得a的不等式,则a可求.(3)要用分离参数的方法把a分离出来,需对x=0单独讨论;由于0<x≤2时,恒成立,则利用导数法求出x+的最小值即可.解答:解:(1)a=4时,,f(x)的图象如图所示,所以其单调递增区间为[0,2].(2)x∈[0,2]时,∴f(x)在(﹣∞,)上单调递增,在[,+∞)上单调递减.又函数f(x)在x∈[0,2]上是单调递减函数,所以.解得a≤0.(3)当x=0时,0≤6成立,所以a∈R;当0<x≤2时,,即,只要设,则g′(x)=1﹣,∴g(x)在上递减,在上递增,∴当0<x≤2时,g(x)min=g(2)=5.所以a≤5.综上,|x|(a﹣x)≤6对x∈[0,2]恒成立的实数a的取值范围是(﹣∞,5].点评:二次函数的图象与性质是解决更复杂函数问题的前提,必须把此基础打牢;分离参数法是求解不等式恒成立问题的常用思想方法,它是通过分离参数转化为不含参数的函数的最值题求解.26.(2013•宁德模拟)已知二次函数f(x)=ax2+bx+1为偶函数,且f(﹣1)=﹣1.(I )求函数f(x)的解析式;(II)若函数g(x)=f(x)+(2﹣k)x在区间(﹣2,2)上单调递增,求实数k的取值范围.考点:二次函数的性质.专题:函数的性质及应用.分析:(I)由偶函数的图象关于y轴对称,可得b值,进而根据f(﹣1)=﹣1,可得a值,进而可得函数f(x)的解析式;(II)若函数g(x)=f(x)+(2﹣k)x在区间(﹣2,2)上单调递减,可得区间(﹣2,2)在对称轴的左侧,进而得到实数k的取值范围解答:解:(I)∵二次函数f(x)=ax2+bx+1为偶函数,故函数f(x)的图象关于y轴对称即x=﹣=0,即b=0又∵f(﹣1)=a+1=﹣1,即a=﹣2.故f(x)=﹣2x2+1(II)由(I)得g(x)=f(x)+(2﹣k)x=﹣2x2+(2﹣k)x+1故函数g(x)的图象是开口朝下,且以x=为对称轴的抛物线故函数g(x)在(﹣∞,]上单调递增,又∵函数g(x)在区间(﹣2,2)上单调递增,∴≥2解得k≤﹣6故实数k的取值范围为(﹣∞,﹣6]点评:本题考查的知识点是函数解析式的求法,二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.27.(2011•武进区模拟)设函数f(x)=ax2+bx+1,a>0,b∈R 的最小值为﹣a,f(x)=0两个实根为x1、x2.(1)求x1﹣x2的值;(2)若关于x的不等式f(x)<0解集为A,函数f(x)+2x在A上不存在最小值,求a 的取值范围;(3)若﹣2<x1<0,求b的取值范围.考点:二次函数的性质.专题:计算题;压轴题.分析:(1)由,知,由此能求出x1﹣x2的值.(2)设x1<x2,f(x)+2x=ax2﹣(a(x1+x2)﹣2)x+ax1x2,在(x1,x2)不存在最小值,由此能求出a的取值范围.(3)由,,知.由此能求出b的取值范围.解答:解:(1)∵∴∴x1﹣x2=±2.(4分)(2)不妨设x1<x2;f(x)+2x=ax2﹣(a(x1+x2)﹣2)x+ax1x2,在(x1,x2)不存在最小值,∴或(8分)又x2﹣x1=2,a>0∴0<a≤1(10分)(3)∵,∴(12分)又﹣2<x1<0∴x2=x1﹣2∴在x1∈(﹣2,0)上为增函数.∴(16分)点评:本昰考查二次函数的性质,解题时要认真审题,仔细解答,注意合理地进行等价转化.28.(2009•惠州模拟)(1)已知二次函数f(x)=ax2+bx+c,满足f(0)=f(1)=0,且f(x)的最小值是,求f(x)的解析式;(2)设f(x)=x2﹣2ax+2,当x∈[﹣1,+∞)时,f(x)≥a恒成立,求实数a的取值范围.考点:二次函数的性质.专题:函数的性质及应用.分析:(1)利用待定系数法求a,b,c.(2)要求当x∈[﹣1,+∞)时,f(x)≥a恒成立,实质是求函数f(x)在[﹣1,+∞)上的最小值即可.解答:解:(1)由二次函数图象的对称性,可设,(a>0)又f(0)=0,∴a=1.故f(x)=x2﹣x…(4分)(2)要使x∈[﹣1,+∞),f(x)≥a恒成立⇔f(x)min≥a,当a≤﹣1时,f(x)min=f(﹣1)=3+2a…(6分)即3+2a≥a⇔a≥﹣3故此时﹣3≤a≤﹣1…(8分)当a>﹣1时,,若x∈[﹣1,+∞),f(x)≥a恒成立⇔f(x)min≥a,即2﹣a2≥a⇔a2+a﹣2≤0⇔﹣2≤a≤1故此时﹣1<a≤1…(12分)综上当﹣3≤a≤﹣1时,x∈[﹣1,+∞),f(x)≥a恒成立…(14分)点评:本题考查了利用待定系数法求二次函数的解析式,以及二次函数在给定区间上的最值求法,要求利用数形结合的思想去求解.29.(2012•成都一模)已知函数f(x)=x2﹣2mx+2﹣m.(I)若不等式f(x)≥x﹣mx在R上恒成立,求实数m的取值范围;(II)记A={y|y=f(x),0≤x≤1},且A⊆[0,+∞],求实数m的最大值.考点:二次函数在闭区间上的最值;二次函数的性质.专题:函数的性质及应用.分析:(I)由题意可得x2﹣2mx+2﹣m≥x﹣mx在R上恒成立,即x2 ﹣(m+1)x+2﹣m≥0恒成立,由判别式小于或等于零求得实数m的取值范围.(II)由题意可得x2﹣2mx+2﹣m≥0 在[0,1]上恒成立,分m<0、0≤m≤1、m>1三种情况分别求出实数m的取值范围,再去并集,即得所求.解答:解:(I)由题意可得x2﹣2mx+2﹣m≥x﹣mx在R上恒成立,即x2 ﹣(m+1)x+2﹣m≥0恒成立,∴△=(m+1)2﹣4(2﹣m)≤0,解得﹣7≤m≤1,故实数m的取值范围为[﹣7,1].(II)由题意可得,A={y|y=f(x),0≤x≤1}={y|y≥0 在[0,1]上恒成立},即x2﹣2mx+2﹣m≥0 在[0,1]上恒成立.当m<0时,y=f(x)=x2﹣2mx+2﹣m在[0,1]上的最小值为f(0)=2﹣m≥0,m≤2.当0≤m≤1时,y=f(x)=x2﹣2mx+2﹣m在[0,1]上的最小值为f(m)=2﹣m﹣m2≥0,解得﹣2≤m≤1,故此时0≤m≤1.当m>1时,y=f(x)=x2﹣2mx+2﹣m在[0,1]上的最小值为f(1)=﹣3m+3≥0,m≤1.故此时m的值不存在.综上,实数m的取值范围为(﹣∞,1],故实数m的最大值为1.点评:本题主要考查求二次函数在闭区间上的最值,求函数的最值,二次函数的性质的应用,体现了分类讨论数学思想,属于中档题.30.已知函数f(x)=﹣2x2+(a+3)x+1﹣2a,g(x)=x(1﹣2x)+a,其中a∈R.(1)若函数f(x)是偶函数,求函数f(x)在区间[﹣1,3]上的最小值;(2)用函数的单调性的定义证明:当a=﹣2时,f(x)在区间上为减函数;(3)当x∈[﹣1,3],函数f(x)的图象恒在函数g(x)图象上方,求实数a的取值范围.考点:二次函数在闭区间上的最值;函数单调性的判断与证明;奇偶性与单调性的综合.专题:计算题.分析:(1)根据偶函数的定义f(x)=f(﹣x),求出a的值和函数解析式,进而求出最小值;(2)先设x1<x2 ,x1、x2∈,推出f(x1)>f(x2),从而可以证明结论;(3)首先由题意得出(a+2)x+1﹣3a>0在[﹣1,3]上恒成立.转化成求函数h(x)=(a+2)x+1﹣3a的最小值,要采取分类讨论次函数的斜率与单调性的关系,求出a的取值范围.解答:解:(1)函数f(x)是偶函数∴f(x)=f(﹣x),即:﹣2x2+(a+3)x+1﹣2a=﹣2x2﹣(a+3)x+1﹣2a∴a=﹣3则f(x)=﹣2x2+7∴对称轴为x=0∴最小值f(3)=﹣11(2)∵a=﹣2∴f(x)=﹣2x2+x+5设x1<x2 ,x1、x2∈f(x1)﹣f(x2)=﹣2x12+x1+5+2x22﹣x2﹣5=(x2﹣x1)[2(x1+x2)﹣1]∵x1<x2 ,∴x2>x1∵x1、x2∈∴2(x1+x2)>1∴2(x1+x2)﹣1>0∴f(x1)﹣f(x2)>0 即f(x1)>f(x2)∴当a=﹣2时,f(x)在区间上为减函数.(3)由题意得﹣2x2+(a+3)x+1﹣2a>x(1﹣2x)+a在[﹣1,3]上恒成立.即(a+2)x+1﹣3a>0在[﹣1,3]上恒成立.设h(x)=(a+2)x+1﹣3a,①若a>﹣2,该函数是增函数,只需f(﹣1)>0即可,则f(﹣1)=﹣4a﹣1>0,解得a<﹣,所以﹣2<a<﹣;②若a<﹣2,该函数是减函数,只需f(3)>0即可,则f(3)=7>0,,所以a<﹣2满足;③若a=﹣2,则该函数是y=7,它总在x轴上方,所以a=﹣2满足要求.故a的取值范围是a<.。

高中数学练习题附带解析二次函数的像与性质

高中数学练习题附带解析二次函数的像与性质

高中数学练习题附带解析二次函数的像与性质二次函数是高中数学中的重要内容,它与解析几何密切相关。

掌握二次函数的像与性质对于学习解析几何以及应用数学都具有重要的意义。

本文将通过一系列高中数学练习题并附带详细解析,来帮助读者深入理解二次函数的像与性质。

1. 题目:已知二次函数 y = ax^2 + bx + c 的顶点为 (2, -1),则 a、b、c 的值分别为多少?解析:二次函数的标准式为 y = ax^2 + bx + c,其中 a、b、c 分别表示二次、一次和常数项的系数。

已知顶点坐标 (2, -1),将其代入二次函数的表达式中,得到方程组:-1 = a * 2^2 + b * 2 + c由此可得方程组为:4a + 2b + c = -12. 题目:已知二次函数 y = x^2 - 2x + 3,求该函数的对称轴和顶点坐标。

解析:二次函数的对称轴是指二次函数图像的对称轴线。

对称轴的横坐标可以通过公式 x = -b / (2a) 计算得出,其中,a 和 b 分别表示二次和一次项的系数。

将此函数的表达式 y = x^2 - 2x + 3 代入公式中,可得对称轴的横坐标为:x = -(-2) / (2 * 1) = 1带入原函数表达式,可以得到对应的纵坐标为:y = 1^2 - 2(1) + 3 = 2因此,二次函数的对称轴为 x = 1,顶点坐标为 (1, 2)。

3. 题目:已知二次函数 y = 2x^2 + bx + 1 的图像与 x 轴有两个交点,则 b 的取值范围是多少?解析:当二次函数的图像与 x 轴有两个交点时,意味着二次函数的解存在两个实根(零点)。

而对于一元二次方程 ax^2 + bx + c = 0,判别式 b^2 - 4ac 的值决定了其解的情况。

当判别式大于零时,方程有两个不相等的实根;当判别式等于零时,方程有两个相等的实根;当判别式小于零时,方程没有实根。

对于给定的二次函数 y = 2x^2 + bx + 1,将其与 x 轴相交等效于将 y 置为零,即解方程 2x^2 + bx + 1 = 0。

高中数学练习题附带解析二次函数的性质与变形

高中数学练习题附带解析二次函数的性质与变形

高中数学练习题附带解析二次函数的性质与变形【高中数学练习题附带解析:二次函数的性质与变形】一、基础知识梳理1. 二次函数的定义:在笛卡尔坐标系中,自变量 x 的平方可写成形如 y=ax²+bx+c 的函数称为二次函数,其中 a、b、c 是常数且a≠0。

2. 二次函数的图像特征:- 当 a>0 时,二次函数的图像开口向上,顶点为最小值点;- 当 a<0 时,二次函数的图像开口向下,顶点为最大值点。

二、基本习题1. 已知二次函数 y=ax²+2x+3,求该函数的顶点坐标以及开口方向。

解析:根据题目已知条件可知 a=1,b=2,c=3。

通过求顶点坐标和判断 a 的正负来确定开口方向。

- 顶点坐标:x=-b/2a=-2/(2×1)=-1,代入函数得到 y=(1)(-1)²+2(-1)+3=4,故顶点坐标为 (-1,4)。

- 开口方向:a=1>0,因此二次函数的图像开口向上。

2. 已知二次函数的函数图像如下图所示,求该函数的解析式。

解析:根据题目给出的函数图像可知,图像开口向上,且图像经过点(-1,0)、(1,0),因此该函数的解析式为 y=a(x+1)(x-1)。

接下来我们需要求解 a 的值,可通过给定的点(3,8)求得。

将 x=3,y=8 代入函数得到 8=a(3+1)(3-1)→8=8a,解得 a=1。

所以该函数的解析式为 y=(x+1)(x-1)。

三、进阶习题1. 已知二次函数的函数图像经过点(1,3),且在 x 轴上有两个不等的实根,求该函数的解析式。

解析:已知图像经过点(1,3),代入函数得到3=a(1)²+b(1)+c→3=a+b+c。

又已知该函数有两个不等的实根,即判别式Δ=b²-4ac>0。

将 x=0 代入函数可得到 c=3-a-b。

将Δ>0 代入Δ=b²-4ac>0 可得到 b²-4a(3-a-b)>0,化简后得到 b²+(4a-12)a+4a-9>0。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。

然后根据分式的定义,分母不能为零,即 $x\neq0$。

同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。

综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。

⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。

然后根据分式的定义,分母不能为零,即 $x\neq-1$。

同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。

综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。

2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。

_。

_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。

综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。

对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。

因此定义域为 $\{x|2\leq x\leq3\}$。

3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。

答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。

综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。

对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学练习题
班级_______姓名______
一.选择题
1.一次函数()f x 的图象过点(1,0)A -和(2,3)B ,则下列各点在函数()f x 的图象上的是
(A ) (2,1) (B ) (1,1)- (C )(1,2) (D )(3,2)
2.下列各组函数表示同一函数的是( )
A .f (x )=
,g (x )=()2 B .f (x )=1,g (x )=x 0 C .f (x )=,g (x )=x
D .f (x )=x ﹣1,g (x )= 3.函数f (x )=x 2﹣(2a ﹣1)x ﹣3在3(,)2上是增函数,则实数a 的范围是( )
A .a ≤1
B .a ≥1
C .a ≤2
D .a ≥2
4.函数y=ax 2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数,则( )
A .b >0且a <0
B .b=2a <0
C .b=2a >0
D .a ,b 的符号不确定
二.填空题
5.设函数
1)(2--=mx mx x f ,若对于R x ∈,0)(<x f 恒成立,则实数m 的取值范围是
6.如果函数f (x )=ax 2+2x ﹣3在区间(﹣∞,4)上是单调递增的,则实数a 的取值范围是 .
7.若函数y=x 2﹣4x 的定义域为[﹣4,a],值域为[﹣4,32],则实数a 的取值范围为 .
8.已知方程x 2+mx+3=0的一个根是1,则它的另一个根是 ,m 的值是 .
9.函数f(x)=2x﹣1在x∈[0,2]上的值域为.
10.函数f(x)=x2+2(a﹣1)x+2在区间(﹣∞,4]上递减,则实数a的取值范围是.
11.设函数f(x)=mx2﹣mx﹣1.若对一切实数x,f(x)<0恒成立,求实数m 的取值范围.
12.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2﹣2x,则f(﹣3)= .
三.三解答题
13.已知一次函数
()
f x满足2(2)3(1)52(0)(1)1
f f f f.
(1)求这个函数的解析式;
(2)若函数
2
()()
g x f x x,求函数()
g x的零点
(3)x为何值时,
()0 g x
`
14.若二次函数
2
() (,,)
f x ax bx c a b c R
=++∈满足(1)()41
f x f x x
+-=+,且
(0)3 f=.
(1)求
()
f x的解析式;
(2)
()
f x在区间[1,1]
-上的值域
(2)若在区间[1,1]
-上,不等式()6
f x x m
>+恒成立,求实数m的取值范围.。

相关文档
最新文档