第三节岩石的强度特性
第3讲-岩石力学-岩石的变形、破坏特征

微结构面:指存在于矿物颗粒内部或矿物颗粒间的软弱面或 缺陷,包括矿物解理、晶格缺陷、粒间空隙、微裂隙、微层 理及片理面、片麻理面等。
① 降低岩石强度
② 导致岩石力学性质各向异性
1、岩石的组构特征
岩石的主要胶结类型:
基底型:彼此不发生接触的矿物颗粒埋在玻璃体中,这种情况下 胶结程度很高,岩石强度与胶结物有关。
岩石的饱和吸水率(Wp):是指岩石试件在高压(一般压力为15MPa)或真空条
件下吸入水的质量(mw2)与岩样干质量(ms)之比,用百分数表示。 岩石的吸水率(Wa)与饱和吸水率(Wp)之比,称为饱水系数。它反映了岩石中
大、小开空隙的相对比例关系。
Wp
m w2 100 % ms
mw1 Wa 100% ms
2.岩石变形特征
变形参数的一般确定方法: 实验数据分析
2
2 1 Et 2 1
弹性模量:弹性段的斜率
50
割线模量:极限强度50%所 对应点的斜率
Ei
1 i o
50 50
Ei i i
1 50 2 i L
初始模量:初始段 应力-应变曲线的切 线的斜率
2、岩石的物理性质
岩石的水理性质
岩石在水溶液作用下表现出来的性质,称为水理性质。主要包括: 吸 水性、软化性、 抗冻性、 膨胀性、 崩解性。
吸水性:岩石在一定的实验条件下吸收水分的能力,称为岩石的吸水性。
吸水率(Wa):岩石试件在大气压力和室温条件下自由吸入水的质量(mw1)与 岩样干质量(ms)之比,用百分数表示。
不能恢复的 当物体既有弹性变形又有塑性变形,且具有明显的弹性后效时,弹性变形 和塑性变形就难以区别了。
常见岩石的强度性质

之迟辟智美创作以后位置:课程学习/第四章岩块的变形与强度性质/第三节岩块的强度性质第三节岩块的强度性质岩块的强度是指岩块抵当外力破坏的能力.根据受力状态分歧,岩块的强度可分为单轴抗压强度、单轴抗拉强度、剪切强度、三轴压缩强度等.一、单轴抗压强度σc1、界说在单向压缩条件下,岩块能接受的最年夜压应力,简称抗压强度(MPa).2、研究意义(1)衡量岩块基本力学性质的重要指标.(2)岩体工程分类、建立岩体破坏判据的重要指标.(3)用来估算其他强度参数.3、测定方法抗压强度试验点荷载试验4、罕见岩石的抗压强度罕见岩石的抗压强度1、界说单向拉伸条件下,岩块能接受的最年夜拉应力,简称抗拉强度.2、研究意义(1)衡量岩体力学性质的重要指标(2)用来建立岩石强度判据,确定强度包络线(3)选择建筑石材不成缺少的参数3、测定方法直接拉伸法间接法(劈裂法、点荷载法)4、罕见岩石的抗拉强度罕见岩石的抗拉强度5岩石中包括有年夜量的微裂隙和孔隙,岩块抗拉强度受其影响很年夜,直接削弱了岩块的抗拉强度.相对而言,空隙对岩块抗压强度的影响就小很多,因此,岩块的抗拉强度一般远小于其抗压强度.通常把抗压强度与抗拉强度的比值称为脆性度,用以表征岩石的脆性水平.岩块的几种强度与抗压强度比值1、界说在剪切荷载作用下,岩块抵当剪切破坏的最年夜剪应力,称为剪切强度.2、类型(1)抗剪断强度:指试件在一定的法向应力作用下,沿预定剪切面剪断时的最年夜剪应力.(2)抗切强度:指试件上的法向应力为零时,沿预定剪切面剪断时的最年夜剪应力.(3)摩擦强度:指试件在一定的法向应力作用下,沿已有破裂面(层面、节理等)再次剪切破坏时的最年夜剪应力.3、研究意义反映岩块的力学性质的重要指标.用来估算岩体力学参数及建立强度判据.4、抗剪断强度的测试方法直剪试验变角板剪切试验三轴试验5、罕见岩石的剪切强度罕见岩石的剪切强度1、界说试件在三向压应力作用下能抵当的最年夜的轴向应力.2、测定方法三轴试验3、利用三轴试验确定抗剪强度根据一组试件(4个以上)试验获得的三轴压缩强度σ1m和相应的σ3以及单轴抗拉强度σt.在σ-τ坐标系中可绘制出岩块的强度包络线.除极点外,包络线上所有点的切线与σ轴的夹角及其在τ轴上的截距分别代表相应破坏面的内摩擦角(φ)和内聚力(C).4、几种强度之间的换算根据应力摩尔圆可以进行几种强度之间的换算,已知其中某些强度,可以计算其他的强度值.假设强度包络线为直线(在σ3<10MPa的情况下,往往这样.),如下图,可以获得下面的公式:由此可以根据岩石的内摩擦角、内聚力和σ3计算岩石的三轴强度.同样,也可以获得下式:由此可以计算岩石的抗压强度、抗拉强度、内聚力、内摩擦角.。
岩石力学第三章:岩石的力学特性及强度准则

常 见 岩 石 的 软 化 系 数
岩 石 名 称
花 岗 岩 闪 长 岩 辉 绿 岩 流 纹 岩
软化系数
0.72~0.97 0.60~0.80 0.33~0.90 0.75~0.95
岩石名称
泥 岩
软化系数
0.40~0.60 0.44~0.54 0.70~0.94 0.75~0.97
泥 灰 岩 石 灰 岩 片 麻岩
岩石名称
抗压强度 (MPa)
100~250
抗拉强 度 (MPa)
7~25
岩石名称
抗压强度 (MPa)
5~100
抗拉强度 (MPa)
2~10
常 见 岩 石 的 抗 压 及 抗 拉 强 度
花岗岩
页 岩
流纹岩
160~300
12~30
粘土岩
2~15
0.3~1
闪长岩
120~280
12~30
石灰岩
40~250
7~20
安山岩
140~300
10~20
白云岩
80~250
15~25
辉长岩
160~300
12~35
板 岩
60~200
7~20
辉绿岩
150~350
15~35
片 岩
10~100
1~10
玄武岩 砾岩 砂 岩
150~300 10~150 20~250
10~30 2~15 4~25
片麻岩 石英岩 大理岩
50~200 150~350 100~250
(二)岩石的水理性质
5.可溶性:是指岩石被水溶解的性能。它与岩石 的矿物成分、水中CO2 含量及水的温度等因素有 关。 6.膨胀性:岩石吸水后体积增大引起岩石结构破 坏的性能称膨胀性。
岩石的物理力学性质

n0
Vn0 V
100%
(5)闭空隙率nc: 即岩石试件内闭型空隙的体积(Vnc)占 试件总体积(V)的百分比。
nc
Vnc V
100%
2 、空隙比(e)
所谓空隙比是指岩石试件内空隙的体积(V V)与 岩石试件内固体矿物颗粒的体积(Vs)之比。
e VV V Vs n
Vs
Vs
1 n
四、岩石的水理性质
c 具有粘性的弹性岩石
由于应变恢复 有滞后现象,即加 载和卸载曲线不重 合,加载曲线弹模 和卸载弹模也不一 样。P点加载弹模 取过P点的加载曲 线的切线斜率,P 点卸载弹模取过P 点的卸载曲线的切 线斜率。
d、弹塑性类岩石
Ee e
2、变形模量
E0 e p
变形
弹性变形 塑性变形
线弹性变形 非线弹性变形
o
理想弹性体
s
o
线性硬化弹塑性体
s
o
理想弹塑性体
o
d
dt
理想粘性体
一、岩石在单轴压缩状态下的力学特性
1、σ~ε曲线的基本形状 美国学者米勒将σ~ε曲线分为6种。
σ~ε曲线的基本形状
致密、坚硬、少裂隙 致密、坚硬、多裂隙
少裂隙、 岩性较软
较多裂隙、 岩性较软
d
Ws V
d d g
(g/cm3) (kN /m3)
式中:Ws——岩石试件烘干后的质量(g); V——岩石试件的体积(cm3);
g——重力加速度。
3、饱和密度(ρ )和饱和重度(γw)
饱和密度就是饱水状态下岩石试件的密度。
w
Ww V
(g/cm3)
w wg
(kN /m3)
式中:WW——饱水状态下岩石试件的质量 (g); V——岩石试件的体积(cm3);
岩石的基本物理力学性质-知识归纳整理

知识归纳整理岩石的基本物理力学性质岩石的基本物理力学性质是岩体最基本、最重要的性质之一,也是岩体力学中研究最早、最完善的力学性质。
岩石密度:天然密度、饱和密度、质量指标密度、重力密度岩石颗粒密度孔隙性孔隙比、孔隙率含水率、吸水率水理指标渗透系数抗风化指标软化系数、耐崩解性指数、膨胀率抗冻性抗冻性系数单轴抗压强度单轴抗拉强度抗剪强度三向压缩强度岩石的基本物理力学性质◆岩石的变形特性◆岩石的强度理论试验想法参照标准:《工程岩体试验想法标准》(GB/T50266-99)。
第二章岩石的基本物理力学性质第一节岩石的基本物理性质第二节岩石的强度特性第三节岩石的变形特性求知若饥,虚心若愚。
第四节岩石的强度理论回顾----岩石的基本构成岩石是自然界中各种矿物的集合体,是天然地质作用的产物,普通而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。
岩石是构成岩体的基本组成单元。
相对于岩体而言,岩石可看作是延续的、均质的、各向同性的介质。
岩石的基本构成:由组成岩石的物质成分和结构两慷慨面来决定的。
回顾----岩石的基本构成一、岩石的物质成分●岩石是自然界中各种矿物的集合体。
●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。
●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。
●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。
回顾----岩石的基本构成二、岩石的结构是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、罗列、结构连结特点及岩石中的微结构面(即内部缺陷)。
其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。
回顾----岩石的基本构成●岩石结构连结结晶连结和胶结连结。
结晶连结:岩石中矿物颗粒经过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。
3岩石力学性质及强度

四、岩石变形特性参数的测定
1、弹性模量E的确定 a、线弹性类岩石――σ ~ε 曲线呈线性关系,曲线上任 一点P的弹性模量E:
E
b
σ ~ε 曲线呈非线性关系
d 初始模量 : E 初= d
切线模量(直线段):
0
a 2 a1 E 切= a 2 a1
割线模量:
际受力状态而测定岩石在围压作用下的抗压强度、
变形模量、弹性模量及泊松比。
岩石的三轴抗压强度、变形模量、弹性模量、 泊松比及剪切模量分别为:
P ( 2) 3 A
50 3 Ee ( 4 ) 50 i
Ee G 6) ( 2(1 u )
50 3 E0 50 0
2、间接拉伸试验
A 劈裂法(巴西试验法)
圆盘试件:
2P t d t
方形试件:
2P t ah
式中:P—破坏时的荷载,N;
d— 试件直径;cm;
t—试件厚度,cm; a,h—方形试件边长和厚度,cm。
不规则试件(加压方向应满足h/a≤1.5 ):
t
P V 2/3
1 与 主 应 力 差 ( σ 1-
σ 3) 的关 系 曲 线 表 示 。
围压对岩石变形的影响
图2-6 三轴应力状态下大理岩的应力-应变曲线
围压对岩石刚度的影响
砂岩:孔隙较多,岩性较软, σ3增大,弹性模量变大。 辉长岩:致密坚硬, σ3增大,弹性模量几乎不变。
围压对岩石强度的影响
图2-6 三轴应力状态下大理岩的应力-应变曲线
岩石力学的弹性变形
E K 3 1 2
弹性模量, E 泊松比, v 体积模量, K 剪切模量, G
3岩石力学性质及强度解析

一些典型的破坏形态
岩石的变形特性,根据其破坏特征,可以分为弹 性、弹塑性、塑性、粘性等(粘性又可分为粘弹性 和粘塑性)等。
§3-2 岩石的变形特性
弹性:指物体在外力作用下发生变形,当外力撤出后变形
能够恢复的性质。
塑性:指物体在外力作用下发生变形,当外力撤出后变形 不能恢复的性质。 脆性:物体在外力作用下变形很小时就发生破坏的性质。 延性:物体能够承受较大的塑性变形而不丧失其承载能力
瓦威尔西克(Wawer Sik,1968)对岩石开始宏观破坏 后的性态做了仔细研究,所得结果如图所示。
类型1:试件仍有一定的强度。要使试件进一步破坏,试验机必须进 一步作功,这种类型为稳定破坏型。应力-应变曲线的破坏后区斜率 为负。这种类型为稳定破坏型;(孔隙率大的沉积岩和部分结晶岩) 类型2:试件受力达到其极限强度以前储存的弹性变形能就足以使试 件完全破坏,不但不需要试验机进一步作功,还要逐步卸载,才能作 出破坏后区应力-应变曲线。应力-应变曲线的破坏后区斜率为正。 这种类型为非稳定破坏型;(细粒结晶岩)
小 结:
1.无论岩石在什么状态的应力条件下( 压、拉、剪、弯、扭),其破坏形式基本上只 有两种:拉伸和剪切。 2. 三向等压>三向不等压>双向压>单向 压>剪切(包括扭转)>弯曲>单向拉伸;
3.从试验数量来看,单向压缩试验、 圆盘劈裂试验最多。
岩石的破坏形式
就其破坏本质而言,岩石破坏有以下三种类型: 1、拉破坏 2、剪切破坏 3、塑性流动破坏
1 与 主 应 力 差 ( σ 1-
σ 3) 的关 系 曲 线 表 示 。
围压对岩石变形的影响
图2-6 三轴应力状态下大理岩的应力-应变曲线
围压对岩石刚度的影响
第3讲 岩石的力学性质-强度性质

11
3.实验原理
消除方法: ①润滑试件端部(如垫云 母片;涂黄油在端部)机)
12
4.影响单轴抗压强度的主要因素
(1)承压板端部的摩擦力及其刚度(加垫块的依据) (2)试件的形状和尺寸 形状:圆形试件不易产生应力集中,好加工 尺寸:大于矿物颗粒的10倍; φ50的依据 高径比:研究表明;L/D≥(2.5-3)较合理 (3)加载速度 加载速度越大,表现强度越高) 我国规定加载速度为0.5~0.8MPa/s (4)环境 含水量:含水量越大强度越低;岩石越软越明显,对 泥岩、粘土等软弱岩体,干燥强度是饱和强度的2-3倍。 温度:180℃以下不明显:大于180℃,温度越高强度 越小。
34
2)实验加载方式:
a. 真三轴加载:试件为立方体,加载方式如图所示。 应力状态:σ1>σ2> σ3 这种加载方式试验装置繁杂,且六个面均可受到由加 压铁板所引起的摩擦力,对试验结果有很大影响,因而实 用意义不大。故极少有人做这样的三轴试验。
b.伪三轴试验:,试件为圆柱体,试件直径25~150mm,长 度与直径之比为2:1或3:1。轴向压力的加载方式与单 轴压缩试验相同。 但由于有了侧向压力,其加载上时的端部效应比单轴加 载时要轻微得多。 应力状态:
a.试验者和时间:意大利人冯· 卡门(Von· Karman) 于1911年完成的。 b.试验岩石:白色圆柱体大理石试件,该大理石 具有很细的颗粒并且是非常均质的。 c.试验发现: ①在围压为零或较低时,大理石试件以脆性方式 破坏,沿一组倾斜的裂隙破坏。 ②随着围压的增加,试件的延性变形和强度都不 断增加,直至出现完全延性或塑性流动变形,并 伴随工作硬化,试件也变成粗腰桶形的。 ③在试验开始阶段,试件体积减小,当达到抗压 强度一半时,出现扩容,泊松比迅速增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 室内试验(抗剪断试验)
①试验 楔形剪切仪,加载装置
②计算公式
N Pcos f sin Q Psin f cos
式中: p——压力机施加的极限荷载 α——试件倾角 f ——滚珠排与上下压板的摩擦系数
剪切破坏面上的正应力σ和剪应力τ为:
要求
①荷载沿轴向均匀分布 ②破坏面必须通过试件的直径
(3)点荷载试验法
是20世纪70年代发展起来的一种简便的现场试验方法。 试件:任何形状,尺寸大致5cm,不做任何加工。 试验:在直接带到现场的点荷载仪上,加载劈裂破坏。
计算点荷载强度指数: I s P / De2
式中:P ——试件破坏时的极限荷载
3.单向压缩试件的破坏形态
破坏形态是表现破坏机理的重要特征;
其主要影响因素:①应力状态 ②试验条件
破坏形态有两类: (1)圆锥形破坏
原因:压板两端存在摩擦力,箍作用(又称端 部效应),在工程中也会出现。
3.单向压缩试件的破坏形态
破坏形态有两类: (2)柱状劈裂破坏
是岩石单向压缩破坏的真实反 映(消除了端部效应) 消除试件端部约束的方法
(2)劈裂法(巴西法),径向压裂法 由巴西人Hondros提出
试件:实心圆柱直径4.8~5.4cm;厚度=0.5~1.0直径 试验:径向压缩破坏(张开) 计算公式:由弹性力学布辛奈斯克Boursinesq公式
Rt 2P /Dt
式中: Rt ——试件中心的最大拉应力 P ——试件破坏时的极限压力 D ——试件的直径 t ——试件的厚度
二 岩石的抗拉强度
1. 定义:岩石试件在受到轴向拉应力后其试件发生破坏 时的单位面积上所受的拉力。 由于试件不易加工,除研究直接的拉伸的夹具外, 研究了大量的间接试验方法。
(1) 直接拉伸法
抗拉强度 Rt Pt / A
①试件和夹具之间的连接 关键技术
②加力P与试件同轴心
(2) 间接方法
①抗弯法(梁的三点或四点弯曲试验)
润滑试件端部(如垫云母片; 涂黄油在端部)
加长试件
4.影响单轴抗压强度的主要因素
(1)承压板端部的摩擦力及其刚度(加垫块的依据) (2)试件的形状和尺寸
形状:圆形试件不易产生应力集中,好加工 尺寸:大于矿物颗粒的10倍;4.8~5.4cm 高径比:研究表明;h/d=(2~3)较合理(见图2-4) (3)加载速度 加载速度越大,表现强度越高(见图2-5) 我国规定加载速度为0.5~1.0MPa/s (4)环境 含水率:含水量越大强度越低;岩石越软越明显,对泥岩、 粘土等软弱岩体,干燥强度是饱和强度的2~3倍。 温度:180℃以下不明显:大于180℃,温度越高强度越小。
用破坏时单位面积上承受的荷载。
Rc P / A
式中:P——无侧限条件下的轴向破坏荷载 ; A——试件截面面积
2.试件方法: (1)试件标准:
圆柱形试件:直径φ=4.8-5.4cm ,高H=(2-2.5)φ 长方体试件:边长L= 4.8-5.4cm , 高H=(2-2.5)L
试件两端不平度0.05mm;尺寸误差±0.3mm; 两端面垂直于轴线±0.25o
2. 三向压缩试验简介
(1) 真三轴 (2) 假三轴
1 2 3 见图 1 2 3 见图
3.三轴压缩试验的破坏类型
4.岩石三向压缩强度的影响因素
(1)侧压力的影响
围压越大,最大主应力极限值越大
• (2)试件尺寸与加载速率的影响
(3)加载途径对岩石三向压缩强度影响
A、B、C三条虚线是三个不同的加载途径,加载途径 对岩石的最终三向压缩强度影响不大。
De ——试验时,两个加载点之间的距离
统计公式:
Rt 0.96Is
要求:(由于离散性大),每组15个,取均值,即
1 15
Rt
15
0.96 Ii
i 1
建议:用φ5cm的钻孔岩芯为试件。
三 岩石的抗剪强度
1. 定义 指一定的应力条件下(主要指压应力),所能抵抗的
最大剪应力,常用τ表示 2. 类型:
第三节 岩石的强度特性
工程师对材料提出两个问题
1 最大承载力——允许应力[ ] ?
2 最大允许变形——允许应变[ ]?
本节讨论[ ]问题
强度:材料在载荷作用,单位面积上所能承受的最大的力。
强度
单轴抗压强度 单轴抗拉强度 剪切强度
真三轴 三轴压缩强度
假三轴
一 岩石的单轴抗压强度
1.定义:指岩石试件在无侧限的条件下,受轴向压力作
的σ ,τ值;由该组值作曲线近似直线得方 程
tan c
式中 tanφ-岩石抗剪切内摩擦系数
c -岩石的粘结力(内聚力)
不足:强制规定破坏面
剪切作用时破坏面上的应力状体极为复杂
四 岩石在三向压缩应力作用下的强度
1. 定义
指在不同三向压缩应力作用下岩石抵抗外荷 载的最大应力
1 f 2 , 3 f 1, 2, 3
抗拉强度 t MC / I
t ——三点或四点弯曲梁内的最大拉应力;梁发生破
坏时的 t 就是 Rt
M ——作用在试件截面上的最大弯矩 C ——梁边缘到中性轴的距离 I ——梁截面绕中性轴的惯性矩
①梁的截面严格保持为平面 假设条件: ②岩石是各向同性的线弹性材料
③弯曲发生在梁的对称面平面内 ④拉伸和压缩的应力—应变特征相同
N Pcos f sin Q Psin f cos
N P cos f sin
AA
Q P sin f cos
AA
岩石的抗剪断σ~τ曲线(强度曲线)
岩石的抗剪断σ~τ曲线(强度曲线)
• 改变夹具倾角α;α在30度到70度之间 • 做一组(大于5次)不同α的试验,记录所得
(4)孔隙水压力对岩石三向压缩强度的影响
孔隙水压力使有效应力(围压)减小
强度降低Biblioteka 返回