大学物理普通物理上册习题(有答案)

合集下载

大学物理学(第三版上) 课后习题3答案详解

大学物理学(第三版上)  课后习题3答案详解

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) (B) 02ωmRJ J+02)(ωR m J J +(C) (D) 02ωmRJ0ω[答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为(A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s (a)(b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A )动能不变,动量改变。

(B )动量不变,动能改变。

(C )角动量不变,动量不变。

(D )角动量改变,动量改变。

(E )角动量不变,动能、动量都改变。

[答案: (E)]3.2填空题(1) 半径为30cm 的飞轮,从静止开始以0.5rad·s -2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度a τ= ,法向加速度a n = 。

0.15; 1.256[答案:](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的 守恒,原因是 。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的 守恒。

题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。

大学普通物理复习题(10套)带答案

大学普通物理复习题(10套)带答案

普通物理试题1-10试题1一、填空题11. 7.在与匀强磁场B垂直的平面,有一长为L 的铜杆OP ,以角速度 绕端点O 作逆时针匀角速转动,如图13—11,则OP 间的电势差为 P O U U (221L B )。

3. 3.光程差 与相位差 的关系是(2 )25. 1.单色光在水中传播时,与在真空中传播比较:频率(不变 );波长( 变小 );传播速度( 变小 )。

(选填:变大、变小、不变。

)68.17-5. 波长为 的平行单色光斜入射向一平行放置的双缝,如图所示,已知入射角为θ缝宽为a ,双缝距离为b ,产生夫琅和费衍射,第二级衍射条纹出现的角位置是(sin 2sin 1b。

33. 9. 单色平行光垂直照射在薄膜上.经上下两表面反射的两束光发生干涉、如图所示, 若薄膜的厚度为e .且321n n n ,1 为入射光在1n 中的波长,则两束反射光的光程差为 ( 22112 n e n)。

二、选择题6. 2. 如图示,在一无限长的长直载流导线旁,有一形单匝线圈,导线与线圈一侧平行并在同一平面,问:下列几种情况中,它们的互感产生变化的有( B ,C ,D )(该题可有多个选择)(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动;(C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动12.16-1.折射率为n 1的媒质中,有两个相干光源.发出的光分别经r 1和r 2到达P 点.在r 2路径上有一块厚度为d ,折射率为n 2的透明媒质,如图所示,则这两条光线到达P 点所经过的光程是( C )。

(A )12r r(B ) d n n r r 2112(C ) d n n n r r 12112 (D ) d n n r r 1211283. 7.用白光垂直照射一平面衍射光栅、发现除中心亮纹(0 k )之外,其它各级均展开成一光谱.在同一级衍射光谱中.偏离中心亮纹较远的是( A )。

大学物理第六版上册北京邮电大学出版课后答案详解精选全文完整版

大学物理第六版上册北京邮电大学出版课后答案详解精选全文完整版

可编辑修改精选全文完整版大学物理第六版上册北京邮电大学出版课后答案详解1、行驶的汽车关闭发动机后还能行驶一段距离是因为汽车受到惯性力作用[判断题] *对错(正确答案)答案解析:汽车具有惯性2、用如图所示的装置做“探究小车速度随时间变化的规律”实验:1.小车从靠近定滑轮处释放.[判断题] *对错(正确答案)3、马德堡半球实验测出了大气压,其大小等于760mm高水银柱产生的压强[判断题]对错(正确答案)答案解析:托里拆利实验最早测出了大气压强4、11.小敏学习密度后,了解到人体的密度跟水的密度差不多,从而她估测一个中学生的体积约为()[单选题] *A.50 m3B.50 dm3(正确答案)C.50 cm3D.500 cm35、9.在某原子结构模型示意图中,a、b、c是构成该原子的三种不同粒子,能得出的结()[单选题] *A.a和c数量不相等B.b决定原子种类C.质量集中在c上D.a和c之间存在吸引的力(正确答案)6、4.静止在水平地面上的物体受到向上的弹力是因为地面发生了形变.[判断题] *对(正确答案)错7、下列有关力做功的说法中正确的是()[单选题]A.用水平力推着购物车前进,推车的力做了功(正确答案)B.把水桶从地面上提起来,提水桶的力没有做功C.书静止在水平桌面上,书受到的支持力做了功D.挂钩上的书包静止时,书包受到的拉力做了功8、1.与头发摩擦过的塑料尺能吸引碎纸屑。

下列与此现象所反映的原理相同的是()[单选题] *A.行驶的汽车窗帘被吸出去B.挤压后的吸盘吸在光滑的墙上C.用干燥的双手搓开的塑料袋会吸在手上(正确答案)D.两个表面光滑的铅块挤压后吸在一起9、下列措施中,能使蒸发减慢的是()[单选题]A.把盛有酒精的瓶口盖严(正确答案)B.把湿衣服晾在通风向阳处C.用电吹风给湿头发吹风D.将地面上的积水向周围扫开10、停放在水平地面上的汽车对地面的压力和地面对车的支持力是平衡力[判断题] *对错(正确答案)答案解析:相互作用力11、52.“凿壁偷光”原指凿穿墙壁,让邻舍的烛光透过来,后用来形容家贫而勤奋读书。

(整理)大学物理课后习题答案(上册)

(整理)大学物理课后习题答案(上册)

《大学物理学》课后习题参考答案习 题11-1. 已知质点位矢随时间变化的函数形式为)ωt sin ωt (cos j i +=R r其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:1) 由)ωt sin ωt (cos j i +=R r 知t cos R x ω= t sin R yω=消去t 可得轨道方程 222R y x =+2) j rv t Rcos sin ωωt ωR ωdtd +-==i R ωt ωR ωt ωR ωv =+-=2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。

解:1)由j i r)t 23(t 42++=可知2t 4x = t 23y +=消去t 得轨道方程为:2)3y (x -=2)j i rv2t 8dtd +==j i j i v r 24)dt 2t 8(dt 11+=+==⎰⎰Δ3) j v 2(0)= j i v 28(1)+=1-3. 已知质点位矢随时间变化的函数形式为j i rt t 22+=,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:1)j i rv2t 2dtd +==i va2dtd ==2)212212)1t (2]4)t 2[(v+=+= 1t t 2dtdv a 2t+==n a ==1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121at t v y += (1) 图 1-4 20221gt t v h y -+= (2)21y y = (3)解之t=1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的td d r,td d v ,tv d d . 解:(1) t v x0= 式(1)2gt 21h y -= 式(2)j i r )gt 21-h (t v (t)20+=(2)联立式(1)、式(2)得 22v 2gx h y -=(3)j i rgt -v t d d 0= 而 落地所用时间 gh 2t =所以j i r 2gh -v t d d 0= j v g td d -= 2202y 2x )gt (v v v v-+=+=212220[()]g t dvdt v gt ==+1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。

大学物理上册试卷及答案(完整版)

大学物理上册试卷及答案(完整版)

大学物理(I )试题汇总《大学物理》(上)统考试题一、填空题(52分)1、一质点沿x 轴作直线运动,它的运动学方程为 x =3+5t +6t 2-t 3 (SI) 则 (1) 质点在t =0时刻的速度=v __________________;(2) 加速度为零时,该质点的速度=v ____________________. 2、一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为: 2214πt +=θ (SI) 则其切向加速度为t a =__________________________.3、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =____________________.4、一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T =_____________________;(2) 摆锤的速率v =_____________________.5、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =_______;它们各自收拢绳索,到绳长为 5 m 时,各自的速率v=_______.6、一电子以0.99 c 的速率运动(电子静止质量为9.11×10-31 kg ,则电子的总能量是__________J ,电子的经典力学的动能与相对论动能之比是_____________.7、一铁球由10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高__________.(已知铁的比热c = 501.6 J ·kg -1·K -1)8、某理想气体在温度为T = 273 K 时,压强为p =1.0×10-2 atm ,密度ρ = 1.24×10-2 kg/m 3,则该气体分子的方均根速率为___________. (1 atm = 1.013×105 Pa) 9、右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中:(1) 温度升高的是__________过程; (2) 气体吸热的是__________过程. 10、两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位 差φ1 - φ2为____________.11、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波长变成了0.37 m ,它在该介质中传播速度为______________.12、折射率分别为n 1和n 2的两块平板玻璃构成空气劈尖,用波长为λ的单色光垂直照射.如果将该劈尖装置浸入折射率为n 的透明液体中,且n 2>n >n 1,则劈尖厚度为e 的地方两反射光的光程差的改变量是_________________________.13、平行单色光垂直入射在缝宽为a =0.15 mm 的单缝上.缝后有焦距为f =400mm 的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明条纹两侧的两个第三级暗纹之间的距离为8 mm ,则入射光的波长为λ=_______________.14、一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹.若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第_____________级和第____________级谱线.15、用相互平行的一束自然光和一束线偏振光构成的混合光垂直照射在一偏振片上,以光的传播方向为轴旋转偏振片时,发现透射光强的最大值为最小值的5倍,则入射光中,自然光强I 0与线偏振光强I 之比为__________.16、假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是_______________________.二、计算题(38分)17、空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)18、3 mol 温度为T 0 =273 K 的理想气体,先经等温过程体积膨胀到原来的5倍,然后等容加热,使其末态的压强刚好等于初始压强,整个过程传给气体的热量为Q = 8×104 J .试画出此过程的p -V 图,并求这种气体的比热容比γ = C p / C V 值. (普适气体常量R =8.31J·mol -1·K -1)19、一质量为0.20 kg 的质点作简谐振动,其振动方程为 )215cos(6.0π-=t x (SI).求:(1) 质点的初速度; (2) 质点在正向最大位移一半处所受的力.17、20、一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示.(1) 求P 处质点的振动方程; (2) 求此波的波动表达式;(3) 若图中 λ21=d ,求坐标原点O 处质点的振动方程.21、在双缝干涉实验中,用波长λ=546.1nm (1 nm=10-9 m)的单色光照射,双缝与屏的距离D =300 mm .测得中央明条纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.22、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?三、问答题(5分)23、两个大小与质量相同的小球,一个是弹性球,另一个是非弹性球.它们从同一高度自由落下与地面碰撞后,为什么弹性球跳得较高?地面对它们的冲量是否相同?为什么?《大学物理》(下)物探统考试题一、填空题1,如图所示,在边长为a的正方形平面的中垂线上,距中心0点21a处,有一电量为q的正点电荷,则通过该平面的电场强度通量为____________.2_______________________。

大学物理(上册)课后习题及答案

大学物理(上册)课后习题及答案
分离变量得: ,即 ,
因此有: ,∴
⑵由 得: ,两边积分得:

⑶质点停止运动时速度为零, ,即t→∞,
故有:
⑷ 时,其速度为: ,
即速度减至 的 .
2.13作用在质量为10 kg的物体上的力为 N,式中 的单位是s,⑴求4s后,这物体的动量和速度的变化,以及力给予物体的冲量。⑵为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度 m/s的物体,回答这两个问题。
将 ,及 代入上式,即得: 。
6.9沿绳子传播的平面简谐波的波动方程为 =0.05cos(10 ),式中 , 以米计, 以秒计。求:
⑴设 =100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?⑵如果在2s内飞轮转速减少一半,需加多大的力 ?
解:⑴先作闸杆和飞轮的受力分析图(如图(b))。图中 、 是正压力, 、 是摩擦力, 和 是杆在 点转轴处所受支承力, 是轮的重力, 是轮在 轴处所受支承力。
杆处于静止状态,所以对 点的合力矩应为零,设闸瓦厚度不计,则有:
解:因为
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相。故有: ,

5.9一质量为 的物体作谐振动,振幅为 ,周期为 ,当 时位移为 。求:
⑴ 时,物体所在的位置及此时所受力的大小和方向;
⑵由起始位置运动到 处所需的最短时间;
⑶在 处物体的总能量。
解:由题已知 ,∴
又, 时,
故振动方程为:
⑴将 代入得:
方向指向坐标原点,即沿 轴负向。
⑵由题知, 时, ; 时,

⑶由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为:

大学物理第五版课后答案上完整版

大学物理第五版课后答案上完整版

3-6一架以 2 m s 解 0Δ-='v m t FN 1055.252⨯=='lm F v 鸟对飞机的平均冲力为 N 1055.25⨯-='-=F F3-7 质量为m 的物体,由水平面上点O 分析 3-8 Fx=30+4t 的合外力解 1 由分析知()s N 68230d 4302220⋅=+=+=⎰t t t t I 2 由I =300 =30t +2t 2 ,解此方程可得 t =6.86 s 另一解不合题意已舍去3 由动量定理,有 I =m v 2- m v 1由2可知t =6.86 s 时I =300 N ·s ,将I 、m 及v 1代入可得 112s m 40-⋅=+=mm I v v3-9 高空作业 51kg 的人3-10质量为m 的小球,在力F= - kx 作用下运动ωkA t t ωkA t kx t F I ωt t t t -=-=-==⎰⎰⎰2/π02121d cos d d 即()ωkA m -=v Δ3-11 在水平地面上,有一横截面S= 2()A B t S ρtv v v -==ΔΔIF , N 105.2232⨯-=-=-='v S ρF F 3-12 爆炸后 ,hgx t x x 21010==v 21121gt t h y --=v ;12121t gth -=v x x m m 2021v v = y m m 2121210v v +-=落地时,y 2 =0,由式5、6可解得第二块碎片落地点的水平位置 x 2 =500 m 3-13 A,B 两船在平静的湖面上平行逆行航行 B 船以 解()A A B A A m m m m v v v '=+- 1 ()''=+-B B A B B m m m m v v v 23-14 质量为m 丶的人手里拿着质量为m 的物体 解 取如图所示坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有u m m m α'++=cos 00v v 人的水平速率的增量为u mm mα'+=-=cos Δ0v v v 而人从最高点到地面的运动时间为 gαt sin 0v =所以,人跳跃后增加的距离()g m m αm t x '+==sin ΔΔ0v v3-15 一质量均匀柔软的绳竖直的悬挂着0N =-+F F yg l m1 y lmt F d 0d v -=' 2 而 F F '-= 3 3-16 设在地球表面附近,一初质量为 10 5解 1 以火箭发射处为原点,竖直向上为正方向.该火箭在重力场中的动力学方程为ma mg tmu=-d d 1 2 t m mg t m u d d d d v=- 分离变量后积分,有 ⎰⎰⎰-=t m m t g m m u 0d d d 00v v v3-17 质量为m 的质点在外力F 的作用下沿Ox 轴运动,已知 t=0时质点位于原点 解 2d 0000L F x x LF F W L=⎪⎭⎫⎝⎛-=⎰;mLF 0=v 3-18 如图 一绳索 5N 3-19 一物体在介质x=ct 3解 23d d ct tx==v ;3/43/242299x kc t kc k F ===v3-20 一人从 m 深的井中提水解 水桶在匀速上提过程中,a =0,拉力与水桶重力平衡,有 F +P =0在图示所取坐标下,水桶重力随位置的变化关系为P =mg -αgy 3-21 一质量为的小球 的细绳 解 1()J 53.0cos 1Δ=-==θmgl h P W P ;s F d T T ⋅=⎰W2 J 53.0k k ==E E 小球在最低位置的速率为 1PKs m 30.222-⋅===mW m Ev 3l m P F 2T v =- N 49.22T =+=lm mg F v3-22 一质量为m 的质点,系在细绳的一段,绳的另一端解 1 2202k 0k 832121v v v m m m E E W -=-=-= 1 2 由于摩擦力是一恒力,且F f =μmg ,故有mg μr πs F W 2180cos of -== 2rg πμ16320v = 3 34k0==W E n 圈3-23 如图所示,A 和B 两块板用一轻弹簧F 1 =P 1 +F 2221212121mgy ky mgy ky +=-;F 1 -F 2 =2P 1 F =P 1 +F 2 当A 板跳到N 点时,B 板刚被提起,此时弹性力F ′2 =P 2 ,且F 2 =F ′2 .由式3可得F =P 1 +P 2 =m 1 +m 2 g3-24有一自动卸货矿车W f = +′gl +x 1W f =-m -m ′ gl +x sin α 2 3-25 分铁锤敲入钉子木板 -2 解⎰⎰+=xx x x x kx x kx Δ000d d Δx = ×10 -2m3-26 m 的地球卫星, 3Re 解()E 22E E 33R m R m m G v = 则 E E 2K 621R m m G m E ==v 2 E E P 3R mm G E -=3 EE E E E E P K 636R mm G R m m G R m m G E E E -=-=+=3-27 天文观测台 冰块解 由系统的机械能守恒,有R m F θmgR 2N cos v =- o θ2.4832arccos ==;32cos RgθgR ==v v 的方向与重力P 方向的夹角为 α=90°-θ =°3-28 m= kg A 时 解 rm mg c 2v= 1()()22213Δ21c m r mg l k v += 2 由式1、2 可得 ()12m N 366Δ7-⋅==l mgr k 3-29 质量为m, 速度为v 的钢球 m 丶的靶. 解 ()1v v m m m '+= 1()20212212121kx m m m +'+=v v 2()v m m k m m x '+'=03-30 质量为m 的弹丸,穿过v v v ''+=m m m 21 l m g m h2v ''=' 2 221221hm gl m m v v ''+'='' 3glm m 52'=v 3-31 一个电子和一个3-32 质量为 x 10 -23kgαm βm m A B A cos cos 221v v v '+= 1αm βmA B sin sin 20v v '-= 2 222212m 2121A B A m v v v '+⎪⎭⎫ ⎝⎛= 3()1722s m 1069.42-⋅⨯='-=A A B v v v3-33 如图 质量为m 丶的物块 低端A 处解 在子弹与物块的撞击过程中,在沿斜面的方向上,根据动量守恒有()10cos v m m αmv '+= 1()αh αg m m μsin cos '+- ()()()21222121v v m m gh m m m m '+-'++'+= 2()1cot 2cos 202+-⎪⎭⎫ ⎝⎛'+=αμgh αm m m v v 3-34 如图 一质量为m 的小球 内壁半球形 3-35 打桩 m=10t解 1 在锤击桩之前,由于桩的自重而下沉,这时,取桩和地球为系统,根据系统的功能原理,有⎰='1h 01d 4h hK S gh m 1m 88.821='=KS gm h 2 ()v v m m m +'=0 2()()220h h h 21S 4d -211gh m m m m Kh +'-+'-=⎰+v v 3 h 2 = m ;v v ''+'-=m h g m m 20 ()23h 021d h m 354-3v ''-'-=+⎰m gh m h S 5h 3 = m3-36 一系统0332211=++x x x m m m v v v ;0332211=++y y y m m m v v v则 ()()j i 113s m 0.2s m 8.2--⋅-⋅-=v 3-37 如图 m1 = kg m2 = AB 小球m 5.1202120=+=x m m m x c ;m 9.1102110=+=y m m m y c ()t m m F m m t F x x tx2112101 ,d d +=+=⎰⎰v v v 3 ()t m m F m m t F y y ty2122101 ,d d +=+=⎰⎰v v v 4 t m m F y ty y c d d 0212cc0⎰⎰⎪⎪⎭⎫⎝⎛+=;()22212019.09.12t t m m Fy y c c +=++= 2()()()j i F F P P t t t t0.60.8d Δ021-=+==⎰4-6 一汽车 12s 3 r min 解()200s rad 1.13π2-⋅=-=-=t n n t ωωα ;()0020π221n n t ωωt αt ωθ-=-=+=4-7 某种电动机启动后 ;s()22//0s rad e 5.4e d d ---⋅===t τt τωt ωα;()rad 9.36d 1d /60060=-==-⎰⎰t e ωt ωθτt 则t = s 时电动机转过的圈数87.5π2/==θN 圈4-8 水分子 θd m J H A A 22sin 2='θd m J H B B 22cos 2='此二式相加,可得22d m J J H B B A A =+''则 m 1059.9211-''⨯=+=HB B A A m J J d由二式相比,可得 θJ J B B A A 2tan /='' 则 o 3.521.141.93arctan arctan===''B B A A J J θ 4-9 一飞轮 30cm cm4-10 如图 圆盘的质量为m 半径为R22/3222/2203215d 2 d π2πd mR r r R m r r R mr m r J R R RR ====⎰⎰⎰ 2 ;22222032392ππ3215mR R R R m m mR J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅-+='4-11 用落体观察法测定飞轮的转动惯量 4-12 一燃气轮机 m2解1 在匀变速转动中,角加速度tωωα0-=,由转动定律αJ M =,可得飞轮所经历的时间4-13 如图 m1 = 16kg 圆柱体A解 1αr m αJ r F T 2121== ;a m F g m F P T T 222='-='-21222m m g m a += ;m 45.222121222=+==m m gt m at s2 ()N 2.3922121=+=-=g m m m m a g m F T 4-14 m1 m2 A B 组合轮两端()αJ J r F R F T T 2121+=- 11T T F F =',22T T F F ='解上述方程组,可得gR r m R m J J r m R m a 222121211+++-=;gr r m R m J J rm R m a 222121212+++-=g m r m R m J J Rr m r m J J F T 1222121221211++++++=;g m rm R m J J Rr m R m J J F T 2222121121212++++++= 4-15 如图所示装置,定滑轮半径rαr a a ==21 αJ r F r F T T ='-'12 11T T F F =',22T T F F =' 4-16 飞轮 60kg()0121='-+l F l l F Nd μF l ll d μF d F M N 121f 2212+=== 1 4-17 一半径为R,质量为m 的匀质圆盘;; 停止 4-18 如图 通风机J ωC t ωα-==d d 1t JCωωt ωωd d 00⎰⎰-=J Ct e ωω/0-= 22ln CJt =24-19 如图 一长 2l 的细棒AB解()αe ωml mr ωJ L t 2022sin 122--===2 ()[]αe ωml tt L M t 202sin 12d dd d --==te αωml -=202sin 2 ;αωml M 202sin 2= 4-20 m 丶 半径R 的圆盘 裂开 解 1 R ω=0v4-21 光滑水平 木杆 m1= L=40cm解 根据角动量守恒定理()ωJ J ωJ '+=212;()1212212s 1.2936-=+=+='m m m J J ωJ ωv4-22 r1 r2 薄伞形轮 4-23 的 小孩R ωωωωv +=+=010;()010100=++ωωJ ωJ 122020s 1052.9--⨯-=+-=RmR J mR ωv4-24 一转台 砂粒 Q =2t 解 在时间0→10 s 内落至台面的砂粒的质量为kg 10.0Qd s 100==⎰t m ;()ωmr J ωJ 2000+= ;112000s π80.0-=+=J mrJ ωJ ω 4-25 为使运行中的飞船4-26 m 的蜘蛛解 1 ()b a ωJ J ωJ 100+=a a b ωmm m ωJ J J ω2100+''=+=2 即22mr J =.在此过程中,由系统角动量守恒,有()c a ωJ J ωJ 100+=4-27 的均匀细棒解 1 由刚体的角动量定理得 28388Δ31arccos o 222'=⎪⎪⎭⎫ ⎝⎛-=gl m t F θ 4-28 第一颗人造卫星 5 2211v v mr mr = 12221212121r Gmm m r Gmm m EE -=-v v 2()1321121s m 1011.8-⋅⨯=+=r r r r Gm E v ;131212s m 1031.6-⋅⨯==v v r r4-29 地球对自传解 1 地球的质量m E = ×1024 kg,半径R = ×106 m,所以,地球自转的动能2 对式T ωπ2=两边微分,可得T Tωd π2d 2-= T ωT T ωΔπ2Δπ2Δ22-=-= T E ωT J ωωωJ E K K ΔπΔπ2ΔΔ3-=-== 2式中n 为一年中的天数n =365,ΔT 为一天中周期的增加量.4-30 如图 一质量为m 的小球由一绳索 ;;; 新的角速度 解 1200mr J =和20141mr J =,则00014ωωJ J ω==2 2020200211232121ωmr ωJ ωJ W =-=4-31 质量 解 1 棒绕端点的转动惯量231ml J =由转动定律M =Jα可得棒在θ 位置时的角加速度为()lθg J θM α2cos 3==;2s 418-=.α 由于θωωt ωαd d d d ==,⎰⎰=o 6000d d θαωωω ;1600s 98.7sin 3o -==l θg ω 2J 98.021==mgl E K3 由于该动能也就是转动动能,即221ωJ E K =,1s 57.832-==='l g J E ωK 4-32 如图 A B 两飞轮 J1 = kg;M解 1 取两飞轮为系统,根据系统的角动量守恒,有2 ()J 1032.12121Δ42112221⨯-=-+=ωJ ωJ J E 4-34 如图 OO 丶自由转动解()B ωmR J ωJ 2000+= 1()2220200212121BB m ωmR J mgR ωJ v ++=+ 22000mR J ωJ ωB +=2022002mRJ RωJ gR B ++=v 0ωωC = ;gR C 4=v 4-35 为使运行中飞船停止绕其中心轴转动 ,一种可能方案有()()2222122121ωl R m ωJ J '+=+ ⎪⎪⎭⎫ ⎝⎛-'+=141m m R l 4-37 一长为L, 质量为m 的均匀细棒,在光滑的;;绕质心ωJ ωJ t F-'=-Δ21;ωωml J J ω41412=+='2 22223212121ωml ωJ ωJ E ΔK -=-''=4-38 如图 细绳 大木轴 解 设木轴所受静摩擦力F f 如图所示,则有F mR J R R θR a C C 212121cos ++= ;F mR J R θR R a αC C 21211cos ++== 5-6 1964 年,盖尔曼等人 解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力. 5-7 质量为m , 电荷为-e 的电子由此出发命题可证.证 由上述分析可得电子的动能为r e εm E K 202π8121==v ;3022π4mrεe ω=;432022232π4me E εωK ==v 5-8 在氯化铯 1 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.2 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为5-9 若电荷均匀地分布在长为L 的细棒 , 求证 证 1 延长线上一点P 的电场强度⎰'=Lr πεqE 202d ,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r QεL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.2, E rεqαE Ld π4d sin 20⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则5-10 一半径为R 的半球壳,均匀的带有电荷, 解由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有 5-11 水分子H2O解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上 5-13 如图为电四级子解 由点电荷电场公式,得()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=; 5-14 设匀强电场的电场强度E 与半径为R 的半球面对称轴平行 5-15 如图 边长为a 的立方体,其表面同理 ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ 5-16 分析 地球周围的大气犹如;;5-17 设在半径为R 的球体内 ,其电荷为对称分布球体内0≤r ≤R()40022πd π41π4r εk r r kr εr r E r==⎰ ,()r εkr r e E 024=球体外r >R()40022πd π41π4r εk r r kr εr r E R==⎰,()r εkR r e E 024=5-18 如图 , 一无限大均匀带电薄平板n εσe E 012=;nr x xεσe E ⎪⎪⎭⎫ ⎝⎛+--=220212 ,n rx x εσe E E E 220212+=+=在圆孔中心处x =0,则 E =0 在距离圆孔较远时x >>r ,则5-19 如图, 在电荷体密度p 的均匀带电球体证 带电球体内部一点的电场强度为r E 03ερ=r E 013ερ=,2023r E ερ-= ()210213r r E E E -=+=ερ;a E 03ερ=5-20 一个内外半径分别为R1和R2的均匀带电球壳,总电荷为Q1解 取半径为r 的同心球面为高斯面,由上述分析 r <R 1 ,该高斯面内无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑故 ()()23132031312π4rR R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故 r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故5-21 两个带有等量异号电荷的无限长同轴圆柱面解 ∑=⋅0/π2εq rL E r <R 1 , 0=∑q 01=E 在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2, 0=∑q 03=E 5-22 如图 ,有三个点电荷Q1Q2Q3解 在任一点电荷所受合力均为零时Q Q 412-=,并由电势5-23 已知均匀带电直线附近的1 ,12012ln π2d 21r r ελU r r =⋅=⎰r E 2 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 5-24 水分子电偶极矩解 由点电荷电势的叠加1 若o 0=θ V 1023.2π4320P -⨯==rεpV 2 若o45=θ V 1058.1π445cos 320o P -⨯==r εp V 3 若o90=θ 0π490cos 20oP ==r εp V5-25 一个球形雨滴半径当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量q 2 =2q 1 ,雨滴表面电势5-26 电荷面密度分别为;;;两块无限大解 ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εσa x0 2 00i E ()a x a x εσV x <<--=⋅=⎰ d 00l E()a x a εσV -<=⋅+⋅=⎰⎰- d d 0a -axl E l E ;()a x a εσV >-=⋅+⋅=⎰⎰ d d 00a -a x l E l E 5-27 两个同心球面的半径分别为R1 R2 , 各自带有解 1 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则 202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+= 2 ; ()2011012112π4π42R εQ R εQ V V U R r -=-== 5-28 一半径为R 的无限长带电细棒,其内部的电荷均匀分布当r ≤R 时02/ππ2ερl r rl E =⋅ ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅ ()rεR ρr E 022=当r ≤R 时()()22004d 2r R ερr εr ρr V R r-==⎰当r ≥R 时()rR εR ρr r εR ρr V R r ln 2d 20202==⎰5-29 一圆盘半径R= 10 -2解 1 带电圆环激发的电势220d π2π41d x r r r σεV +=()x x Rεσxr r r εσV R-+=+=⎰22222d 2 12 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V 2 电场强度方向沿x 轴方向.3 将场点至盘心的距离x = cm 分别代入式1和式2,得当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有 5-30 两根同长的圆柱面 R1= 10 -2 m R2=解得 1812120m C 101.2ln/π2--⋅⨯==R R U ελ2 解得两圆柱面之间r = 处的电场强度 5-31 轻原子核结合成为较重原子核解 1 两个质子相接触时势能最大,根据能量守恒由20K021v m E =可估算出质子初始速率17k 00s m 102.1/2-⋅⨯==m E v 该速度已达到光速的4%.2.kT E E 23K K0== K 106.5329K0⨯≈=kE T 5-32 在一次典型的闪电中Kg 1098.8Δ4⨯===LqUL E m 即可融化约 90 吨冰. 2 一个家庭一年消耗的能量为5-33 两个半径为R 的圆环分别带等量异电荷 正负q解 1 由带电圆环电势的叠加,两环圆心连线的x 轴上的电势为2 当R x l x >>>>,时,化简整理得在R x >>时带电圆环等效于一对带等量异号的点电荷,即电偶极子.上式就是电偶极子延长线上一点的电势.5-34 如图 , 在Oxy 平面上倒扣着半径为R 的半球面,假设将半球面扩展为带有相同电荷面密度σ的一个完整球面,此时在A 、B 两点的电势分别为5-35 在玻尔的氢原子模型中,电子 10-10解 1 电子在玻尔轨道上作圆周运动时,它的电势能为2 电子在玻尔轨道上运动时,静电力提供电子作圆周运动所需的向心力,即()r m r εe /π4/2202v =.此时,电子的动能为电子的电离能等于外界把电子从原子中拉出来需要的最低能量 6-6 不带电的导体球A 含有两个 ; ()20π4rεq q q F d c b d +=点电荷q d 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电 荷q b 、q c 处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷q b 、q c 受到的作用力为零.6-7 一真空二极管,其主要构件是是一个半;;R1=解 1 电子到达阳极时,势能的减少量为 26-8 一导体球半径为R1,外罩一半径为R2r <R 1时, ()01=r E R 1<r <R 2 时,()202π4r εqr E = r >R 2 时, ()202π4r εqQ r E += r <R 1时, R 1<r <R 2 时, r >R 2 时,也可以从球面电势的叠加求电势的分布.在导体球内r <R 120101π4π4R εQR εq V += 在导体球和球壳之间R 1<r <R 2 2002π4π4R εQ r εq V +=在球壳外r >R 2 r εQ q V 03π4+= ;102001π4π4R εQR εq V V +== 102001π4π4R εQR εq V V +== 代入电场、电势的分布得 r <R 1时, 01=E ;01V V = R 1<r <R 2 时,22012012π4rR εQ R r V R E -=;r R εQR r r V R V 201012π4)(--= r >R 2 时,6-9 如图 ,在一半径为R1 = cm 的金属球 A 外面 套 解V 106.5π4π4π43302010⨯=-+-+=R εQ Q R εQ R εq V A A A A A V 105.4π4330⨯=+=R εQ Q V BA B 2 将球壳B 接地后断开,再把球A 接地,设球A 带电q A ,球A 和球壳B 的电势为 6-10 两块带电量分别为Q1,Q2的导体平板平行证明 1 设两块导体平板表面的电荷面密度分别为σ1、σ2、σ3、σ4 ,取如图b所示的圆柱面为高斯面,高斯面由侧面S 1和两个端面S 2、S 3构成,由分析可知得 0,0ΔΔ3232=+=+=∑σσS σS σq相向的两面电荷面密度大小相等符号相反.2 由电场的叠加原理,取水平向右为参考正方向,导体内P 点的电场强度为 6-11 将带电量为Q 的导体板A 从远处移至不带电的导体板B 附件解 1 如图b所示,依照题意和导体板达到静电平衡时的电荷分布规律可得()Q S σσ=+21 ;()Q S σσ=+43;041=-σσ;032=+σσSQσσσσ24321==-==两导体板间电场强度为S εQ E 02=;方向为A 指向B .两导体板间的电势差为 SεQd U AB 02=2 如图c 所示,导体板B 接地后电势为零. 两导体板间电场强度为S εQ E 0=';方向为A 指向B . SεQdU AB0=' 6-12 如图 Q>0, 内半径为a, 外半径b6-13 如图, 在真空中将半径为R 的金属球接地,在与球心 6-14 地球和电离层可当做一个球形电容器 6-15 两线输电线的线径代入数据 F 1052.512-⨯=C 6-16 电容式计算机键盘解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC ;mm 152.0ΔΔΔ00min20min =+=-=S εC d Cd d d d6-17 盖革-米勒管 可用解 1 由上述分析,利用高斯定理可得L λεrL E 01π2=⋅,则两极间的电场强度 2 当611 2.010V m E -=⨯⋅ ,R 1 = mm,R 2 = mm 时,6-18 解 1 查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容2 C 1084.18-⨯==CU Q 2-80m C 1084.1⋅⨯==-SQσ 31-5m V 102.1⋅⨯==dUE 6-19 如图 , 半径R= 的导体球带有电荷 Q = -8C解 1 取半径为r 的同心球面为高斯面,由高斯定理得r <R 0π421=⋅r D 01=D ;01=E R <r <R +d Q r D =⋅22π422π4r Q D =;202π4r εεQ E r=r >R +d Q r D =⋅23π4;23π4r Q D =;203π4r εεQE r =r 1 =5 cm,该点在导体球内,则01=r D ;01=r Er 2 =15 cm,该点在介质层内,εr =,则2822m C 105.3π42--⋅⨯==r Q D r ;12220m V 100.8π42-⋅⨯==r εεQ E r r r 3 =25 cm,该点在空气层内,空气中ε≈ε0 ,则2823m C 103.1π43--⋅⨯==r Q D r ;12220m V 104.1π43-⋅⨯==r εQ E r 2 取无穷远处电势为零,由电势与电场强度的积分关系得 r 3 =25 cm,V 360π4d 0r 331==⋅=⎰∞rεQV r E r 2 =15 cm, ()()V480π4π4π4d d 0020r 3222=+++-=⋅+⋅=⎰⎰+∞+d R εQd R εεQ r εεQ V r r dR dR rE r E r 1 =5 cm,()()V540π4π4π4d d 000321=+++-=⋅+⋅=⎰⎰+∞+d R εQd R εεQ R εεQ V r r dR RdR rE r E3 均匀介质的极化电荷分布在介质界面上,因空气的电容率ε =ε0 ,极化电荷可忽略.故在介质外表面; 6-20 人体的某些细胞壁两侧解 1细胞壁内的电场强度V /m 108.960⨯==rεεσE ;方向指向细胞外. 2 细胞壁两表面间的电势差V 101.52-⨯==Ed U . 6-21 有一个平板电容器 = 10-5 C;M-2解 250m C 105.4Δ--⋅⨯===σSQD 16r 0m V 105.2-⋅⨯==εεDE D 、P 、E 方向相同,均由正极板指向负极板图中垂直向下.6-22 在一个半径为R1的长直导线外套有氯解 由介质中的高斯定理,有⎰=⋅=⋅L λrL D d π2S D ;r rλe D π2=r r r εελεεe D E 00π2==;r r rλε-εe E -D P π2110⎪⎪⎭⎫ ⎝⎛== 6-23 如图 , 球形电极浮在相对电容率 = 的油槽中解 R εC 01π2= ;R εεC r 02π2=6-24 如图 , 由两块相距为 mm 的 薄金属板A,B 构成的空气平板电容器解 1 13232123C C C C C C C C ++⋅=+=32122d d d ==且,故1322C C C == ,因此A 、B 间的总电容12C C =2 若电容器的一个引脚不慎与金属屏蔽盒相碰,相当于C2 或者C3 极板短接,其电容为零,则总电容6-25 如图 , 在点A 和点B 之间有五个电容器 解 1 由电容器的串、并联,有求得等效电容C AB =4 μF.2 由于AB DB CD AC Q Q Q Q ===,得V 4==AB ACABAC U C C U 6-26 如图,有一空气电热板级板面积S ,间距d 解 12 插入电介质后,电容器的电容C 1 为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ ;()δd εδSU εεU C C r r -+==011 ()δd εδU S εεQ E r r -+=='011;()δd εδUεS εQ E r r -+==0113 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为导体中电场强度 02='E δd UE -=2 6-27 为了实时检测纺织品6-28 利用电容传感器测量油料液面高度证 由分析知,导体A 、C 构成一组柱形电容器,它们的电容分别为d D L εαln π20=;()dD L εεβr ln π20-= UX βaU CU Q +== 6-29 有一电容为 uF 的平行平板电容器解 1 V 190max ==d E U b2J 1003.92132max -⨯=CU W e6-30 半径为的长直导线,解 1 导线表面最大电荷面密度 250max m C 1066.2--⋅⨯==b E εσ 2 由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为()1210π2R r R rRr ελE m <<==0=E 其他 6-31 一空气平板电容器,空气厚解 ()16m V 102.3-⋅⨯=+-=δδd εVεE r r此时,因b E E > ,空气层被击穿,击穿后40 kV 电压全部加在玻璃板两侧,此时玻璃板内的电场强度由于玻璃的击穿电场强度'110V m b E M -=⋅,b E E '> ,故玻璃也将相继被击穿,电容器完全被击穿.6-32 某介质的相对电容率 er=解 16m V 1018-⋅⨯=≤b E E m 1022.2/4-⨯==b m E U d要制作电容为 μF 的平板电容器,其极板面积 210m 42.0==εεCdS 6-33 一平行板空气电容器,极板面积S,极板间距d, 充电解 1 20220221S εQ E εw e == Sεd Q V w W e e 022ΔΔ== 2 两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F =-F e ,则外力所作的功为7-6 北京正负电子对撞机 7-7 已知铜的摩尔质量解 1M ρN n A /= 14s m 1046.4//--⋅⨯===e ρN M j ne j A m m d v 2 室温下T =300 K电子热运动的平均速率与电子漂移速率之比为 7-8 有两个同轴导体圆柱面,它们的长度均为20m解 由分析可知,在半径r = mm 的圆柱面上的电流密度 7-9 已知地球北极磁场磁感应强度B 的大小为 T解 设赤道电流为I,则由教材第7 -4 节例2 知,圆电流轴线上北极点的磁感强度 7-10 如图,有两根导线沿半径方向接到铁环 7-11 如图 几种截流导线在平面内分布解 aRIμB 800=B 0 的方向垂直纸面向外. b 将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=B 0 的方向垂直纸面向里. c 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外. 7-12 截流导线形状如图, 球O 点 ;; B7-13 如图, 一个半径为R 的无限长半球圆柱面导体,解 根据分析,由于长直细线中的电流R l I I π/d d =,它在轴线上一点激发的磁感强度的大小为RIμB B x 20π== B 的方向指向Ox 轴负向. 7-14 分实验室常用所谓亥姆霍兹线圈由 0d d =xB, 解得 x =0 由0d d 022==x x B ,解得 d =R① 将磁感强度B 在两线圈中点附近用泰勒级数展开,则若x <<1;且()0d 0d =xB ;()0d 0d 22=x B .则磁感强度Bx 在中点O 附近近似为常量,场为均匀场.这表明在d =R 时,中点x =0附近区域的磁场可视为均匀磁场. 7-15 如图,截流长直导线的电流为L,求通过矩形面积的磁通量 7-16 已知 10mm2 裸铜线;; 50A在导线内r <R , 2222πππR r r R I I ==∑,因而202πRIr μB =在导线外r >R ,I I =∑,因而rIμB 2π0=2 在导线表面磁感强度连续,由I =50 A,m 1078.1π/3-⨯==s R ,得 7-17 有一同轴电缆, 其尺寸如图解 由上述分析得r <R 1 22101ππ12πr R μr B =⋅ 21012πR Ir μB =R 1 <r <R 2 I μr B 022π=⋅ rI μB 2π02= R 2 <r <R 3r >R 3 ()02π04=-=⋅I I μr B 04=B7-18 如图,N 匝线圈均匀密绕;;中空骨架上∑=⋅I μr B 02π r <R 1 02π1=⋅r B01=B R 2 >r >R 1 NI μr B 022π=⋅ rNIμB 2π02=r >R 2 02π3=⋅r B 03=B RNIμB 2π0≈7-19 电流I 均匀的流过半径为R 的圆形长直导线 7-20 设 电流均匀流过无限大导电平面 7-21 设有两无限大平行载流平面 ,解 1 取垂直于纸面向里为x 轴正向,合磁场为 2 两导体载流平面之外,合磁场的磁感强度 7-22 已知地面上空 B= -4解 1 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示. 2N 102.316-⨯==B F v q L N 1064.116-⨯==g m G p因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力. 7-23 在一个显像管的电子 4 eV 解 1 B F ⨯=v q电子带负电,q <0,因而可以判断电子束将偏向东侧.2m 71.62===eBmE eB m R k v 由题知cm 20=y ,并由图中的几何关系可得电子束偏向东侧的距离m 1098.2Δ322-⨯=--=y R R x 即显示屏上的图像将整体向东平移近3 mm .这种平移并不会影响整幅图像的质量.7-24 试证明霍尔电场强度与恒流强度之比j E ρC = ;B E ⨯-=v H ; v ne =jnev ρρC ==j E ;;B E ⨯-=v H ; B/ne ρB/ρ/ρB/ρ/E E C H ===v v v / 7-25 霍尔效应 测量血流的速度7-26 磁力可以用来输送导电液体 1JBl S IBl S F p ===Δ 2 26A/m 1038.3Δ⨯==Blp J 7-27 带电粒子在过饱和液体中运动 半径7-28 从太阳射来的速率 10 7解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径 m 101.1311⨯==eB m R v ;m 2322==eB m R v 7-29 如图, 一根长直导线载有电流I1 = 30A I2=20Adl I I μF π22103=; ()N 1028.1π2π2321021043-⨯=+-=-=b d l I I μd l I I μF F F 合力的方向朝左,指向直导线.7-30 一直流变电站电压500kv解 1 d I μBI F B π220== ;dεU C λE F E 022π2== 由0=+E B f f 可得 2 输出功率7-31 将一电流均匀分布的无限大...B0依照右手定则可知磁场力的方向为水平指向左侧.7-32 在直径为的刚棒上解 1 因为所有电子的磁矩方向相同,则圆盘的磁矩27m A 1056.1⋅⨯==-e μN m2 由磁矩的定义,可得圆盘边缘等效电流A 100.2/3-⨯==S m I 7-33 在氢原子中,L=h/2π7-34 如图 ,半径为R 的圆片均匀带电,电荷面密度解 由上述分析可知,轴线上x 处的磁感强度大小为7-35 如图 一根长直同轴电缆, 内外解 1 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有 ∑=f I r H π2 对r <R 1 221ππr R I I f =∑ 2112πR Ir H = 01=M ,21012πR Ir μB = 对R 2 >r >R 1 I I f =∑ rI H 2π2= 填充的磁介质相对磁导率为μr ,有()r I μM r 2π12-=,rI μμB r 2π02= 对R 3 >r >R 2 03=M , 对r >R 3 0=-=∑I I I f 04=H ,04=M ,04=B 2 由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为7-36 设长L= ,截面积S= 2解 1 A N M SL ρN 0= ;2000m A 85.7-⋅===m N M SL ρNm m A 2 维持铁棒与磁场正交所需力矩等于该位置上磁矩所受的磁力矩 7-37 在实验室,为了测试;;平均周长分析 根据右手定则,磁感线与电流相互环连,磁场沿环型螺线管分布,当 环形螺线管中通以电流I 时,由安培环路定理得磁介质内部的磁场强度为 由题意可知,环内部的磁感强度S ΦB /=,而H μμB r 0=,故有解 磁介质内部的磁场强度和磁感强度分别为L NI /和S Φ/,因而。

《大学物理习题集》(上)习题解答

《大学物理习题集》(上)习题解答

)2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。

【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。

3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。

5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。

设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。

6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,(7)选择题质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。

当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)2v 1kt 21v 1+= (D)2v 1kt 21v 1+-=二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(B)、匀速直线运动,加速度沿 x 轴负方向;
(C)、变加速直线运动,加速度沿 x 轴正方向;
(D)、变加速直线运动,加速度沿 x 轴负方向。
[
]
二、 填空题:
1、一质点沿直线运动,其运动学方程为 x = 6 t-t2 (SI),则在 t 由 0 至 4s 的时间间隔内,
质点的位移大小为
;走过的路程为
刻质点的速度;(2)t1=1s 和 t2=4s 时刻质点的加速度。
1

2.
一质点在 xy 平面上运动,运动方程为: x
3t 5 , y
1 t2
3t 4 ,式中物理量
2
用国际单位,即 t 的单位用 s ,x、y 的单位用 m。求(1)质点运动的轨迹方程;(2)质点在
第 2s 时刻的位置矢量、速度矢量和加速度矢量;(3)质点在第 2s 时刻的速率和运动方向(用
1
小为
v
1 v0
kt ;(2)船在时间 t
内,行驶的距离为 x
1 k
ln(v0
kt
1) 。其中 v0 为关闭发动
机时船的速度。
3
第一章 质点运动学(Ⅲ)
一 、选择题 1、一个质点在作匀速圆周运动时,下列说法正确的是 (A)、切向加速度改变,法向加速度也改变; (B)、切向加速度不变,法向加速度改变; (C)、切向加速度不变,法向加速度也不变; (D)、切向加速度改变,法向加速度不变。
(3)质点的初速度 v0 ,初位置 x0 。
2、一质点沿 x 轴运动,其加速度 a 与位置坐标 x 的关系为 a=2+6 x2 (SI)。如果质点在 原点处的速度为零,试求其在任意位置处的速度。

3、一正在行驶的汽船,发动机关闭以后,得到一个与船速方向相反、大小与船速平方成
正比的加速度,即 dv kv 2 ,k 为常数。试证明在发动机关闭后,(1)船在 t 时刻的速度大 dt
4
大学物理(上)
2、 一质点沿半径 R =2.00m 的圆周运动,其速率 v KRt 2 m s1 ,K 为常数。已知第 二秒末的速率为 32.00m s1 。求 t 0.50 s 时质点的速度和加速度的大小。

(2)加速度为零时,该质点的速度 v 为

2、一质点沿 x 方向运动,其加速度随时间变化关系为 a = 3+2 t (SI)。如果初始时质点的
速度 v 0 为 5 m/s,则当t为 3s 时,质点的速度 v =

3、在 x 轴上作变加速直线运动的质点,已知其初速度为v 0 ,初始位置为 x0,加速度 a Ct 2
;平均速度为
;平均速
率为


2、在平静的湖面上,建立直角坐标系
Oxy,x,y
轴都贴附于湖面,在此坐标系中,小艇
的运动方程为
r
(2t )i
(3
8t
2
)
j
,则运动方程的分量式
x(t)
=

y(t)
。小艇的速度矢量表达式为
;加速度矢量表达
式为

三、 计算题
1、 一质点沿 x 轴作直线运动,其运动方程为 x=6t2—2t3(SI),求:(1)t1=1s 和 t2=4s 时
[ ,其中
a,b
] 为常
量。则该质点作
(A)、匀速运动;
(B)、变速直线运动;
(C)、抛物线运动;
(D)、一般曲线运动。
[
]
二、 填空题
1、 一质点沿 x 轴作直线运动,它的运动方程为 x 3 5t 6t 2 t 3 (SI 制)。则
2
大学物理(上)
(1)质点在 t 0 时刻的速度 vo 为
与 x 轴正向的夹角表示)。
第一章 质点运动学(Ⅱ)
一、 选择题
1、一质点以加速度大小 a 5(5 2t) (SI),由静止 (t 0) 开始作直线运动,式中 t 为时
间。则当 t 为 5 秒时,质点速度大小为
★2(、A一)质、点25在m/平s;面上运(动B),、已–5知0m质/s点;的位置(矢C)量、表0 达;式为(rD)、at520im/sbt。2 j
大学物理(上)
第一章 质点运动学(Ⅰ)
一、 选择题
离为1、r,一对作原平点面O运的动位的置质矢点量,为在r某x瞬, y时 ,位其于对某应点的P坐,标该为点(到x给,定y)的。直则角该坐质标点系此的时原的点运动O 的速距度
速度大小为
(A) d r ;
dt
d r
(C)

dt
(B) d r ; dt
(D) d x 2 d y 2 。 dt dt
[
]
2、 已知一质点在 XOY 平面上作半径为 R 的圆周运动,当该质点运动一周时,其位移的
大小与路程分别为
(A)、0 和 2πR ; (B)、2πR 和 2πR ; (C)、R 和 2πR; (D)、0 和 0 。
3、 一质点的运动方程为 x 3t 5t 3 6 (SI 制),该质点做
[
]
(A)、匀加速直线运动,加速度沿 x 轴正方向;
(A) 西 ; (B) 北偏东 45°; (C) 北偏西 45°; (D)北。 [

二 、填空题
1、 在半径为 R 的圆周上运动的质点,其速率与时间关系为 v ct 2 ,式中 c 为常数,则
从 t =0 到 t 时刻质点走过的路程 s(t)=
;t 时刻质点的切向加速度 at =

法向加速度 an
[
]

2、
一运动质点速率 v 与路程
s
关系为 v
1
s2
,则其切向加速度 at
用路程
s
来表示的
表达式为:
(A)、 2s(1 s 2 ) ;
(B)、 2(1 s 2 ) ;
(C)、 s(1 s 2 ) ;
(D)、 2s(1 s) 。
[
]
3、某人骑自行车以速率 v 向西行驶,今有风以相同速率从北方向吹来,试问人感到风从 哪个方向吹来?

2、一质点沿半径为 0.100m 的圆周运动,其角位移 随时间 t 的变化规律是 =2+4t(3 SI),
在 t =2 s 时,它的法向加速度 an
,切向加速度 at =
。当 t=
时,
an at 。
三、 计算题 1、地球的同步卫星在赤道上空的圆形轨道上作匀速率圆周运动,其周期等于地球自转周 期 T=24h,卫星离地面的高度为 3.59×104km,地球的平均半径为 6.37×103km,求卫星的速率 和加速度。
(其中 C 为常量),则其速度与时间的关系为v __________,运动学方程为 x __________。
三、 计算题
1、质点沿 x 轴正向(向右)运动,已知其速度为 v 8 3t 2 ,当 t=8s 时,质点位于坐
标原点左侧 52m 处。求: (1)质点加速度; (2)质点的运动方程;
相关文档
最新文档