焦半径公式的证明
焦半径三部曲

以椭圆为例证明,由焦半径公式可得
上述公式具体有统一性。椭圆、双曲线和抛物线均 适合,抛物线的离心率,若定义∠PFO=θ,焦点在 x轴y轴公式均适合。
• 焦半径三部曲(坐标式、角度式和定比模型)今 天就全部完成了。
• 基本上所有焦半径的题型都可以用这三个切入点 做出来,遇到坐标用坐标式,遇到直线用斜率式, 遇到比值用定比模型。
如果在解答题上用公式,需要写上述的证明,其实证 明也就的记忆规律:同正异负.即当P与F位于y 轴的同侧时取正,否则取负. 取∠PFO=θ,无需讨论焦点位置,上述公式均适合。
三、抛物线焦半径(角度式)
圆锥曲线焦半径三部曲——定比模型
• 所以,任何二级结论要先熟练掌握它的推导过程, 而不是只停留在像背诵英文单词一样把它背下来。
• 表象都是结论,背后全是推导。
三、抛物线焦半径
圆锥曲线焦半径三部曲——角度式
• 一、椭圆焦半径(角度式)
注:上述公式定义∠PFO=θ,P为圆锥曲线上的点,F为焦点,O 为圆点.主要优点为焦点在左右上下均适合,无需再单独讨 论。 若将角度统一为直线的倾斜角,需要讨论焦点位置,为记忆 公式方便全文角度统一为∠PFO=θ。
• 关于这些焦半径二级结论我还有话要说。
• 二级结论是指在平时的教学中,由教材中原有的 公式、概念和定义进行归纳推导得出的在一定条 件下成立的结论。
• 确实记住了这些二级结论针对一些特有的题型能 不假思索,快速做出答案。
• 但是 • 高考命题的专家不是白吃干饭的,为体现高考的
公平,命题组肯定会绞尽脑汁考察三基。若过度 依赖二级结论,思维容易僵化,遇到一些似是而 非的题目时往往乱套结论,同时二级结论往往都 有一定的条件限制,用的越爽限制条件往往越大。
抛物线的焦半径

r=x+p/2
抛物线的焦半径是r=x+p/2。
抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。
它有许多表示方法,例如参数表示,标准方程表示等等。
1、曲线上任意一点M与曲线焦点的连线段,叫做抛物线的焦半径。
2、曲线上一点到焦点的距离,不是定值。
焦半径:曲线上任意一点与焦点的连线段焦点弦,过一个焦点的弦通径。
过焦点并垂直于轴的弦圆锥曲线(除圆外)中,过焦点并垂直于轴的弦。
抛物线性质:
1、焦半径公式:(y2=2px(p>0))|MF|=2x0M(x0,y0)为抛物线上任意一点的坐标。
2、通径|AB|=2p。
3、焦点弦。
(1)、|AB|=p+x1+x2。
(2)、|AB|=2psin2θ2pP(y2=2px(p>0))。
(3)、|AB|=cos2θ(x2=2py(p>0))(通径是最短的焦点弦)。
(4)、焦点弦的端点坐标A(x1,y1),B(x2,y2),则有x1x2=,y1y2=-p24p2。
(5)、n=1+cosθ,m=1−cosθm+n=p。
1。
圆锥曲线的焦半径公式推导

圆锥曲线的焦半径公式推导如下:圆锥曲线的焦半径公式是解决与圆锥曲线相关问题的重要工具。
对于椭圆来说,如果焦点在x轴上,且设点A(x_1, y_1)在椭圆上,那么点A到左焦点F_1的焦半径为a + ex_1,到右焦点F_2的焦半径为a - ex_1。
推导过程可以基于椭圆的标准方程和定义来进行:1. 椭圆的标准方程:对于中心在原点,半长轴为a,半短轴为b的椭圆,其标准方程通常写作:x²/(a²) + y²/(b²) = 1 (其中a > b > 0)2. 离心率:离心率e是描述椭圆形状的一个参数,定义为c/a,其中c是椭圆的焦距。
3. 焦半径的定义:对于椭圆上的任意一点P(x, y),到焦点的距离称为焦半径。
4. 使用相似三角形:根据圆锥曲线的第二定义,从椭圆的一个焦点出发到椭圆上一点的射线,与从另一焦点出发到同一点的射线以及与主轴的夹角θ之间存在关系。
通过构建相似三角形,可以得到焦半径的计算公式。
5. 坐标式:当焦点在x轴上时,若已知椭圆上一点的横坐标x_1,则到左焦点F_1的焦半径长度可以用a + ex_1来计算,到右焦点F_2的焦半径长度用a - ex_1来计算。
这里的e是椭圆的离心率。
6. 倾斜角式:利用焦半径与主轴正方向的夹角θ,可以得到更为通用的焦半径表达式,尤其适用于焦点不在坐标轴上的情况。
在这种情况下,焦半径的长度与夹角θ有关,表达式为r = b²/(a±ccosθ),这里±的选择取决于焦点的位置。
综上所述,圆锥曲线的焦半径公式有多种表达形式,可以根据具体问题的需要选择合适的公式进行计算。
这些公式不仅在理论研究中有着重要作用,在解题和实际应用中也极其重要。
证明焦半径公式

证明焦半径公式一、椭圆焦半径公式的证明。
(一)椭圆的标准方程。
设椭圆方程为frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),其左、右焦点分别为F_1(-c,0),F_2(c,0)(其中c^2=a^2-b^2)。
(二)设点P(x_0,y_0)在椭圆上。
1. 求PF_1(左焦半径)- 根据两点间距离公式,PF_1=√((x_0)+c)^2+y_{0^2}。
- 因为点P(x_0,y_0)在椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1上,所以y_0^2=b^2(1-frac{x_0^2}{a^2})。
- 将y_0^2=b^2(1 - frac{x_0^2}{a^2})代入PF_1=√((x_0)+c)^2+y_{0^2}中,得到:PF_1=√((x_0)+c)^2+b^2(1-frac{x_{0^2}{a^2})} =√(x_0)^2+2cx_{0+c^2+b^2-frac{b^2x_0^2}{a^2}} =√(frac{a^2)x_0^2+2a^2cx_{0+a^2c^2+a^2b^2-b^2x_0^2}{a^2}} =√(frac{(a^2)-b^{2)x_0^2+2a^2cx_0+a^2(b^2+c^2)}{a^2}}- 又因为c^2=a^2-b^2,所以:PF_1=√(frac{c^2)x_0^2+2a^2cx_{0+a^4}{a^2}} =√(frac{(cx_0)+a^2)^2{a^2}} =<=ft frac{cx_0+a^2}{a}right- 因为-a≤slant x_0≤slant a且a > 0,c>0,所以cx_0+a^2>0,则PF_1 = a +ex_0(其中e=(c)/(a)为椭圆的离心率)。
2. 求PF_2(右焦半径)- 同样根据两点间距离公式,PF_2=√((x_0)-c)^2+y_{0^2}。
椭圆的焦半径

椭圆的焦半径是什么?
椭圆的焦半径:MF1=a+ex0,MF2=a-ex0,X0为M的横坐标。
焦半径公式的推导:利用双曲线的第二定义,设双曲线其左右焦点,则由第二定义:同理即有焦点在x轴上的双曲线的焦半径公式,同理有焦点在y轴上的双曲线的焦半径公式。
其中分别是双曲线的下上焦点。
注意:双曲线焦半径公式与椭圆的焦半径公式的区别在于其带绝对值符号,如果要去绝对值,需要对点的位置进行讨论。
相关结论
A(x1,y1),B(x2,y2),A,B在抛物线y1=2px上,则有:
①直线AB过焦点时,x1x2 = p²/4 ,y1y2 = -p²。
(当A,B在抛物线x ²=2py上时,则有x1x2 = -p²,y1y2 = p²/4 ,要在直线过焦点时才能成立)。
②焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)1]=(x1+x2)/2+P。
③(1/|FA|)+(1/|FB|)= 2/P;(其中长的一条长度为P/(1-cosθ),短的一条长度为P/(1+cosθ))。
④若OA垂直OB则AB过定点M(2P,0)。
焦半径公式 椭圆

焦半径公式椭圆
当抛物线方程为 y^2=2px(p\ue0) (开口向右) 时,焦半径r=x+p/2 (其中x为在抛物线上的横坐标,p为焦准距),利用抛物线第二定义求。
至于抛物线开口方向为其他三个方向时,利用抛物线第二定义求同理可求。
如果焦点不在坐标轴上,只需要将x进行相应平移即可,p不变。
圆锥曲线上任意一点m与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。
圆锥曲线上一点到焦点的距离,不是定值。
焦半径:曲线上任意一点与焦点的连线段焦点弦,过一个焦点的弦通径。
过焦点并垂直于轴的弦圆锥曲线(除圆外)中,过焦点并垂直于轴的弦。
有关结论
a(x1,y1),b(x2,y2),a,b在抛物线y1=2px上,则有:
② 焦点弦长:|ab| = x1+x2+p = 2p/[(sinθ)1]=(x1+x2)/2+p。
③ (1/|fa|)+(1/|fb|)= 2/p;(其中长的一条长度为p/(1-cosθ),短的一条长度为p/(1+cosθ))。
④若oa横向ob则ab过定点m(2p,0)。
椭圆焦半径公式的证明及巧用

椭圆焦半径公式的证明及巧用
一、椭圆焦半径公式的证明
设椭圆的两个焦点分别为F1(-c,0)和F2(c,0),中心点为
O(0,0),则椭圆的参数方程为:
x=a*cosθ
y=b*sinθ
其中,θ为椭圆上任意一点P的极角,a和b分别为椭圆的长轴和短轴长度。
将P的坐标代入椭圆焦半径的定义式,得到:c=(F1P+F2P)/2
c=[(-c-x)²+y²+(c-x)²+y²]½/2
c=[2a²-2x²]½/2
将x=a*cosθ代入上式,得到:
c=[2a²-2a²cos²θ]½/2
c=a(1-cos²θ)½
c=a*sinθ
因此,椭圆焦半径的公式为c=a*sinθ。
二、椭圆焦半径公式的巧用
1.焦距的计算
在光学中,焦距是指光线从远处垂直射入透镜后汇聚到的点与透镜的距离。
对于一个椭圆形的反射器或折射器,其焦距可以通过椭圆焦半径公式计算得到。
2.卫星轨道的计算
卫星轨道是指卫星绕地球或其他天体运行的路径。
对于一个地球同步轨道,其轨道形状为椭圆,可以通过椭圆焦半径公式计算出卫星与地球的距离。
3.椭圆的绘制
在计算机图形学中,椭圆的绘制是一个常见的问题。
通过椭圆焦半径公式,可以计算出椭圆上每个点的坐标,并将其绘制出来。
(完整版)椭圆焦半径公式及应用

椭圆焦半径公式及应用.椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。
在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。
一、公式的推导设P(,)是椭圆上的任意一点,分别是椭圆的左、右焦点,椭圆,求证,。
证法1:。
因为,所以∴又因为,所以∴,证法2:设P到左、右准线的距离分别为,由椭圆的第二定义知,又,所以,而。
∴,。
二、公式的应用例1 椭圆上三个不同的点A()、B()、C()到焦点F(4,0)的距离成等差数列,求的值。
解:在已知椭圆中,右准线方程为,设A、B、C到右准线的距离为,则、、。
∵,,,而|AF|、|BF|、|CF|成等差数列。
∴,即,。
评析:涉及椭圆上点到焦点的距离问题,一般采用焦半径公式求解,即利用焦半径公式可求出A、B、C三点到焦点的距离,再利用等差数列的性质即可求出的值。
例2 设为椭圆的两个焦点,点P在椭圆上。
已知P、、是一个直角三角形的三个顶点,且,求的值。
解:由椭圆方程可知a=3,b=2,并求得,离心率。
由椭圆的对称性,不妨设P(,)()是椭圆上的一点,则由题意知应为左焦半径,应为右焦半径。
由焦半径公式,得,。
(1)若∠为直角,则,即,解得,故。
(2)若∠为直角,则,即=,解得,故。
评析:当题目中出现椭圆上的点与焦点的距离时,常利用焦半径公式把问题转化,此例就利用焦半径公式成功地求出值。
例3 已知椭圆C:,为其两个焦点,问能否在椭圆C 上找一点M,使点M到左准线的距离|MN|是与的等比中项。
若存在,求出点M的坐标;若不存在,请说明理由。
解:设存在点M(),使,由已知得a=2,,c=1,左准线为x=-4,则,即+48=0,解得,或。
因此,点M不存在。
评析:在涉及到椭圆上的点与其焦点的距离时,如果直接用两点间距离公式,运算将非常复杂,而选用焦半径公式可使运算简。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焦半径公式的证明
FFaa>cFFc)2到两定点|=2,)(距离之和为定值22(|【寻根】椭圆的根在哪里?自然想到椭圆的定义:2121的动点轨迹(图形).
ca.
和这里,从椭圆的“根上”找到了两个参数ca,就确定了椭圆的形状和大小.就确定了椭圆的位
置;再加上另一个参数比较它们的第一个参数“身,ca更“显贵”比份”来,.
c的踪影,故有人开玩笑地说:椭圆方程有“忘本”遗憾的是,在椭圆的方程里,却看不到. 之嫌cc的“题根”. 为了“正本”,我们回到椭圆的焦点处,寻找,并寻找关于
一、用椭圆方程求椭圆的焦点半径公式
数学题的题根不等同数学教学的根基,数学教学的根基是数学概念,如椭圆教学的根基是椭圆的定义.但是在具体数学解题时,不一定每次都是从定义出发,而是从由数学定义引出来的某些已知结论(定理或公式)出发,如解答椭圆问题时,经常从椭圆的方程出发.
FcFcPxy,0)((,0,)和)是椭圆上任意一点,是椭圆的两个焦(【例1】已知点-21 a PFPFa+-|=|=;|.
.点求证:|21PFPFy”即可然后利用椭圆的方程“消. .可用距离公式先将||和||分别表示出来分析【】21【解答】由两点间距离公式,可知
PF (1)
||=1.解出从椭圆方程
(2)
代(2)于(1)并化简,得
axPFa)
|(-≤|=≤1 aPF xa)
|≤|=≤(-同理有2通过例1,得出了椭圆的焦半径公式【说明】
ea-ex ra+exr==( )
=21Px,yrxrx的减)横坐标的一次函数. 的增函数,从公式看到,椭圆的焦半径的长度是点是(是21a+ca-cx,y轴,关于原点)(关于.
.从焦半径公式,函数,它们都有最大值还可得椭圆的对称性质,最小值
二、用椭圆的定义求椭圆的焦点半径
用椭圆方程推导焦半径公式,虽然过程简便,但容易使人误解,以为焦半径公式的成立是以椭圆方程为其依赖的.为了看清焦半径公式的基础性,我们考虑从椭圆定义直接导出公式来.
椭圆的焦半径公式,是椭圆“坐标化”后的产物,按椭圆定义,对焦半径直接用距离公式即可. P x,yPFcFcaa>c>0)(.,0()的距离的和为)是平面上的一点,到两定点2(-),0,试用】【例2 (21xyrPFrPF|.
的解析式来表示和=|=|,|2112rfxrgxxrr的方程组,然后从中得出为参数列出关于(和).】【分析问题是求=先可视()和=2211rr.
和21【解答】依题意,有方程组
③得②-rr= ⑤代①于④并整理得-21联立①,⑤得.
【说明】椭圆的焦半径公式可由椭圆的定义直接导出,对椭圆的方程有自己的独立性.由于公式中含cb,其基础性显然.
而无
三、焦半径公式与准线的关系
用椭圆的第二定义,也很容易推出椭圆的焦半径公式.
PxyF-c,l:,0)是以如图右,点)为焦点,以((11x=-PDlD.按椭圆为准线的椭圆上任意一点.于⊥1的第二定义,则有
ra+exra-ex.同理有==,即21准线缺乏定义的“客观性”.. 对中学生来讲,椭圆的这个第二定义有很大的“人为性”. 因此,把椭圆的第二定义视作椭圆的一条性质定理更符合逻辑性
PxyFcFcal为直线的椭圆上任意一点.(,3】 0(,)为焦点,以距离之和为)是以2(-,0),【例21x=-PDllD.
交,⊥于11求证:.
PFaex.
| 由椭圆的焦半径公式+|=【解答】1x+PDPDx-.
对|=|用距离公式 ||= 11故有.
x=lc,xlFFc,)0-与定直线(该椭圆上任意一点,说明【】此性质即是:到定点(():=-0))(:2211.
ee<1)(0<的距离之比为定值.
四、用椭圆的焦半径公式证明椭圆的方程
现行教材在椭圆部分,只完成了“从曲线到方程”的单向推导,实际上这只完成了任务的一半.而另一半,从“方程到曲线”,却留给了学生(关于这一点,被许多学生所忽略了可逆推导过程并不简单,特别是逆过程中的两次求平方根).
其实,有了焦半径公式,“证明椭圆方程为所求”的过程显得很简明.
PxyFxy-c,FcP,(.)适合方程求证:点((,0【例4】设点()到两定点,)和21222baac.
)的距离之和为02-(=)【分析】这题目是为了完成“从方程到曲线”的这一逆向过程.利用例2导出的焦点半径公式,很快可推出结果.
PxyFcrPF|.由椭圆的焦点半径公式可知=|(-】【解答(,0,)的距离设作)到111ra+ex
①= 1同理还有
ra-ex② =2rra +=2① +②得21PFPFa.
|+||=2即 |21PxyFcFc,a.20)和()的距离之和为0-即(,)到两定点(,说明】椭圆方程是二元二次方程,而椭圆的焦半径公式是一元一次函数.因此,围绕着椭圆21【
焦半.
径的问题,运用焦半径公式比运用椭圆方程要显得简便。